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A B S T R A C T

Urethane dimethacrylate thermosets (UDMA) and their composites (PICN) were cured under varying polymer
ization pressures (1–3500 bars) and the resulting materials were characterized mainly by dynamic mechanical 
analysis (DMA) to measure their glass transition. In the case of PICN, glass transition displays an optimum in the 
middle pressure range (1000–2000 bars), which is linked to the conversion degree of polymerization process as 
measured by near infrared (NIR) spectrometry whereas it displays hyperbolic increase for UDMA networks. The 
results were discussed using classical theories used for describing the glass transition of networks. For samples 
post-cured at 160 �C during 1 h, the glass transition of undercured samples (1–1000 bars and P > 3000 bars) is 
shown to increase in link with possible post-curing. Reversely, the Tg of the most cured samples (polymerization 
pressure about 2000 bars) decreases which was attributed to the possible thermal decomposition. The glass 
transition temperature is here tentatively proposed a marker of the network architecture for samples varying by 
their processing (curing, post-curing) conditions and possibly their degradation level.   

1. Introduction

Urethane Dimethacrylate (UDMA) based polymers are increasingly
used for dental restorations in particular as matrices of Polymer Infil
trated Composite Networks (PICN) composite blocks used in Computer- 
aided design/computer-aided manufacturing (CAD-CAM) systems. Such 
materials are currently in full development making possible to simplify 
the manufacturing steps [1] and to use materials that are difficult to be 
processed by artisanal methods [2]. 

In such composites, one of the main requirements is to reach rela
tively high monomer conversion degrees (DC) so as to improve the 
mechanical properties and limit the release in oral environment of 
unreacted or monoreacted monomers that could be liberated by hy
drolysis reactions [3,4]. However, it remains quite difficult to reach 
100% curing degree [5,6]. Since dental practitioners such as prostho
dontists expect good mechanical and physical properties, lasting quality 
and ageing resistance for their patients’ dental restorations, the control 
of network architecture is a crucial issue for manufacturers which must 
carefully check it. 

In the range of conversion degrees of interest (70–100%), the poly
mer networks are in their glassy state (at body temperature). In such 

conditions, it is known that elastic modulus mainly depends on the 
Cohesive Density Energy [7]. Both values only slightly change in the 
high conversion degrees range [8,9] (in particular in networks without 
any sub-glassy relaxation i.e. where there is almost no motion of short 
segments). Another study reports changes of hardness with conversion 
degrees in dental composites [10] but the investigated conversion de
gree range is lower than for CAD-CAM purpose (about 65% versus more 
than 90%). Moreover, hardness is no, to our knowledge, described 
theoretical structure-properties relationships. Above glass transition, 
the rubbery modulus is known to linearly increase with the conversion 
degree [11] (linked to the crosslink density). However, estimations can 
be flawed because of chemical changes occurring at such elevated 
temperatures. Moreover, dental composites usually are highly filled 
[12]. Consequently, their elastic moduli both in glassy and rubbery 
states depend in great part of fillers content and on filler-matrix inter
facial effects as well which complicates the estimation of the real state of 
the matrix. 

In other words, a fine description of the network architecture still is 
needed. This tracker must strongly vary in the range of conversion de
grees where mechanical properties of acrylate composites are in line 
with practitioners’ requirements, so as to be later used for describing the 
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2.3.2. Dynamical mechanical analysis 

DMA were performed according to Refs. [13,14]. Experiments were 
conducted on eight 4 mm � 20 mm x 1 mm samples using a DMA 7/DX 
apparatus (PerkinElmer, Waltham, MA, USA) in 3 points bending mode 
with 15 mm distance, at a 1 Hz frequency. Static and dynamic load were 
taken respectively equal to 2.5 N and 2 N for composite and 0.3 N and 
0.2 N for UDMA (corresponding to maximal amplitude about 18–28 μm 
for PICN and 30 μm for UDMA). Samples were heated from 30 �C to 
180 �C with 2 �C min� 1 heating ramp. Indium and steel standards were 
used to calibrate respectively thermocouple and stiffness. Other cali
brations were performed according to supplier data. Glass transition 
temperature (Tg) was determined as the maximal temperature of tan δ 
peak. Elastic and loss moduli were not exploited here. 

2.3.3. Near InfraRed spectroscopy 

Ten 19 mm � 12 mm � 1 mm samples were cut using an isomet 
(Buehler, Lake Bluff, Il, USA) and polished using SiC under water. Curing 
degree (DC) was measured using a FTIR Nicolet IS-10 (Thermo Scien
tific, Madison, WI, USA) in Near InfraRed transmission using a NIR 
714–016300 source (Thermo Scientific, Madison, WI, USA). Spectra 
were obtained by averaging 384 scan with a 2 cm� 1 resolution. DC was 
determined from the ¼ CH absorption peak at 6164 cm� 1 using the 
following equation [15,16]: 

DCð%Þ¼
�

1 �
P
M

�

� 100  

P and M being respectively the areas measured for the PICN network and 
a monomer-filler blend. Results were previously shown to be consistent 
with those based on MID-IR measurements of C––C absorption peak at 
1637 cm� 1 [15,16]. 

3. Results

3.1. In situ curing by DSC

Thermograms for in situ curing are given in Fig. 1. They display:  

- for the first ramp: the glass transition of the uncured monomer (Tg0)
at about � 30 �C with the corresponding heat capacity jump (ΔCP0)
and the curing exotherm with an onset a about 90 �C.

- for the second heating ramp, the glass transition of the cured network
(Tg∞) is observed from the maximal derivative between slopes at 25
and 225 �C (as schematized in Fig. 1), with the corresponding heat
capacity jump (ΔCP100).

The results are gathered in Table 2. They will be used later as input
for the Pascault Di Benedetto law. 

3.2. Glass transition of UDMA networks and PICN composites 

The glass transition measured by DMA of UDMA networks and PICN 
composites polymerized under several pressures are given in Fig. 2 with 
a comparison for cured and post-cured materials. It calls for the 
following comments: 

- For the cured UDMA networks, the glass transition plateaus for
polymerization pressures higher than 1000 bars with a maximal glass 
transition close to 135 �C. High pressure effects on polymerization have 
been earlier described [17–19]. At first, increasing pressure brings the 
monomers closer, thus increasing polymerization kinetics [20]. 
Reversely, when pressure gets too high, mobility decreases together with 
polymerization rate. A supplementary effect is due to the presence of 
fillers absorbing a part of polymerization heat release which explains 
why the glass transition decrease in the case of PICN cured under Scheme 1. UDMA monomer before (a) and after (b) polymerization.  

effect of water or thermal ageing of those networks. 
We will hence discuss on the reliability of glass transition measure-

ments in the case of UDMA networks and their composites considered 
here respectively as model and real systems. The glass transition mea-
surements will be discussed using structure-properties relationships to 
validate the relation in the case of acrylate networks. 

2. Experimental

2.1. Materials

A mixture of UDMA (UDMA; M ¼ 470.56 g mol�  1; CAS 41137-60-4 
supplied by Esstech, Germany) and benzoyl peroxide (BPO supplied 
by Sigma Aldrich, Steinheim, Germany) was used to produce the UDMA 
polymers and PICN blocks samples in this study. Weight ratios were 
99.5:0.5%. Fillers for PICN composite were VITA Mark II glass ceramic 
powder (VITA Zahnfabrik, Germany) with a characteristic size 5.13 μm 
as D50 (i.e. 50% particles are lower than 5.13 μm). 

UDMA structure before and after polymerization are given in Scheme 
1 (NB: the pure thermoset will be denoted UDMA in the following). 

2.2. Sample manufacturing 

A slip was obtained by mixing in a planetary mixer (Thinky ARE-250, 
Thinky Corporation, Tokyo, Japan) the glass-ceramic powder with a 
volume fraction of 56% and water. This was then poured into a plaster 
mold and left to dry overnight at room temperature to agglomerate the 
grains. After demolding, the blocks obtained were dehydrated at 160 �C 
for 2 h in an oven and then sintered at 800 �C for 2 h. The sintered blocks 
were then silanated with pre-hydrolyzed methacryl-oxypropyl-tri-oxy-
silane (Sigma Aldrich, Saint-Louis, USA) and then heated at 140 �C for 
6 h. Infiltration of the mixture of UDMA (99.5% by weight) and benzoyl 
peroxide (0.5% by weight) of the sintered blocks was carried out under 
vacuum. 

UDMA polymers and PICN blocks were polymerized for 4 h at 90 �C 
at a pressure ranging from 1 bar to 3500 bars in a self-built autoclave 
with a range of 500 bars. Some samples (denoted by PC) were post-cured 
at 160 �C for 1 h in an oven (Memmert, Schwabach, Germany). The 
manufacturing details are specified in Table 1. 

2.3. Characterization 

2.3.1. Differential scanning calorimetry 

Samples curing were characterized by Q1000 DSC (TA Instruments) 
driven by QSeries Explorer. Uncured reactive mixtures were heated in 
sealed hermetic standard pans from �  75 to 225 �C at a 40 �C min�  1 rate. 
This high heating rate was chosen to better observe Tg. DSC cell was 
purged by a 50 ml min�  1 nitrogen flow. Experiments were exploited 
using TA Universal Analysis software. Apparatus was calibrated with 
indium (for temperature) and sapphire (for heat capacity) standards 
prior to analyses. DSC analyses were performed to measure Tg of un-
cured monomer (Tg0) and fully cured mixtures (Tg100), and estimate the 
corresponding heat capacity jumps ΔCP0 and ΔCP100. 



enhanced pressures [21]. 
- In the case of post-cured composites, a “reverse” effect is observed:

“poorly” cured PICN networks (for example for polymerization pres
sures equal to 1 and 3500 bars) are observed to display a significant 
increase in glass transition. For PICN with an initially high Tg before 
post-curing (for example 1000 bars), a decrease is observed. 

To better understand those results, the glass transition values were 
plotted versus the curing degree (i.e. the conversion degree of double 
bonds). It can hence be seen that there is a linear correlation for non 
post-cured sample, but not for the post-cured samples for which the 
main trend is a Tg decrease. According to Fig. 3, the maximal Tg would 
be 421 K for UDMA and 417 K for its composite (which is consistent with 

Tg100 suggested from the curing study by DSC – see Table 2). 

4. Discussion

The aims of this section are to discuss:

- the maximal glass transition value corresponding to the fully cured
networks (Fig. 3),

- the changes of glass transition in the observed for the high conver
sion degrees (Fig. 3),

- the (unexpected) origin of the post-curing (Fig. 2).

4.1. On the maximal value of glass transition for fully cured networks 

Based on entropic considerations, DiMarzio [22] proposed a relation 
in which the glass transition temperature of a fully cured network is 
calculated from the crosslink density (x): 

Tg¼
Tgl

1 � ðKDMFxÞ
(1)  

where:  

- Tgl is the glass transition temperature of the linear polymer (i.e. for
example the uncured elastomer in the case of vulcanized elastomers),

- KDM is an universal constant linked to the functionality of crosslink
nodes (for example close to 3 in the case of epoxy-diamine networks
where crosslink nodes are nitrogen atoms brought by hardener),

- F is the flex parameter expressing the average molar mass per
rotatable bonds,

Bellenger and Verdu [23] proposed later an additive method for
predicting Tgl in the case of crosslinked networks from the structure of 
the constitutive repetitive unit (but where crosslink nodes are removed). 
In UDMA networks, this latter is made of:  

- 2 short chains made of one methyl group (–CH2–),
- one long chain containing the segment with two esters and two

urethanes groups.

Table 1 
Details of materials.  

Pressure Polymerization (bar) Materials Matrix Initiator Filler Polymerization Post-Polymerization parameters 

1-500-1000-1500-2000-2500-3000-3500 PICN UDMA 0.5% PBO VITA Mark II (73.8% by weight) 90 �C 4 h None 
160 �C 1 h 

UDMA polymer UDMA 0.5% PBO – 90 �C 4 h none  

Fig. 1. DSC thermogram of uncured (dashed line) and fully cured (full 
fine) UDMA. 

Table 2 
Glass transition (Tg) and heat capacity jump at glass transition (ΔCp) for 
monomer (subscript 0) and fully cured (subscript 100) polymer (average for 
n ¼ 4 tests) measured by DSC.  

Tg0 ΔCP0 Tg100 ΔCP100 λ ¼ΔCP100/ΔCP0 (Tg100 - Tg0)/λ 

� 30.7 0.585 137.9 0.470 0.806 209.4  

Fig. 2. Glass transition of networks (from DMA measurements) cured under 
several external polymerization pressures for UDMA networks without post- 
curing (●), UDMA based composites (□) and with (■) post-curing. 

Fig. 3. Changes of glass transition versus conversion degree for UDMA net
works without post-curing (●), UDMA based composites (□) and with (■) 
post-curing. 



According to the method proposed in [23], Tgl can be given by: 

Tgl¼
MUCR*
P

Mi T � 1
gli

(2)  

which gives in our case: 

M
Tgl
¼ 10�

�
M
Tg

�

>CH2

þ 2�
�

M
Tg

�

ester
þ 2�

�
M
Tg

�

urethane
þ

�
M
Tg

�

>CðCH3Þ2

þ

�
M
Tg

�

>CH� CH3

(3) 

The contributions for methylene and isopropyl groups are given in 
[23], contrarily to ester, urethane and ethyl (>C–CH3) groups. Those 
latter were estimated from the glass transition of some well-chosen 
linear polymers (see Appendix A): 

M
Tgl
¼ 10� 0:06þ 2� 0:122þ 2� 0:1577þ 0:07586þ 0:0938 ¼ 1:37386 

So that:  

Tgl ¼ 416/1.3738 ¼ 313 K

For the flex:  

F ¼ (F1 þ F2 þ F3)/3 (4) 

F1, F2 and F3 being the flex of each segment linked to a crosslink 
node, i.e. in our case:  

- 2 methylene segments (M ¼ 14 g mol� 1) with 1 flexible bond so that
F1 ¼ F2 ¼ 14 g mol� 1

- 1 long segment made of the UDMA main chain (M ¼ 388, 15 flexible
bonds) so that F3 ¼ 25.9 g mol� 1 

Finally:

F ¼ 18 g mol� 1

Each UDMA gives 2 crosslink nodes so that, in a case of 100% cured 
network, x100 is given by:  

x100 ¼ 2[UDMA] ¼ 2/MUDMA ¼ 4.255 mol kg� 1

Tgl, F and x100 values lead to Tg ¼ 403 K consistently with Tg100 
values from Fig. 3 (less than 5% error). 

4.2. On the effect of curing degree on glass transition 

In this paragraph, we will compare the estimations coming from two 
models aimed at predicting Tg networks:  

- The Pascault-DiBenedetto law, based on a mixture law of the entropy
of the cured network and unreacted monomer [24,25],

- a modified DiMarzio law in which the crosslink density is calculated
from the conversion degree.

Pascault-DiBenedetto proposed the following equation:

Tg � Tg0

Tg100 � Tg
¼

λ:DC
1 � ð1 � λÞ:DC

(5)  

where Tg0 and Tg100 are the glass transition for monomer and fully cured 
polymer and λ ¼ΔCP∞/ΔCP0 is the ratio of heat capacity jump at Tg. Eq. 
(5) can be derived as:

dTg

dDC
¼
�
Tg100 � Tg0

�
⋅

λ
½1 � ð1 � λÞ:DC�2

(6) 

In the high conversion domain (x → 1), it can be written x ¼ 1 - ε with 
ε ≪ 1 so that: 

dTg

dDC
�

ε→0

�
Tg100 � Tg0

�

λ
⋅
�

1þ 2 ⋅
1 � λ

λ
⋅ ε
�

(7)  

which can be approximated as: 

dTg

dDC
�

ε→0

�
Tg100 � Tg0

�

λ
(8) 

According to data given in Table 2, the theoretical slope (210 K) is 
actually very close to experimental observations (Fig. 3) i.e. 210 K for 
the composite and 230 K for the UDMA network. In other words, our 
results are consistent with Pascault DiBenedetto law at least in the high 
conversion degrees range. 

Let us now turn to the DiMarzio law which is here expressed as:  

- For the fully cured network:

Tg100¼
Tgl

1 � ðKDMFx100Þ
(9)    

- For the unfully cured network:

Tg¼
Tgl

1 � ðKDMFxÞ
(10) 

Combining Eqs. (9) and (10) gives: 

Tg100 � Tg¼
Tgl

1 � ðKDMFx100Þ
�

Tgl

1 � ðKDMFxÞ
(11)  

And: 

Tg100 � Tg¼
KFTgl ðx100 � xÞ

ð1 � KDMFx100Þð1 � KDMFxÞ
(12) 

In the range of high conversion: x ~ x100, so that: 

Tg100 � Tge

KFTgl ðx100 � xÞ
ð1 � KDMFx100Þ

2 (13) 

In the case of chemically degraded trifunctional networks [26], a 
chain scission induces the loss of 3 elastically active chains. Assuming 
that uncured monomers having one unreacted double bond are equiv
alent to dangling chains coming from chain scissions, it gives:  

n100 - n ¼ 3[>C––C<] (14) 

with:  

[>C––C<] ¼ (1 – DC).[>C––C<]100 ¼ (1 – DC).2.[UDMA] (15) 

The number of elastically active chains is hence:  

n100 – n ¼ 6. (1 – DC).[UDMA] (16) 

So that, using:  

n ¼ (f/2).x (17) 

f is the network functionality which is here equal to 3. This gives:  

x100 – x ¼ 4. (1 – DC).[UDMA] (18) 

It gives:  

Tg ¼ Tg∞ – B þ B.DC (19) 

with:  

B ¼ 4 � [UDMA].KDM.F.Tg100/(1-KDM.F.2.[UDMA]) (20) 

So that:  

B ¼ 230 vs 220 K experimentally

In other words, prediction of Tg changes with DC from Eq. (20) are 



n ¼ n100 – 3s (21) 

Which gives: 

s¼
Tgl

2KDMF
�

�
1

Tgpost cured
�

1
Tg

�

(22) 

It can hence be seen that s ~ 0.3 mol kg� 1 i.e. about 5% of initially 
present elastically active chains are cut. Interestingly, despite their 
reliability was recently addressed [30], elastic moduli values remain 
almost constant, as expected in highly filled composites where elastic 
moduli depends in great part of filler volume ratio. In other words, 
measurements of elastic modulus are not sensitive enough to detect the 
first stages of degradation contrarily to glass transition ones. 

It remains to explain why this post-curing induced degradation is 
strong in some samples (typically those being well polymerized) 
whereas it is almost negligible for others (typically the less cured ones, e. 
g. those polymerized under 1 b and 3500 bars). Let us recall that cross
link bridges are formed:

- during propagation events (Scheme 2).

- during termination events (Scheme 3).

They can be destroyed by a “depolymerization” process. It is actually
well known that, due to steric hindrance of the lateral substituents, the 
polymerization enthalpy of methyl methacrylate is reported to be lower 
than in many other polymers [31,32]. It results in a lower 
monomer-monomer bond enthalpy which explains why the thermal 
degradation of PMMA yields to the release of a high quantity of 

monomer [33] accompanied by chain scissions [34]. The general 
mechanisms are well known and illustrated in Scheme 4 even if some 
peculiarities are expected in the case of UDMA networks since two chain 
scissions occurring on both extremities of UDMA monomer are needed 
to generate volatile. It is also clear that this mechanism is favored if 
samples are unfully polymerized. 

The process is reported to start at relatively low temperature (125 �C 
[32] to 140 �C [35]). In other words, post-curing of UDMA networks and
PICN is performed in the “narrow” region of TTT diagram comprised
between devitrification and degradation [36]. The balance for crosslink
formation is:

dx
dt
¼ γkt½P��2þ kp½P��½M� � kix (23)  

ki being the rate constant for the decomposition reaction (possibly 
differing for head to head and HT head to tail isomers depicted in 
Scheme 2). 

It can be assumed that the crosslinks formation is predominant for 
uncompletely crosslinked networks (justifying a Tg increase) whereas 
their destruction is predominant in fully crosslinked networks (consis
tently with the Tg decrease). This explanation is rather consistent with 
the gravimetric curves recorded using TGA under nitrogen (Fig. 5 - 
Appendix C) for UDMA samples: mass loss originates for chain scissions 
occurring at the vicinity of (uncured) dangling chains. Networks cured 
under 2000 bars display a lower mass loss level than networks cured 
under 1 and 1000 bars where the lower curing degree induces a higher 
mass loss level. As a prospect, modeling of the co-existence of poly
merization and decomposition mechanisms remains an open task so as 
to establish the TTT diagram. 

5. Conclusions

UDMA samples and their composites were cured at 90 �C under
several polymerization pressures and post-cured at 160 �C. The resulting 
glass transition values were measured by DMA. Glass transition was 
shown to increase almost linearly for samples without post-curing with 
an optimum glass transition about 140 �C for 100% cured samples and a 
depletion coefficient about 2.2 �C per percent of curing degree. Both 
values were justified from two well-known theories: DiMarzio and 
Pascault DiBenedetto. The value of glass transition is thus a reliable 
indicator of the ageing effects in UDMA networks. In the case of UDMA 
based dental materials, in addition to the thermally induced reactions 
discussed in this paper, the Tg changes can either originate from struc
tural relaxation [37] (with a Tg increase), or water diffusion (with a Tg 
decrease) [38], with a possible interplay between them [39], or chem
ical degradation involving the hydrolysis of urethane [40] or ester 
functions [41] leading to Tg decrease [26] and at very long term the total 
destruction of network (also named “degelation” [42]).  

APPENDIX A 

The PP amorphous phase is characterized by a glass transition tem
perature close to 0 �C [43–45].  

M/Tg ¼ (M/Tg)CH2 þ (M/Tg)>CH–CH3 ¼ 42/273 ¼ 0.1538 g mol� 1 K� 1

Scheme 2. Formation of crosslinked bridges by head to tail (up) and head to 
head (down) propagation reactions. 

Scheme 3. Formation of crosslinked bridges by termination reactions.  

consistent with experimental results. It is noteworthy that the structure- 
relationships proposed for ideal networks are here verified despite the 
relative complexity of UDMA networks and PICN matrices which are 
synthesized by radical processes where numerous structural “irregular-
ities” head to head vs head to tail links, products resulting from transfer 
or dismutation process for example are expected. 

4.3. On the post-curing effect 

The last striking result to comment is the post-curing effect observed 
in PICN. For example, in the case of 1000 bars PICN, the Tg decreases by 
about 15 �C during post-curing whereas DC slightly increases (from 
about 95% to 97%). At first, it was checked that this is not due to 
physical ageing by structural relaxation which could provoke an 
apparent Tg increase [27] during the isothermal post-curing at 160 �C. 
Let us precise that glass transition seems much more influenced by 
curing degree [28] than by structural relaxation [29] at least in epoxy 
case. This was checked by DSC cycles (Fig. 4 - Appendix B) where the 
enthalpy overshoot characteristic of relaxation is not observed. The most 
reasonable explanation for us is the existence of chain scissions induced 
during the post-curing. Their concentration can be approximated from 
[26]:  



(M/Tg)>CH–CH3 ¼ 0.1538–0.06 ¼ 0.0938 g mol� 1 K� 1

The glass transition of PLA is reported to be about 333 K [46].  

M/Tg ¼ (M/Tg) ester þ (M/Tg)>CH–CH3 ¼ 72/333 ¼ 0.216 g mol� 1 K� 1

(M/Tg)ester ¼ 0.216–0.0938 ¼ 0.122 g mol� 1 K� 1

In the case of diethylene glycol hexamehylene diisocyanate, Tg is about 280 K [47].  

M ¼ 12 � 12 þ 5 � 16 þ 2 � 14 þ 22 ¼ 274 g mol� 1

M/Tg ¼ 274/280 ¼ 0.9785 g mol� 1 K� 1

M/Tg ¼ 10 � (M/Tg)CH2 þ (M/Tg)>O þ 2 � (M/Tg)urethane

2*(M/Tg)urethane ¼ 0.5 � (0.9785–10 � 0.06–0.06306) ¼ 0.1577 g mol� 1 K� 1

APPENDIX B 

DSC were performed according the following cycle:  

- heating to 160 �C (40 �C min� 1)
- isotherm at 160 �C (1 h) for simulating the post-curing.
- cooling at room temperature and heating at 200 �C (40 min� 1).

The most interesting results were obtained for samples cured under 1 bar. Analyses reveal:

- for first heating: Tg is relatively low (about 100 �C) in good agreement with DMA results. A slight exotherm might be observed just after the Tg in
link with devitrification issue.

- for the second heating: the Tg is higher (here also in good agreement with DMA observations) but no overshoot (testimony of physical ageing by
structural relaxation) is observed.

Fig. 4. DSC cycles for UDMA networks cured under 1 bar before (dashed line) and after post-curing (full line).  

APPENDIX C 

Scheme 4. Possible degradation mechanism with release of an UDMA group.  



Fig. 5. TGA under nitrogen of UDMA networks cured under varying pressures for isothermal exposure at 160 �C under nitrogen.  
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