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A non-local void dynamics modeling and simulation
using the Proper Generalized Decomposition

Chady Ghnatios1 · Pavel Simacek2 · Francisco Chinesta3 · Suresh Advani2

Abstract
In this work we develop a void filling and void motion dynamics model using volatile pressure and squeeze flow during tape
placement process. The void motion and filling are simulated using a non-local model where their presence is reflected in
the global macroscale behavior. Local pressure gradients during compression do play a critical role in void dynamics, and
hence the need for a non-local model. Deriving a non-local model accounting for all the void motion and dynamics entails
a prohibitive number of degrees of freedom, leading to unrealistic computation times with classical solution techniques.
Hence, Proper Generalized Decomposition – PGD – is used to solve the aforementioned model. In fact, PGD circumvents
the curse of dimensionality by using separated representation of the space coordinates. For example, a 2D problem can be
solved as a sequence of 1D problems to find the 2D solution. The non-local model solution sheds light on the fundamental
of the void dynamics including their pressure variation, motion and closure mechanisms. Finally, a post treatment of the
transient compression of the voids is used to derive conclusions regarding the physics of the void dynamics.

Keywords Void filling · Void dynamics · Tape placement · Proper Generalized Decomposition · PGD · Squeeze flow

Introduction

Autoclave manufacturing of composite materials although
well established is prohibitively expensive and not suitable
to make too large and thick parts. Active efforts are
underway to find autoclave replacement, with new out-of-
autoclave manufacturing processes to improve reliability
and production volumes [13, 14, 26]. One of the promising
out-of-autoclave composite manufacturing processes is the
automated tape placement process (ATP). ATP builds the
bulk of a composite part through laying up composite
thermoplastic prepregs tape layer after layer over a tool
surface. Consolidation of newly added layers is achieved by
heating the freshly added tape and compressing the softened
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resultant material with a roller to bond it to the previously
consolidated layer.

Incoming tape does contain voids and may introduce
additional voids due to release of entrapped volatiles and
moisture during the heating of the tape, or because the
imperfect consolidation of rough tape surfaces as discussed
and simulated in [2, 16–19, 23]. Voids are detrimental to the
final mechanical properties of the part, hence it is important
to address the thermal modeling of the heat process as
well as mechanical simulation of the squeeze flow [6, 11].
Others have modeled the void closure in the ATP process
using a coupled thermal mechanical simulation, while using
a micro-macro modeling of the void closing either while
considering the fiber bed and the matrix as a Newtonian or
Non Newtonian mixture and compared it with experimental
results [21, 22, 27]. However, the micro-macro modeling
of the flow does not allow for void motion, nor does it
account for a correct mass balance between the voids in
the micro scale model and the bulk material in the macro
scale model. Moreover, these models developed at the end
of the 20th century are the current state of the art to describe
void dynamics [15, 25, 28]. Recently, a new model of void
dynamics in multiphase flow, coupling multiple physics
at different scales and using optimization algorithms for
convergence was derived in [4]. However its application to
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a real composite material part would be complicated and
cumbersome.

Moreover, using some simplification while conserving
general physical laws, a 1D non-local (non-local in the
sense that the pressure driving the voids evolution depends
on all the voids in the domain) void closing model was
successfully used in [24], without allowing any void motion.
From previous studies, and to the best of our knowledge,
accounting for void motion and void filling using a non-
local model has not been addressed until now. Thus, the aim
of this work is to model and simulate the void filling and
motion from a non-local point of view, using gas pressure
inside the void and viscous resin squeeze flow analysis.

A numerical simulation of a non-local void filling and
motion model will involve a large number of degrees
of freedom leading to infeasible computational time.
Therefore, the use of model order reduction techniques
was adopted to overcome this hurdle. Model order
reduction techniques tend to reduce simulation time without
degrading the thermomechanical model [11]. Moreover, the
Proper Generalized Decomposition or PGD, is the only “a
priori” model order reduction technique able to handle
separated space coordinates [7]. Thus, using PGD, a 2D
problem can be solved as a sequence of 1D problems for
example, leading to a dramatic reduction in computational
time [5, 12]. The use of PGD in composite materials
modeling has led to multiple successful simulations of
different manufacturing processes [1, 9, 10]. The use of
PGD in this work makes it possible to increase the number
of nodes to achieve mass balance in the domain and account
for void motion.

In this paper, first we present the void dynamics model.
Next, we review the PGD algorithm and recast it to address
the ATP process. Finally, we show the results for multiple
examples while describing the observed physical behavior
to gain insight of the process at local level.

Void dynamics model

In this modeling effort, we consider a tape cross section
under the roller as illustrated in Fig. 1. The effect of
the temperature change is neglected in this work since
the process is taking place in a very small time interval
with an almost constant uniform temperature in the entire
domain. The boundary conditions are given by the following
equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v(y = h) = (0, −u)

v(y = 0) = 0
P(x = 0) = Patm

P (x = L) = Patm

P (Void i) = Pi

(1)

Fig. 1 The considered tape cross section

We assume that the roller compresses the tape from the
top with a constant velocity u. As ATP is a very fast pro-
cess, the roller makes contact with the tape for a very short
duration. We assume the bottom of the tape does not move,
hence zero displacement at the bottom of the domain and
atmospheric pressure around the tape. The tape domain may
contain multiple voids. Inside a void i, the pressure is Pi

and will be a function of time t . For a constant compression
velocity under the roller, all cross sections shall undergo
the same compression profile, and therefore simulating the
compression of one cross section is sufficient to model the
void closure process inside the tape.

In this work, we focus on the behavior of void dynamics
in a given cross section. Moreover, due to the reduced tape
thickness, we neglect any thermal coupling with the fluid
viscosity. Readers interested in thermal fields simulation
during ATP may refer to [3, 11, 20].

Governing equations

In this model, the squeeze flow is the main driving
phenomenon that leads to filling the voids. However, the
volatile pressure inside the void increases with deceasing
void volume and therefore resists the filling of the void with
the resin. Since the compression time interval is in general
too short and exhibits large pressure gradients, we can safely
neglect the capillary and inertia effects. Moreover, outside
the void regions, the polymer flow in the composite material
is modeled using Darcy’s law:

v = −K
μ

· ∇P (2)

where v being the velocity field, P the resin pressure, K the
fiber bed effective permeability and μ the resin viscosity.
Combining Eq. 2 with conservation of mass:

∇ · v = 0 (3)



results in the strong form of the governing equation inside
the porous medium:

−∇ ·
(
K
μ

∇P

)

= 0 (4)

Solving Eq. 4 one can obtain the pressure field inside the
tape domain. From the obtained pressure field, we can use
Eq. 2 to find the velocity field inside the domain. The
volumetric flow rate Qi entering a void i at time t is
therefore defined by:

Qi = −
∫

Ai

v · dA (5)

Where Ai is the void i surface at time t and dA is a
differential surface element of void i pointing towards the
resin domain.

However Eq. 4 doesn’t account for the presence of the
voids inside the simulated domain, and the resultant changes
in the corresponding pressure field. Thus, a change in
the formulation inside the voids is mandatory to define a
non-local void compaction model.

Voidmodel

First of all, we assume no reaction occurs between the voids
and the surrounding medium. As a result, inside the voids,
the ideal gas law drives the pressure’s behavior. We can
define the rate of change of the volume of void i by V̇i as:

V̇i = −Qi =
∫

Ai

v · dA (6)

Using the ideal gas law on void i at time t , we can write:

Ṗi = −V̇i · Pi

Vi

(7)

We can therefore upgrade void i pressure and volume from
time tn to time tn+1 using Euler’s approximation of the
derivatives leading to:
{

V n+1
i = V n

i + V̇i · Δt

P n+1
i = P n

i + Ṗi · Δt
(8)

where Δt is the considered time step.
The pressure inside the voids is considered as an imposed

Dirichelet boundary condition. Therefore, considering

the high pressure induced by the squeeze flow, the
pressure gradients would increase dramatically in the
void neighborhood. To capture these pressure gradients
accurately, a highly refined mesh is required, involving a
prohibitive number of degrees of freedom. This leads to
infeasible computation time, which is the main hurdle to the
use of this non-local void models. Therefore, model order
reduction techniques especially PGD is a suitable candidate
for the aforementioned model.

PGD simulation

Model order reduction techniques are advanced simulation
techniques using domain decomposition into lower dimen-
sionality domains. For example our 2D problem can be
solved as a sequence of 1D problems as illustrated in Fig. 2.
The approach provides the exact full dimensionality solu-
tion, but with reduced computational cost. In this section we
review the PGD algorithm used in this work and the integra-
tion of the boundary conditions introduced by the presence
of voids in the domain.

The PGD algorithm

The PGD algorithm starts by writing the integral form of the
problem governing Eq. 4:

−
∫

Ω

P ∗∇ ·
(
K
μ

· ∇P

)

dΩ = 0 (9)

where P ∗ is the test function. Later on, we define P in a
separated form as a series such as:

P ≈
j=N∑

j=1

Xj(x)Yj (y) (10)

where Xj and Yj are not defined “a priori” but found by the
algorithm. In fact we suppose that P is known until the term
l and seek to find the next term of the sequence represented
as:

Pl+1 =
j=l∑

j=1

Xj(x)Yj (y) + R(x)S(y) (11)

Fig. 2 Domain decomposition:
a problem in the (x; y) domain
is solved as a sequence of x then
y problems



R(x) and S(y) being the enrichment terms, leading to
Xl+1(x) and Yl+1(y) after convergence. Interested reader
may refer to [8] and the references therein. We also suppose
that the test function P ∗ can be written in a separated form
such as [7]:

P ∗ = R∗(x)S(y) + R(x)S∗(y) (12)

where R∗ and S∗ are respectively the test functions in the x

and y domains.
Substituting Eqs. 12 and 11 into the integral form of

Eq. 9, results in the following non linear equation:

−
∫

Ω

(
R∗(x)S(y) + R(x)S∗(y)

) ∇

·
⎛

⎝
K
μ

· ∇
⎛

⎝
j=l∑

j=1

Xj(x)Yj (y)+R(x)S(y)

⎞

⎠

⎞

⎠ dΩ = 0 (13)

where R and S are the unknowns of the problem. To
solve the non linear problem resulting from Eq. 13, we
use a rank one update iterative fixed point algorithm. For
instance, we may first consider R as known, and thus set
the corresponding test function R∗ to zero, which reduces
Eq. 13 to a 1D problem where S is the only unknown.
The resulting problem can be solved using any classical
numerical technique such as the finite elements or the
finite differences for example. Second, since S is computed,
we may consider S as known and thus set S∗ to zero,
which leads to a 1D problem giving R. The iterative
calculation continues until convergence of the product RS

is reached. The PGD algorithm is illustrated in Fig. 3. The
resulting algorithm reduces the calculation domain from a
2D problem into a sequence of 1D problems.

The resulting problems are solved using homogeneous
boundary conditions, while setting a first product of

Fig. 3 PGD algorithm used to find the solution of the pressure field

functions X1(x)Y1(y) satisfying the non homogeneous
essential Dirichlet boundary conditions defined by:

P = Patm at x = 0 and x = L (14)

with the Neuman ones applying directly in the weak form
after integrating by parts.

Treatment of the voids

The voids, here assumed having a square shape, are
randomly distributed along the domain, and therefore the
boundary conditions can’t be written in the form of a
boundary condition in the x domain nor a boundary
condition in the y domain. This type of boundary condition
should be imposed using a penalty formulation in the
PGD separated representation framework [8], by enforcing
the pressure multiplied by the penalty acting at the voids
locations, the last represented from their characteristic
function:

χi = Mi (x)Ni (y), i = 1, · · · , m, (15)

where m is the total number of voids, andMi (x) andNi (y)

the characteristic functions in the x and y defining the i-void
where penalty will apply:
{
Mi (x) = 1 if x ∈ Vi; Mi (x) = 0 elsewhere
Ni (y) = 1 if y ∈ Vi; Ni (y) = 0 elsewhere

(16)

Vi being the part of the computation domain Ω included
in void i. With Pi denoting the pressure in void i and λ

the penalty coefficient assumed large enough, the penalized
integral form of the problem becomes:

−
∫

Ω

P ∗∇ ·
(
K
μ

· ∇P

)

dΩ + λ

i=m∑

i=1

(P − Pi)MiNi = 0.

(17)

At each time step n, the pressure is solved using the
illustrated PGD algorithm, the flow inside the void is
computed using the void Eq. 5. Once the velocity near each
void i is available, V̇i and Ṗi are computed using Eqs. 6
and 7 respectively. Finally we update the void size and
pressure using Eq. 8 before going to the next time step n+1.

Void dynamics results and discussion

In this section we illustrate the studied cases of void
dynamics using the PGD framework. First of all we
illustrate a study of a simple domain with 3 voids, later on
we elaborate to a case of 10 voids in a domain at different
position in the thickness direction. For the sake of simplicity
and without loss of generality, we will consider the fluid
viscosity μ = 1Pa.s for all the examples discussed. We



Fig. 4 The considered simple domain (in which Lx and Ly are the
width and the thickness of the tape respectively) containing three
voids of different sizes. Initially Void 1 is 1.5 × 1.5mm2, voids 2 is
1×1mm2 and void 3 is 1.25×1.25mm2 in the first example illustrated
in Section 3

also consider the voids to be square as the implementation
is in cartesian coordinates and as we do not address the
surface tension issue, the shape of the void should be of
little consequence. Later on, we compare the effect of the
void’s position and size using the same total initial void
volume fraction, on the reduction of void fraction due to
squeeze flow induced by the roller during the ATP process.
Ellipticity and the associated Saint Venant principle leads
to a pressure field that does not depend on the local effects
when we move away from the voids. Finally, in this section
we aim to identify the effect of void distribution and size on
the final void volume fraction.

A simple 3 voids case

In this section we illustrate a simplified case with 3
voids of different sizes, compressed for two different tape
thicknesses, a thick tape and a thin tape. The simulated
domain is illustrated in Fig. 4.

Fig. 5 The mass conservation balance at a given time step n: the flow
going in the voids and out of the domain is equal to the displaced
volume

Fig. 6 Error on the conservation of mass using two different meshes
with 300 PGD products of functions

A test domain

First of all we illustrate the results of the model on a domain
of dimensions Lx = 10mm (width of tape under the roller)
×Ly = 0.5mm (thickness of tape). The chosen compression
velocity is set to u = 0.1mm/s along the y direction, as
illustrated in Fig. 4. The considered permeability in this
section of the tape containing fibers and resin in the length
direction is K = 10−12m2. In this section, the time step is
set to be Δt = 5ms. Moreover, to estimate the error on the
results, we use an error estimator based on the conservation
of mass. For instance, the relative conservation of mass error
En at an instance tn can be considered as the difference
between the flow into the voids and the flow out of the
domain from two sides, and the compressed volume from

Fig. 7 Total void volume fraction using two different meshes



the top as illustrated in Fig. 5 and expressed by the following
equation:

En =

√
√
√
√
√
√

(

uLx −
(

i=m∑

i=1
Qn

i + Qn
out

))2

(uLx)
2

(18)

where m is the number of voids in the domain at an instant
tn, m = 3 in this example. Qn

i is the flow rate into a void i

at the instant tn and Qn
out the flow rate out of the domain at

an instant tn defined by:

Qn
out =

∫

x=−Lx/2
vn · dAn +

∫

x=Lx/2
vn · dAn (19)

The error E is plotted as a function of time in Fig. 6
for two different meshes. We can notice that the relative
conservation of mass error does not exceed 2.5% at any
time step for the mesh using 2001 × 401 nodes, equivalent
to 802401 degrees of freedom in 2D. The error doesn’t
improve anymore with mesh refinement. Moreover, Fig. 7
shows the void volume fraction for both meshes, where the
difference between both meshes is not of much relevance.
Therefore, for the rest of the work a mesh of 2001 × 401

Fig. 9 Change of the in-plane area (mm2) of the three voids as a
function of the time (s)

nodes is adopted. The void volume fraction is computed
using:

vf =

i=m∑

i=1
Vi

Vn

(20)

Fig. 8 Pressure fields (Pa) inside the considered test domain at different timesteps



Fig. 10 Compression of the initial voids at three different location at
t = 0.065s. The inital voids at t = 0s are the bigger ones, and the
smaller ones are the voids at t = 0.065s

Where Vi is the area of void i and Vn is the total cross
sectional area at instant tn.

Using the 2001 × 401 mesh, we illustrate the domain
pressure at three different time steps t = 10ms, t = 50ms

and t = 100ms in Fig. 8a, b and c respectively. On the other
hand, we can clearly identify the increase in the pressure
field during compression and void closure. The simulation
is stopped once all the voids are closed. A void is supposed
dissolved in the matrix and therefore totally closed once its
size is smaller than 2 mesh elements.

The center of the void initial positions were set to x1 =
0, x2 = −0.25Lx and x3 = 0.4Lx for voids 1, 2 and
3 respectively. Figure 9 shows the change in the size of
the void as a function of time t . Figure 9 clearly shows a
reduction in void area as a function of time, with a higher
rate in the middle of the domain as the pressure is higher in
the middle of the domain. Void 3 takes more time to dissolve
into the matrix, as it is further away from the center and
therefore experiences a lower applied pressure.

We can also compute the horizontal motion of the center
of the voids by identifying the velocity difference between
the left side and the right side of the voids. Same way we
can compute the vertical displacement of the voids centers
by using the vertical velocity on the top and bottom of the
voids.

We can identify the highest displacement is the one
of void 3, since it exhibits the larger velocity difference

Fig. 11 Square voids side length as a function of the time



Fig. 12 Pressure fields inside the voids as a function of the time

between the left and the right side of the void. As for the
displacement in the vertical direction, a linear displacement
downward as a function of the time t is observed for the
three voids.

The void positions and sizes, at t = 0s and t = 0.065s
are illustrated in Fig. 10. We can clearly identify a change
of dimensions of the voids.

A thick test domain

In this section, the illustrated results are shown on a domain
of dimensionsLx = 100mm×Ly = 10mm compressed at a
velocity of u = 0.1mm/s along the y direction as illustrated
in Fig. 4. We consider a permeability K = 10−10m2 and a
time step Δt = 2.6ms.

We plot the size of the three voids as a function of the
time in Fig. 11. Figure 12 shows an increase in the voids
pressure as a function of the time, however at a different
pace from one void to another. In fact, void 1 is the largest
void initially, which means it can absorb the most fluid
before reaching equilibrium with its environment, while
void 3 absorbs the least resin before equilibrium. Void 3
therefore reaches equilibrium, which means a stagnation
in pressure and void size as shown in Figs. 12 and 11c
respectively, while void 1 is still decreasing its size and
increasing its pressure quasi linearly as a function of the

Fig. 13 Merging two overlapping voids, compression at u = 0.1mm/s



Fig. 14 Void volume fraction vf for a single void and 2 merging voids

time, as shown in Figs. 11a and 12 respectively. Void 2
has an initial dimension between void 1 and 3 as shown in
Fig. 11b, therefore the rate of pressure change in void 2 is
decreasing at the end of the simulated time interval, but still
has not reached equilibrium with its environment. Note that
the pressure in void 2 is apparently larger than the pressure
in void 1 at t = 0.05s, however this is not really relevant
since the pressure in void 1 will continue to increase until
reaching its environment pressure, which means eventually
a pressure larger than void 2 since the pressure in the middle
of the domain is definitely larger than the pressure at the
edges. Note that the simulation stopped once one of the
voids reaches equilibrium with its environment, therefore a
volumetric flow Qi ≈ 0 is registered in that void.

Merging voids

One may imagine the presence of 2 nearby voids, for
instance a void 4 just above void 1. In case of merging voids,

Fig. 15 Relative mass flow error for a single void and 2 merging voids

Fig. 16 A void having the orger of magnitude of one μm

where the boundaries overlap, we can use basic physical
laws to find the final pressure and size of the voids. Using
the conservation of mass one may write:

mnew = mi + mj , (21)

Where mi and mj are respectively the masses of the two
merging voids i and j respectively, while the mass in the
newly formed void after merging them is mnew. Now using
the ideal gas law one may write:

Pnew = (PV )i + (PV )j

Vi + Vj

(22)

An example of two merging voids, void 1 and 4 for instance,
is illustrated in Fig. 13.

Fig. 17 Initial positions of the void centers, numbered 1 to 10 from
the left to the right according to their initial x coordinates at t = 0. In
black the inital distribution at t = 0 and in red the voids distribution at
t = 140ms



Table 1 Positions and
dimensions of the considered
voids

Void number 1 2 3 4 5 6 7 8 9 10

Initial side length (μm) 100 125 100 150 100 100 125 125 125 150

x coordinate (mm) −4.5 −3.7 −3 −1.5 0 1 2 3 3.5 4

y coordinate (μm) −125 −100 −50 100 125 0 125 50 −25 50

To compare the void volume fraction reduction as a
function of the time between one void and 2 merging voids
of the same initial volume, we consider a 0.5 mm × 10 mm

domain of the tape being compressed at a constant velocity
u = 0.1mm/s. In Fig. 14, we compare the void volume
fraction of one central void placed at x = y = 0, with
two voids located at x = 0 with y = −0.11mm for the
fist void and 0.025mm for the second one. Figure 15 shows
relative error in the conservation of mass for both cases. We
can clearly note that closing 2 voids takes more time than
closing a single void. We also note that the relative error
is higher in the case of two merging voids. This can be
explained by the fact that the domain area between the two
voids is relatively thin and require a high number of PGD
modes to be represented with high precision.

We also note that the voids need to be within close
proximity of each other to merge. In our test case, if the
voids initially are more than 10μm apart in the vertical
direction, the void closing speed overcomes the motion of
the boundaries and the voids don’t merge.

Microscopic void compression

In this section we explore the posibility of simulating the
compression of voids with a dimension lower than a μm.

Fig. 18 Voids’ area in the simulated domain using u = 0.1mm/s along
the y axis

We consider a domain of dimension 4.2mm2 with a middle
void of initial dimension 10μm. A timestep of 1μs is used.
The results are illustrated in Fig. 16.

We can clearly see that the method has potentially no
limit for illustrating voids with dimensions having the order
of magnitude of 1μm, however for sake of practicality, we
will stick to 9μm as a lower limit of the void size for the rest
of this work.

Amore realistic case

In this section we compress a more realistic tape initially
containing 10 voids of different sizes in a tape domain under
the roller of dimensions of Lx = 10mm and Ly = 0.5mm.
We use in this section a permeability ofK = 10−12m2 and a
time step ofΔt = 5ms. We compress it under u = 0.1mm/s

in the thickness direction.
To improve the convergence of the PGD algorithm in this

case, we start by initializing a “known” set of functions
using the previously calculated modes, in fact we may
use:

P n+1 = P n
edited +

j=N∑

j=1

Xj(x)Yj (y), (23)

Where P n
edited is equal to P n, but changing the voids’

pressures P n
i into the voids’ pressures P n+1

i . This helps

Fig. 19 Voids’ displacements in the simulated domain using u =
0.1mm/s along the y axis, as a percentage of the maximum
compressed distance, equal to 26.2μm



with the algorithm convergence and avoids recreating the
PGD solution. The considered voids have their centers at the
initial positions shown in Fig. 17, and their initial side length
and positions are given in Table 1. The voids are numbered
1 to 10 from the left to the right using their x coordinates.
Note that void number 4 is touching the upper surface in our
model to test the possibility of compressing surface voids,
without allowing it to escape through the upper domain

boundary. We may note that in this simulation, a void is
considered as totally closed, disappearing therefore from the
model, at a lower threshold.

In this section we compress the voids at u = 0.1mm/s.
We illustrate the voids areas in Fig. 18. We can clearly
identify the middle voids (in dashed lines) closing faster
than the side voids. This is explained by the higher pressure
distribution in the middle of the domain in general. We can

Fig. 20 The five tested cases of void distribution



also deduce an interaction between nearby voids through
the reduction of the surrounding pressure. We may also note
that equilibrium is reached in some voids.

In Fig. 19 we illustrate the displacement of the voids,
as a percentage of the total compressed distance. We can
clearly see that the left voids in general move to the left and
the right voids move to the right, except for void 10 which
moved in the negative direction but at some point switched
back to move in the positive direction once again. We note
that the maximum dispacement of the voids is about 300%
of the total compressed distance, equal to 26.2μm. Thus the
maximum horizontal displacement of voids has the order of
magnitude of about 80μm. Finally the relative error in the
conservation of mass as defined in Eq. 18 doesn’t exceed
4% in any time step.

The behavior of void 10 shown in Fig. 18 appears to be
interesting in the study of voids’ motion interdependency.
First of all, we note that voids 8, 9 and 10 are very close to
each others. The fluid flow would naturally start from the
center of the domain (the high pressure region) towards the
sides (low pressure regions). Thus, the fluid flow will first
fill void 8, than void 9, in order to reach void 10. Void 10
therefore starts closing at an accelerated pace only after the
sizes of void 8, then 9, are reduced considerably.

Role of void distribution and initial size

In this section we study the effect of the variation of the
position of the voids with respect to the total void volume
fraction in the domain. Therefore, we consider nine voids
of same initial void volume fraction with five different
distributions of voids:

– Uniform distribution illustrated in Fig. 20a.
– Voids concentrated in the middle of the domain, as per

Fig. 20b.
– Voids concentrated on the sides of the domain, as shown

in Fig. 20c.
– Uniformly distributed voids along x-direction with big

voids in the center of the domain, as per Fig. 20d.
– Uniformly distributed voids along x-direction with big

voids at the domain’s edges, as shown in Fig. 20e.

In Fig. 21 we plot the void area fraction vf as a function
of the time for the five different distributions. We can
clearly identify that an homogeneous distribution of voids
would reduce vf to zero the fastest among the tested cases,
while concentrated distributions of voids takes more time
and even reach a stagnation point after some time. This
is also illustrated in Section 3, where voids 8, 9 and 10
were placed near each others and void 10 was the last to
considerably change its size. One may note that for the
case of voids present only in the center of the domain, the
middle voids never closed since it is localized in a region

Fig. 21 Void area fraction variation as a function of the time for
different voids distributions

of very low pressure gradient. On the other hand, the slight
deconsolidation in vf can be attributed to a large time step in
the time mesh, where the void pressure increased more than
the surrounding local pressure at a given time step, without
a major impact on the global solution. From Fig. 21, we
can conclude that an homogeneous distribution of voids is
easier to close since it allows the highest possible pressure
gradients.

On the other hand, the influence of the void dimension
is clearly illustrated in Fig. 21. We can note that the
presence of large voids decrease the total void volume
fraction reduction pace. In fact, larger voids need more
time to close than smaller voids. We can also note that the
void distribution containing large voids in the middle of the
domain reaches a total vf = 0, but the presence of big voids
on the sides reaches a stagnation point. This was also noted
in Section 3, where large voids 8 and 9 hinder the fluid flow
towards void 10, which is also one of the largest voids in the
considered domain.

Fig. 22 Voids side length in the homogeneous distribution illustrated
in Fig. 20a, numbered 1 to 9 from the left to the right. We see that
symmetrical voids around the central axis exhibit similar behavior



Moreover, the maximummass conservation error is about
4.5% for any of the five illustrated cases in this section. We
can also illustrate the accuracy of the solution by showing
the void variation in the homogeneous domain, illustrated in
Fig. 22, where the solution is 100% symmetrical.

Conclusions

This work uses a non-local model to simulate the con-
solidation and void dynamics behavior, while considering
the presence of voids in the continuum of the simulated
domain. The illustrated model captures the fundamental
void dynamics including their pressure variation, motion
and closure mechanism. The work introduces PGD formu-
lation to reduce the computational burden to address the
void dynamics modeling that may be used in future work
to simulate multiple voids consolidation and deduce final
microstructure with void sizes and location at the end of the
consolidation time period in a ATP process.
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