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ABSTRACT 

The Structural Health Monitoring (SHM) process is classically decomposed into 

four steps: damage detection, localization, classification and quantification. Here the 

focus is put on aeronautic composite structures and specifically on the damage 

quantification step. For SHM purpose, such structures are equipped with piezoelectric 

elements that can be used both as sensors and actuators. To quantify a detected damage, 

measurements are first performed in a reference state. Then, during the life cycle of the 

structure several measurements at unknown states are performed. Several damage 

indexes are then extracted from the difference between the reference and unknown 

states. This damage indexes matrix is the basis of any algorithms dedicated to the 

quantification step but still contains many more dimensions that just a quantification of 

damage size. The question raised here is the efficiency of dimension reduction 

algorithms in the damage indexes space for quantification purposes. Performances of 

simple direct regression (SDR), principal component analysis (PCA), partial least 

squares (PLS), canonical correlation analysis (CCA) and autoencoders (AE) are 

investigated for this purpose. It is shown that PCA, PLS and CCA are all able to discover 

a low-dimensional space within the damage indexes space that is linearly related with 

the physical damage size, and that average prediction errors of the order of ≃ 1% can 

be achieved by projecting data through that low-dimensional space. 

INTRODUCTION 

Monitoring in real-time and autonomously the health state of structures is of 

high interest for the industry, and more specifically for the aeronautic and civil 

engineering applications fields. Such a process is referred to as Structural Health 

Monitoring (SHM) [1, 2]. To achieve this goal, these structures become “smart” in the 

sense that they are equipped with sensors, actuators and artificial intelligence that allow 

them to state regarding their own health. One can compare such smart structures with 

the human body which, thanks to its various senses and nerves, can know if it has been 

hurt and where. The SHM process is classically decomposed into 4 steps: damage 

detection, damage localization, damage classification and damage quantification. 

Here the focus is put on composite structure’s representative of aeronautic 

materials. To deploy SHM to composite structures, such structures are equipped with 

piezoelectric elements that can be used both as sensors and actuators. Each element is 

actuated one by one using a tone burst at high frequency (typically ≃ 100 − 200 kHz), 

produces an ultrasonic wave that propagates throughout the structure and that is 

measured by the other piezoelectric elements acting as sensors. Let’s considers a 

structure equipped with piezoelectric elements and for which acquisition is performed 

over 𝑆 ≃ 1500 samples. To monitor the possible apparition of damage, measurements 



are first performed 𝑛𝑟 times in a reference (or healthy) state to get a reference matrix 

𝑹 ∈ ℝnr×𝑆. Then, during the life cycle of the structure measurements at unknown states 
are performed 𝑛𝑢 times and provides the matrix 𝑼 ∈ ℝnu×𝑆. A number 𝐹 ≃ 20 of 
features (specifically called “damage indexes” in the present context) is then extracted 

from each pair of signals contained in the matrices 𝑹 and 𝑼 to provide the matrix 𝑭 ∈ 
ℝL×𝐹 with 𝐹 ≪ 𝑆 and 𝐿 = 𝑛𝑟 × 𝑛𝑢. This constitutes the damage index space and is a 
first dimension reduction algorithm as the number of features 𝐹 ≃ 20 is much lower 

than the initial number of temporal samples 𝑆 = 1500. 

This matrix 𝑭 is the basis of any algorithms dedicated to the quantification step 

of SHM but still contains many more dimensions (namely 𝐹 ≃ 20) that just a 

quantification of damage size or severity (which is mono-dimensional). The question 

raised here is of the efficiency of dimension reduction algorithms in the damage indexes 

space for quantification purposes. Traditionally, Principal Component Analysis (PCA) 

has been used as a dimension reduction technique to investigate whether the information 

contained within all the damage indexes can be condensed to a lower dimensional space 

without losing its quantification abilities [3]. However, as reported in [4], the aim of 

PCA is to find directions that explained the maximum of variance in the input data. One 

should here recall that in addition to input data, output data are also available, and the 

dimension reduction problem can be set up as a supervised dimension reduction 

problem here. There is thus a lot to learn with respect the dimension reduction directions 

that may be the more efficient for quantification. In order to achieve this goal, some 

alternate methods have been proposed such as Partial Least Squares (PLS) and 

Canonical Correlation Analysis (CCA) [5, 6, 7] that seek for a lower dimensional space 

optimizing discrimination. Finally, high-dimensional data can also be converted to 

lower-dimensional spaces also by training a multilayer neural network with a small 

central layer able to reconstruct high-dimensional input vectors, referred to as 

autoencoders (AE). AE have been demonstrated as powerful dimension reduction tools 

[8]. Using one of these approaches in the context of damage size quantification also 

appears as more appealing than relying on standard PCA. 

DIMENSION REDUCTION METHODS FOR QUANTIFICATION 

Problem statement 

The problem at hand can be defined as follows: 𝐾 matrices {𝑭𝐤 ∈ ℝ𝐿×𝐹}𝑘∈[1,𝐾] 
corresponding to damage indexes extracted by comparison of a the repetitions measured 

in a healthy reference case with the repetitions measured for 𝐾 damaged cases are 

available (𝐹 denotes the number of extracted damage indexes and 𝐿 the number of times 

these features are computed given the available repetitions in each state). All these 

matrices 𝐅𝐤 are grouped to form a matrix 𝐅 ∈ ℝ𝐾𝐿×𝐹 that fosters all the available 
information. The 𝐾 damaged cases correspond to cases where the damage size 𝑑 takes 

discrete values {𝑑𝑘}𝑘∈[1,𝐾]. Only one parameter is thus responsible for the variations 

observed in all these matrices. We can thus wonder if it is it possible to reduce the 

dimensionality of the damage indexes matrix 𝐅 ∈  ℝ𝐾𝐿×𝐹 to 𝑛𝑐 ≪ 𝐹 (ideally to one) 
and to learn a linear regression between this lower dimensional space and the real 

damage size in order to be able to predict unknown damage sizes. The input space is 

described by 𝐘 ∈  ℝ𝐾𝐿 a vector that contains all the damage sizes that are at the origin 
of the matrix 𝐅 ∈  ℝ𝐾𝐿×𝐹. Practically, we thus seek to adjust a linear model 𝐌𝐧𝐜

 and a



dimension reduction operator 𝑔𝑛𝑐
(. ) which, from the knowledge of learning points 𝐅𝐥 

and 𝐘𝐥, can provide an accurate estimate of 𝐘𝐩 for prediction points 𝐅𝐩. An overview of 
the problem at hand with chosen notations is provided in Figure 1. 

Figure 1: Overview of the problem at hand 

Dimension reduction methods for damage quantification 

The dimension reduction methods used here are very briefly introduced here. 

For more details, the reader is directed toward references [7, 4, 8] from which this 

paragraph is largely inspired. The first step of the solution proposed here for damage 

size quantification consists in projecting the input data to a subspace of dimension 𝑛𝑐 

that preserves relevant information for the learning problem. Selected methods are:  

- Principal Component Analysis (PCA) selects the maximum variance projections of

the input data, imposing an orthonormality constraint for the projection vectors.

PCA works under the assumption that high variance projections contain the relevant

information for the learning task at hand.

- Principal Least Squares (PLS) are based on latent variables that account for the

information contain in the covariance matrix 𝐂𝐘𝐅 = 𝐘𝐓𝐅 . In order to do so, PLS

extracts the projections that maximize the covariance between the projected input

and output data, again under orthonormality constraints for the projection vectors.

- Cross-Correlation Analysis (CCA), rather than maximizing covariance, maximizes

the correlation between projected input and output data. In this way, CCA can more

conveniently deal with directions of the input or output spaces that present very high

variance, and that would therefore be over-emphasized by PLS, even if the

correlation between the projected input and output data is not very significant.

- An autoencoder (AE) is a type of artificial neural network used to perform efficient

data dimension reduction in an unsupervised manner [8]. An autoencoder learns to

compress data from a small number of features by trying to encode and decode them

with the minimum of error and by passing through a reduced dimension space.

- Simple direct regression (SDR) is the case where no dimension reduction is applied

and thus 𝑔(. ) is simply the identity. This case is considered as a reference case.

In summary, the dimension reduction operator 𝑔𝑛𝑐
(. ) is either SDR, PCA, PLS,

CCA or AE and makes use of only 𝐅𝐥 (PCA and AE, which are unsupervised methods) 

or of both 𝐘𝐥 and 𝐅𝐥 (PLS and CCA which are supervised methods) for learning. Once 

the dimension reduction learning step is learnt, a linear model 𝐌𝒏𝒄
 that provides an

accurate estimate 𝐘𝐥 = 𝐌𝐧𝐜
𝑔𝑛𝑐

(𝐅𝐥) for learning samples is also learnt using simple



least-squares. Finally, both the learnt dimension reduction operator 𝑔𝑛𝑐
(. ) and linear 

model 𝐌𝒏𝒄
 are used to predict unknown 𝐘𝐩 from the damage indexes matrix 𝐅𝐩.

TESTED STRUCTURE AND COMPARISON METHODOLOGY 

Structure under study 

The methods for damage size quantification described above have been 

validated using numerical data. The structure under consideration is a stiffened 

composite panel. The structure is made of graphite-epoxy plies with a stacking sequence 

[45°/0°/45°/90°/-45°/0°] in the skin. One ply has a density of 1.57 g/𝑐𝑚3, a Young 
modulus in the 0° direction equal to 163 GPa and to 10 GPa in the 90° direction. The 

structure is equipped with 5 PZTs that can be used both as sensor and actuator. The 

FEM model with the PZT and damage position is shown in Figure 2. Coordinates of the 

piezoelectric elements and of the simulated damage can be found in Table 1. The 

damage is represented by a decrease of the young modulus of 90% in the damaged area. 

A healthy case, i.e. without damage is used as reference for comparing the signals. 

Damages have circular shape with a radius varying between 1mm and 10mm by step of 

0.5mm leading to 𝐾 = 19 cases (one healthy and 18 damaged). Simulation have been 

conducted using the Matlab toolbox SDTools® [9]. 

Figure 2 : FE-model of the stiffened composite plate under study. 

PZT1 PZT2 PZT3 PZT4 PZT5 Damage 

𝒙 (mm) 50 25 275 275 200 150 

𝒚 (mm) 25 98.8 140 66.3 82.5 66.25 
Table 1: Coordinates of PZT elements and of damage center

The excitation signal sent to the PZT elements considered as an actuator is a “5 

cycles burst” with an excitation frequency of 𝑓0 = 140 kHz and an amplitude of 10 V. 

The excitation frequency is selected to promote one propagation mode over another. 

The mode 𝑆0 is promoted over the mode 𝐴0 as it propagates faster [10, 11, 12]. In each 

phase of the numerical simulation procedure, one PZT is selected as the actuator and 

the other act as sensors. All the PZTs act sequentially as actuators. Resulting signals are 

then recorded by the other piezoelectric elements and consist of 𝑆 = 1500 data points 

sampled at 2 MHz. Gaussian white noise with a signal to noise equal to 70 dB is added 

to the numerical signals to simulate 𝑛𝑟 = 𝑛𝑢 = 10 experimental repetitions for each 

case under study (𝐿 = 𝑛𝑐 × 𝑛𝑢 = 100). As 𝐾 = 19 different cases are available, this 

leads to 𝐾𝐿 = 1900 samples. 

Damage indexes computation 



The noisy numerical signals are first denoised by means of a discrete wavelet 

transform up to the order 4 using the “db40” wavelet. Those signals are then filtered 

around their excitation frequency 𝑓0 using a continuous wavelet transformation based 

on “morlet” wavelets and with a scale resolution equal to 20. The objective of this pre-

processing step is to perform a band pass filtering around the excitation frequency 𝑓0 by 

means of wavelets. The scale parameter can be sought as an image of the bandwidth of 

the retained bandpass filter over the frequency range of interest. Here, choosing it equal 

to 20 is something relatively common as it provides convenient results in past studies 

[10, 11, 12]. A set of 𝐹 = 22 damage indexes, or features, are then computed on the 

basis of the denoised numerical signals. One damage index is computed for each path 

of the structure. The damaged indexes for all the paths over the structure are then 

summed together in order to get a unique global damage index value. The different 

standard damage indexes being computed are briefly defined in Table 2. 

DI name Definition DI name Definition 

CC 
FFT based implementation of the 

maximum of the correlation 
TDM Time Delay of Max 

CCA 
MATLAB based implementation 

of the maximum of the correlation 
TD1 

Time Delay of the first wave 

packet 

CC0 
MATLAB based implementation 

of the zero-lag correlation 
SAPR Signal Amplitude Peak Ratio 

CRC 
MATLAB-based implementation 

of the correlation coefficient 
SAPS 

Signal Amplitude Peak 

Squared percentage differences 

NRE Normalized residual energy SAHM 
Signal Amplitude Hilbert 

transform Maximum 

MA 
Maximum amplitude of the 

difference 
SSSD 

Signal Sum of Squared 

Differences 

MAR Maximum Amplitude Relative CCTOF 
Cross-correlation-based TOF 

percentage difference 

FFT 
FFT ratio of the difference signal 

over the sum off signals at 𝑓0
WPSD 

Welch-based Power Spectral 

Density 

STFT Short Time Fourier Transform WTF Welch-based transfer function 

ENV 
Energy of the envelope of the 

difference 
CCMPD 

Cross-correlation maximum 

percentage difference 

PHI 
Energy of the phase of the 

difference 
DWTC 

Discrete Wavelet Transform 

approximation coefficients  

Table 2: Implemented standard damage indexes 

RESULTS 

The damage size quantification methods introduced above have been tested on the 

simulated data coming from the composite structure previously described. Data for 

damage sizes ranging from 1 mm to 7.5 mm have been used to train the various 

methods. Data for damage sizes ranging from 8 mm to 10 mm have been used to test 

the ability of the various methods for prediction of upcoming damaged states. The 

dimension 𝑛𝑐 of the underlying low-dimension space varied between 1 and 15 to assess 

the influence of the dimension of the low-dimensional damage indexes space on the 

obtained results. In order to summarize the performances of each method for a given 

dimension 𝑛𝑐 of the underlying space, a learning error 𝜖𝐿 and a prediction error 𝜖𝑃 have 

been computed as the mean of the relative error in % between the true value and the 

estimated value over the learning and prediction points. 



Figure 3: Details of the results obtained for the various tested methods. The diagonal green dashed line 

represents the ground truth. Blue circles represent damage size estimation for the learning points. Red 

stars represent damage size estimation for the prediction points. There is one line for each tested method 

(SDR, PCA, PLS, CCA, AE) and columns stands for various choice on 𝑛𝑐 (1, 3, 5, 10, 15).

The results obtained for the various tested methods (SDR, PCA, PLS, CCA, AE) 

and for various choice of 𝑛𝑐 (1, 3, 5, 10, 15) are presented in Figure 3. In this figure, the 

diagonal green dashed line represents the ground truth, the blue circles represent damage 

size estimation for the learning points and the red stars represent damage size estimation 

for the prediction points. From this figure, it can be observed that regarding learning, all 

methods (except AE) provide satisfying results, even when 𝑛𝑐 = 1. AE totally fails in 

learning for low 𝑛𝑐 but results are becoming slightly better when increasing 𝑛𝑐. 

Regarding the learning performances of the other methods, they globally increase when 

increasing 𝑛𝑐. PCA and CCA furthermore exhibit a tendency to slightly underestimate 

the damage size for small damage sizes. The prediction results are also presented in 

Figure 3. For AE, as long as learning performances are poor, it is too be expected that 

prediction performances will also be poor. This is indeed the case. For SDR, for which 

there is no dimension reduction before the regression, it can be observed that the 



prediction totally fails even if learning performances are acceptable. For the other 

methods where there is a dimension reduction step before performing the regression 

(PCA, PLS and CCA), it can be observed that predictions are good if 𝑛𝑐 remains 

relatively low. For large values of 𝑛𝑐, predictions performances severely degrade. A 

particular attention should be payed to the case 𝑛𝑐 = 1 which correspond to the 

theoretical case. It can be seen that for this case PCA, PLS, and CCA are all able to 

discover a lower dimensional space within the damage index space that is linearly 

related with physical damage size, which is extremely encouraging. 

Figure 4: Learning and prediction errors for the different methods as a function of the dimensions of the 

underlying low-dimension space. 

Figure 4 presents the evolution of the learning errors and of the prediction errors 

with 𝑛𝑐. The same general comment than before can be made: the learning error 

diminishes with 𝑛𝑐 whereas the prediction error increases with 𝑛𝑐 for all methods. AE 

do not provide interesting results in the present case. This may be because the data set 

under study is not large enough to guarantee a good learning process for AE. Another 

interesting point to notice here is that methods that provide low learning error (for 

example PLS and PCA for 𝑛𝑐 < 5) are not the ones that perform better for prediction 

(for example CCA for 𝑛𝑐 < 5). With respect to the usefulness of the dimension 

reduction step, it can be observed that prediction performances of SDR are the worst 

among all the investigated methods and thus it can be concluded that it really make 

sense to perform the regression after reducing the dimension of the damage index space. 

In terms of quantitative accuracy, CCA can predict damage size with an error lower than 

1% for 𝑛𝑐 < 5 and PLS results are of the same order of magnitude with 𝑛𝑐 in the range 

(8,12) which is very encouraging.  

CONCLUSION 

The focus is here on composite aeronautic structures and specifically on the 

damage quantification step. To quantify a detected damage, several damage indexes are 

extracted from the difference between the reference and unknown states. This damage 

indexes matrix contains more dimensions that just a quantification of damage size. It is 

demonstrated that dimension reduction algorithms in the damage indexes space are 

efficient for quantification purposes. More precisely, PCA, PLS and CCA are all able 

to discover a low-dimensional space within the damage indexes space that is linearly 



related with physical damage size, and that prediction errors of the order of ≃ 1% can 
be achieved by projecting data through that space. 

However, the present results still have some limitations. The first point is that this 

study has been performed on numerical data and an experimental validation is 

mandatory in order to validate the proposed approach. Another limiting factor is that the 

proposed approaches are supervised, meaning that damaged data are necessary for the 

learning step. One way to avoid that is to rely on numerical data for learning and to be 

able to predict for experimental data. The last point is that linearity has been assumed 

for both dimension reduction and regression. Advanced nonlinear multivariate analysis 

techniques could also be efficient. These points will be investigated in future works. 
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