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Earth Mantle Rheology Inferred from
Homogenization Theories

4.1. Introduction

The Earth’s upper mantle is known to exhibit elastic anisotropy, which is common-
ly attributed to the presence of Lattice Preferred Orientations (LPO). Such anisotropy 
is revealed in recordings of seismic waves that travel through the mantle with speeds 
that depend on propagation and/or polarization direction. The development of LPO is 
due to the plastic deformation of mantle minerals associated with large-scale convec-
tive flow. Both olivine and pyroxene crystals exhibit an orthorhombic structure and 
have only a few slip systems available for dislocation creep. This leads to very high 
viscoplastic anisotropy at the grain scale, so that an upper mantle region with strong 
seismic anisotropy (i.e., pronounced LPO) may also exhibit a large effective viscoplas-
tic anisotropy which may manifest itself as differences in effective viscosities of up to 
one or two orders of magnitude depending on the loading direction. This may have a 
large influence on the flow in (at least) some regions of the mantle [CHR 87], as was 
also shown for the flow of ice in ice sheets [MAN 97], but the topic has received little 
attention [BLA 07]. The key of this issue is to understand the link between single crys-
tal rheology, microstructure (in particular LPO) and associated polycrystal behavior,
e.g. as attempted for polar ices [CAS 08b].

In this study, the impact of LPO on mantle rheological properties is assessed
using numerical investigation of the viscoplastic behavior of olivine (Mg,Fe)2SiO4.
This mineral constitutes the major proportion (∼ 60%) of the upper mantle. Olivine



rheology, under pressure and temperature conditions relevant for the upper mantle
(typically 10GPa, 1500◦C), is complex, see [KAR 93, HIR 03] for a review. Dis-
location and diffusion creep regimes may be encountered at different depths, but
only the former regime is considered here. Basically, the plastic behavior is strongly
influenced by the pressure which leads to an inversion of the hard and soft slip sys-
tems [DUR 05, RAT 07], the water fugacity [MAC 85], the presence of melt pockets
[KOH 96]. Dynamic recrystallization also significantly affects LPO evolution at large
strain [ZHA 95]. Note finally that twinning is not a known deformation mechanism
for olivine.

A challenging feature in olivine plasticity is the lack of five independent slip sys-
tems at the grain level, which, according to the von Mises criterion, are necessary
to accommodate arbitrary plastic deformation. According to [WEN 99, TOM 00], the
tangent (TGT) Self-Consistent (SC) polycrystal model predicts a finite flow stress
with only three independent systems, which is a puzzling result. It is however worth
noting that hexagonal polycrystals with only basal and prismatic slips, i.e. with four
independent systems, are found to be able to deform plastically [HUT 77, NEB 00].
However, according to [NEB 01], this result is model dependent. A systematic recent
study based on full-field modeling [LEB 07] has shown that, effectively, three inde-
pendent systems are not sufficient for olivine polycrystals (see also [CAS 08a]).

Several polycrystal plasticity mean-field (homogenization) models have been
applied to olivine aggregates, generally to assess LPO evolution and much more
rarely to investigate their (non-linear) rheological behavior. In addition to the
classical uniform stress (static) bound used by [CHA 93, DAW 00], several
models have been constructed to deal specifically with crystals lacking five (even
four) independent slip systems [PAR 90, KAM 01], the latter being employed
in a number of recent geophysical applications. The tangent extension of the
Self-Consistent (SC) scheme [MOL 87, LEB 93], generally referred to as the
“VPSC model” in the geophysical literature, has often been described as if the
interaction between each grain and its surrounding could be approximated by the
interaction between one ellipsoidal grain with the same lattice orientation as the
original grain and a homogenous equivalent medium whose behavior represents
that of the polycrystal, thus taking advantage of the analytical solution of [ESH 57]
for the inclusion/matrix interaction. This reasoning led to the conclusion that the
TGT scheme fulfils the implicit assumption of uniform stress and strain-rate inside
the grains, which is not correct (see [PON 98] for a review). More recently, as for
the extensions of the SC scheme for polycrystals exhibiting non-linear rheology,
the variational estimate [PON 91, BOT 95] and the second order (SO) procedure
[PON 02, LIU 04] have provided major improvements. Both of them exhibit very
interesting features, such as the prediction of effective potentials lying beneath
rigorous upper bounds generally violated by other homogenization procedures
[GIL 95]. Following [PON 96, MAS 00] further proposed the “affine extension”
(AFF), which can be also seen as a rather crude approximation of the SO procedure.



Basically, all these methods are based on the definition of an “N-Phase Linear
Comparison Polycrystal” (NPLCP) having the same microstructure as the real non-
linear polycrystal and to which the SC scheme (originally developed for materials
exhibiting linear behavior [HER 54, KRÖ 58]) can be applied in order to obtain the
behavior of the real polycrystal. The number of models proposed in the literature turns
out to be significant, reflecting the difficulty of finding the optimal NPLCP. In addition
to these mean-field estimates, full-field approaches have been proposed to calculate the
fluctuation of the stress and strain-rate inside grains, together with the overall poly-
crystal behavior. The results given by these approaches can be considered “exact” (or
at least reference) solutions. In this context, a numerically efficient method based on
Fast Fourier Transforms (FFT) has been proposed [MOU 98] and applied to polycrys-
tals [LEB 01]. We will see that this method is very helpful to understand the details of
the material response and to assess the validity of mean-field estimates.

The aim of this paper is to provide new insight into the rheology of olivine poly-
crystals. We focus on the lack of five independent slip systems, its impact on the effec-
tive behavior and on the stress and strain-rate distributions inside individual grains.
This work is limited to the study of the instantaneous flow stress of isotropic (random
LPO) polycrystals. We consider a simple but realistic rheology at the grain scale (sec-
tion 4.2). Reference results obtained by the full-field approach based on the FFT pro-
cedure are presented (section 4.3) and compared to estimates provided by mean-field
approaches (section 4.4), followed by several concluding observations (section 4.5).

4.2. Grain local behavior

At the grain (local) scale, we consider deformation that occurs only by dislocation
creep on a given number of slip systems. The resolved shear stress τ(k) acting on a
slip system (k) is given by a projection of the local deviatoric stress tensor σ

τ(k)(x) = μ
(r)
(k) : σ(x) [4.1]

with μ
(r)
(k) the Schmid tensor expressing the orientation of the slip system with respect

to a laboratory reference frame and (r) representing the crystal orientation at a given
spatial position x. As for the constitutive relation at the slip system level, we use a
classical power law for the slip rate γ̇ on system (k)

γ̇(k)(x) = γ̇0

∣∣∣∣τ(k)(x)
τ0(k)

∣∣∣∣
n(k)−1 τ(k)(x)

τ0(k)
[4.2]

with τ0(k) the reference shear stress of the system (k), n(k) the corresponding stress
sensitivity and γ̇0 a reference slip rate. Combining all available slip systems, the local



ε̇(x) =
K∑

k=1

μ
(r)
(k)γ̇(k)(x) [4.3]

with K the total number of slip systems.

The dislocation slip systems considered here are those used by [TOM 00] based
on several sets of experimental results. They are listed in the first seven lines of Table
4.1 and illustrated in Figure 4.1. Easy slip occurs in olivine along the [100] direc-
tion, whereas slip along the [001] direction is permitted, but with a higher resistance.
These conditions are appropriate for “dry” crystals deformed at high temperature and
low pressure. We have chosen the same stress sensitivity n(k) = n = 3.5 for all
systems, a tendency that appears to be supported by the experimental data. Typical
values for τ0 and γ̇0 for conditions prevailing in the upper mantle are ∼ 1MPa and
∼ 10−15s−1, respectively. Only three of these slip systems are independent. They
allow shearing of the crystal lattice, but none of them allow axial deformation along
the a, b or c lattice directions. Consequently, these systems cannot accommodate an
arbitrary plastic deformation of olivine crystals. Following the generally adopted pro-
cedure (see e.g. [TOM 00, WEN 99]), we introduce an additional (“cubic like”) slip

Slip system # equiv. τ0(k)

(010)[100] 1 τ0

(001)[100] 1 τ0

(010)[001] 1 2τ0

(100)[001] 1 3τ0

{011}[100] 2 4τ0

{031}[100] 2 4τ0

{110}[001] 2 6τ0

{111}〈110〉 12 M1τ0

{101}〈101〉 2 M2τ0

Table 4.1. Slip plane (hkl) and orientation of the Burgers vector [uvw] considered for olivine
grains, together with the number of equivalent systems for each family (k) and the reference
shear stresses τ0(k). The first 7 families have been observed experimentally. The “cubic like”
system {111}〈110〉 is added for the sake of having 5 independent slip systems at the grains

scale; it comprises 12 systems that are not exactly equivalent owing to the orthorhombic
structure of olivine crystals, but this distinction has not been considered here. The last

system {101}〈101〉 comprises two slip planes and slip directions



Figure 4.1. Schematic representation of observed slip systems in olivine single crystals

family {111}〈110〉 the resistance of which is expressed by the scalar M1, for the pur-
pose of having five independent systems available at the crystal level (Table 4.1). We
further introduce a last set of slip systems, {101}〈101〉, which activation allows axial
straining of the crystal lattice along a and c (but not along b), a way to mimic some-
how the deformation that dislocation climb would produce. The resistance of these
last systems is given by M2. In the following, we will focus on the effect of M1 and
M2 on the effective behavior and on the stress and strain-rate heterogenities within
the polycrystal. Playing with M1 and M2, we can investigate materials with 3, 4 and
5 independent slip systems. Evidently, the limiting cases Mi → ∞ are equivalent
to removing the corresponding set of systems, leaving the grain with infinite normal
viscosities along some of the a, b and c directions and an open yield surface. The
procedure followed here will allow us to assess the relevance of different homoge-
nization methods for olivine and to shed light on the local mechanical state of olivine
polycrystals deforming in the dislocation creep regime. In a forthcoming study, we
will replace the two last slip systems M1 and M2 by appropriate physically-based
accommodation processes (climb, grain boundary sliding, etc.) but this requires fur-
ther theoretical developments.

4.3. Full-field reference solutions

Full-field reference results are obtained with the FFT method [MOU 98, LEB 01]
which consists of finding a strain-rate field associated with a kinematically admissible
velocity field that minimizes the average local work rate under the compatibility and
equilibrium constraints. A regular Fourier grid of 64×64×64 points has been used to
discretize the periodic 3D unit-cells, randomly generated by Voronoi tessellation and
containing 32 randomly oriented grains (Figure 4.2). To ensure the statistical relevance
of the results, a total average has been performed over 50 of those random configura-
tions. The mechanical behavior calculations were performed for uniaxial compression
with an equivalent macroscopic strain-rate ˙̄εeq = γ̇0, with ˙̄εeq =

√
2/3˙̄ε : ˙̄ε and ˙̄ε

denoting the macroscopic strain-rate tensor. In this section and in the beginning of the
next one, calculations have been performed with M2 → ∞, so that crystals are left
with only 3 independent slip systems as M1 → ∞ (and 5 for finite values of M1).



Figure 4.2. Typical periodic microstructure generated by Voronoi tesselation. It contains 32
grains, each having a different color corresponding to its crystallographic orientation

Full-field approaches can be used advantageously to examine the distribution
of the stress and strain-rate within the microstructure. A 3D overview of the
distribution of the local equivalent stress σeq(x) and strain-rate ε̇eq(x) is given
in Figure 4.3 for M1 = 10 and M1 = 100, with σeq(x) =

√
3/2σ(x) : σ(x)

and ε̇eq(x) =
√

2/3ε̇(x) : ε̇(x). It can be seen that strong stress and strain-rate
localization occurs, with concentrations in bands located either within the grains or
lying along grain boundaries, whereas higher values are found at grain boundaries.
Also clearly observed is the drastic effect of M1, with increasing stress and strain-rate
heterogeneities observed at high M1 values, corresponding to grains that can be
hardly deformed axially along a, b and c lattice directions.

To evaluate this feature more quantitatively, we have plotted in Figure 4.4 the value
of ε̇eq(x) against that of σeq(x), for each Fourier point of one of the 50 random FFT
configurations. An average of 643/32 = 8192 dots are thus plotted for each grain, i.e.
enough for a statistical representation of the intragranular field heterogenity. No clear
trend is to be found in those plots. The local equivalent strain-rate can be high (or low)
with either a low or high local stress level, depending on the spatial position x of the
observation point. There is globally no correlation between local σeq(x) and ε̇eq(x)
values and this expresses the tremendous effect of the intergranular interactions: the
local mechanical state in the material is not only guided by the local crystallographic
orientation of the considered grain, but it is also highly influenced by the neighbor-
hood. Therefore, the microstructure cannot be described as consisting of “hard” and
“soft” grains depending of their orientation, as sometimes proposed in the literature.
However, as shown by [CAS 08a], phase average values1 σ

(r)
eq and ε̇

(r)
eq are correlated,

1. The phase average is the average value over a large (i.e. statistically relevant) number of
grains exhibiting the same crystallographic orientation.



0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

(a)

 0

 2

 4

 6

 8

10

12

14

16

(b)

0

1

2

3

4

5

6

(c)

 0

 2

 4

 6

 8

10

12

14

(d)

Figure 4.3. Spatial distribution of (a,b) σeq/σ̄eq and (c,d) ε̇eq/ ˙̄εeq calculated by the FFT
method for (a,c) M1 = 10 and (b,d) M1 = 100, for the microstructure given in Figure 4.2.

Solid lines indicate the grain boundaries (and cube edges). The direction of uniaxial
tension is vertical. Note the different scales for each figure

with low average (equivalent) stress and high average (equivalent) strain-rate for the
“soft” orientations and the reverse situation for the “hard” orientations. The corol-
lary of this feature is that, for the experimental characterization of active deformation
mechanisms by e.g. electron microscopy, a very large number of grains with a sim-
ilar orientation have to be observed if we want to attain statistically representative
conclusions. It should also be emphasized that σeq(x) and ε̇eq(x) are generally much
larger than their macroscopic counterpart σ̄eq and ˙̄εeq, in particular at high M1, as
also shown in Figure 4.3. A material point is thus submitted to much more stringent
mechanical conditions than the average polycrystal, a feature that has to be taken into
account when using single crystal data to infer polycrystal behavior.
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4.4. Mean-field estimates

4.4.1. Basic features of mean-field theories

Unlike full-field solutions, the aim of mean-field theories is to provide bounds or
estimates of the polycrystal effective response without having to evaluate the details of
local fields. Consequently, these methods present the advantage of a very low compu-
tational cost, as compared to full-field methods, enabling their eventual coupling with
large scale flow models such as regional or global convection models of the Earth.
Here, we are limited to a statistical description of the microstructure; that is, the pre-
cise location of each grain is not known, but only the main geometrical features of
the microstructure (e.g. isotropic distribution of grains, etc.) are supposed. Field dis-
tributions are thus out of reach. As for the SC scheme, well adapted for polycrystal,
only the first and second order moments of the stress and strain-rate (respectively
σ(r) = 〈σ〉(r) and 〈σ ⊗ σ〉(r) and similarly for the strain-rate) are available, e.g.
see [PON 98]. The real difficulty for mean-field approaches is to capture the effect of
the field heterogeneities (evidenced in the previous section) on the effective behav-
ior, without completely evaluating those heterogeneities. According to the preceding
section, this might become increasingly challenging as M1 increases.

We will not detail here the theoretical background of the different mean-field
methods proposed in the literature, but only the very basic features will be reviewed.
The reader is referred to the relevant publications for more details. As already indi-
cated, the SC scheme provides an exact solution for some specific random polycrystal
microstructures, but only in the context of linear local behavior (e.g. linear thermo-
elasticity). For non-linear behavior as considered here, the usual treatment consists
of defining a linear comparison material (the NPLCP) exhibiting phase uniform com-
pliances and stress-free (or thermal) strain-rates so that it can be homogenized by the



(linear) SC scheme. The fields in the non-linear polycrystal of interest generally do
not identify exactly with those of the NPLCP [IDI 07]. Generally speaking, the lin-
earization of [4.2] can be expressed in the form

γ̇(k)(x) = α
(r)
(k)τ(k)(x) + ė

(r)
(k) [4.4]

with the shear compliance α
(r)
(k) and stress-free shear-rate ė

(r)
(k) depending on two ref-

erence shear stresses, τ̌
(r)
(k) and τ̂

(r)
(k)

α =
γ̇(τ̂) − γ̇(τ̌)

τ̂ − τ̌
, ė = γ̇(τ̌) − ατ̌ [4.5]

where subscripts (k) and (r) have been omitted for clarity and γ̇(τ) denotes the shear-
rate given by non-linear relation [4.2] for the shear stress τ . The optimal choice (from
the point of view of the variational mechanical problem) of the reference stresses τ̌

(r)
(k)

and τ̂
(r)
(k) is not straightforward and this is one reason why several extensions of the

SC scheme for viscoplasticity have been proposed in the literature. Obviously, all of
them reduce to the same (original) SC model in the linear case n = 1. Focus will be
made here on the most advanced method to date, namely the “Second-Order” (SO)
method [PON 02, LIU 04]. The basic idea of this method is to guide the choice of the
properties of the NPLCP using a suitably designed variational principle. Furthermore,
unlike the variational procedure of [PON 91], the chosen NPLCP is here of a general-
ized affine type, i.e. ė

(r)
(k) are not required to vanish. The original procedure consists of

estimating the effective stress potential Ũ from which the effective strain-rate can be
derived, ˙̄ε = ∂Ũ/∂σ̄. The application of this method to anisotropic polycrystals, for
which the form of Ũ is not known in advance, would require a numerical differentia-
tion of Ũ which may be rather laborious. Therefore, use is made here of an approxi-
mation of the original SO formulation which aims at evaluating the effective behavior
directly without having to know the effective potential, by a direct identification of
the fields in the NPLCP with those of the real non-linear polycrystal. This provides
slightly less accurate results than the original formulation [LIU 04], but is much more
efficient from the computational point of view. The reference shear stresses now read

τ̌
(r)
(k) =

〈
τ(k)

〉(r)
, τ̂

(r)
(k) = τ̌

(r)
(k) ±

[〈(
τ(k) − τ̌

(r)
(k)

)2
〉(r)

]0.5

. [4.6]

It is worth noting that the compliance in linear relation [4.4] depends on the first
and second moments of the phase average stress, through τ̂

(r)
(k) , which means that the

definition of the NPLCP already captures part of the field heterogeneities in the non-
linear polycrystal.



At the risk of oversimplification, the so-called “affine” (AFF) model [MAS 00] is
based on linear behavior [4.4] tangent to the non-linear behavior [4.2] at the mean
shear stress and can be understood in terms of the following relations

τ̌
(r)
(k) = τ̂

(r)
(k) =

〈
τ(k)

〉(r)
, α

(r)
(k) =

∂γ̇

∂τ

∣∣∣∣
τ=τ̌

(r)
(k)

. [4.7]

Thus, it does not use the intraphase heterogeneities for the construction of the
NPLCP as the SO procedure does, leading to a slightly simpler numerical resolution.
The limitations of this model are described in [BOR 98, MAS 00]. Generally speak-
ing, the affine extension is known to predict an effective behavior that is too stiff, with
possible violations of rigorous bounds.

Finally, the “tangent” (TGT) extension of the SC scheme [MOL 87, LEB 93] is
based on the same tangent linearization [4.7] as the AFF method. However, unlike the
AFF extension, this procedure takes advantage of the fact that, for power law poly-
crystals with a single stress exponent n, the tangent behavior [4.4] can be replaced by
a secant-like relation, with ė

(r)
(k) = 0 and α

(r)
(k) replaced by nα

(r)
(k). A similar procedure

is further applied at the macroscopic level, leading to an inconsistent combination of
a secant description for the local and global behavior but a tangent analysis for the
inclusion/matrix interaction [MAS 00].

4.4.2. Results

Figure 4.5 shows the equivalent effective stress σ̄eq/τ0 predicted by the TGT, AFF
and SO extensions of the SC scheme, as a function of “cubic” system strength M1

(still with infinite M2), together with the static (σ(x) = σ̄) and Taylor (ε̇(x) = ˙̄ε)
bounds. Results are compared to the reference solution provided by the FFT full-field
approach. First of all, it is observed that the FFT approach indicates an effective stress
increasing continuously with M1. At sufficiently large M1 value, e.g. M1 > 10, a
rather simple scaling law is observed, with σ̄eq/τ0 being proportional to Mk

1 , with
k � 0.5, in agreement with previous findings on other materials [NEB 00, LEB 07].
The TGT extension of the SC scheme, on the other hand, shows a saturation of σ̄eq/τ0

still at moderate values of M1 (� 20) which clearly departs from the reference FFT
results. Since σ̄eq/τ0 remains finite when M1 → ∞, the TGT model unrealistically
allows the polycrystal to deform with only three independent slip systems. It thus
behaves qualitatively like the Static bound, but with a higher flow stress. As expected,
the Taylor bound significantly overestimates the effective stress which simply tends to
be proportional to M1 (k � 1). The AFF formulation provides a significantly better
match to the full-field solution compared to the TGT model, at no additional numerical
cost. However, the AFF flow stress increases too rapidly with M1 (k � 0.7). On
the other hand, predictions of the SO procedure reproduce the FFT reference results
almost perfectly. Unlike all other models, it predicts the correct scaling with k � 0.5.
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Static and Taylor bounds are also indicated. Here, system M2 is not considered

The evolution of the corresponding overall stress and strain-rate heterogeneities
Σ(σeq)/τ0 and Σ(ε̇eq)/γ̇0, defined as

Σ(σeq) =
√〈

σ2
eq

〉 − σ̄2
eq, Σ(ε̇eq) =

√〈
ε̇2

eq〉 − ˙̄ε2
eq, [4.8]

is shown in Figure 4.6. These quantities are related to the standard deviation of stress
and strain-rate in the whole polycrystal. They illustrate the overall heterogeneities in
the polycrystal, combining the field fluctuations inside the grains together with the
fluctuations between different grains. It can be seen that the full-field solution pre-
dicts that stress and strain-rate heterogeneities severely increase with M1, as already
pointed out in section 4.3. Again, the TGT approach exhibits an unrealistic response,
with a saturation at M1 values as small as ∼ 5–10 (note in passing that static and
Taylor bounds lead to Σ(σeq) = 0 and Σ(ε̇eq) = 0, respectively, by construction).
The AFF, VAR and SO estimates provide good trends, in good agreement with full-
field results. Note also that the SO procedure shows an almost perfect match with the
reference results for Σ(σeq)/τ0.

These results suggest that 3 independent slip systems are not enough to reach a
finite flow stress in olivine polycrystal. This is proved by the FFT results and correctly
reproduced by the SO procedure. Thus, in the real material, some accommodation
processes (such as dislocation climb or grain boundary sliding) are necessarily acti-
vated. The introduction of such mechanisms into the homogenization scheme requires
developments that are beyond the scope of the present work. However, it is of interest
to check whether 5 independent systems are really necessary. For example, simulta-
neous climb of a and c dislocations would ensure the olivine grains deform axially
along a and c, but still not along b, leaving 4 independent systems at the grain scale.
Therefore, we consider now the last slip system of Table 4.1 with strength M2. This
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slip system allows axial strain along a and c only. The effective stress obtained by the
SO procedure for M2 = 10 and M2 = 50 and different strength of the “cubic” system
M1, is shown in Figure 4.7a. Once more, the excellent behavior of the SO mean-field
approach, when compared to the reference full-field solution, is remarkable. At suf-
ficiently large M1 values (≥ 100), a saturating behavior is observed, suggesting that
olivine polycrystals can deform still as M1 → ∞, i.e. with only 4 independent slip
systems. In this saturating regime2, the evolution of the flow stress with M2 indicates
that the effective behavior of the polycrystal is largely driven by the value of M2, even
if this mechanism very poorly contributes to the overall strain (Figure 4.7b). In agree-
ment with previous results, a scaling law with σ̄eq proportional to M0.5

2 is obtained,
but now only after a large value of M2 (≥ 100).

4.5. Concluding observations

In this study, reference solutions in term of effective behavior and field distribu-
tions have been obtained by means of the FFT full-field approach. We have observed
the tremendous increase of intragranular stress and strain-rate heterogeneities as the
strength of the “cubic” system M1 increases (thus tending to leave crystals with only
3 independent slip systems). At the same time, the effective flow stress increases as
M0.5

1 . Among all mean-field approaches used here, only the SO procedure is able to
predict the correct trend and good quantitative match to the full-field results. This is
a remarkable result. In spite of the complicated shape of the stress and strain-rate dis-
tributions occurring in an actual polycrystal, the SO approach still accurately captures

2. The corresponding behavior can be obtained by taking very high values of M1, but our
numerical code also converged without considering the “cubic” system at all.
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Figure 4.7. (left) Evolution of the effective stress with respect to the flow stress of the “cubic”
system M1, for M2 = 10 and M2 = 50. SO and FFT predictions are compared. (right)

Effective stress obtained at saturation (i.e. M1 → ∞) as function of the flow stress
of the “climb” system M2. SO predictions

the main features of the field statistics. This success is attributed to the fact that the lin-
earized compliances depend explicitly on the second moment of the stress. It is also
worth mentioning that this procedure does not considerably increase the numerical
cost when compared to the AFF estimate (generally by a factor of about 20), so that
subsequent coupling with a large-scale convection model may still be tractable. The
SO procedure correctly estimates the intergranular interactions and their effect on the
effective behavior. We thus anticipate that this approach will be successful in bridg-
ing experimental rheological data on single- and poly-crystals, a scale transition that
could not be achieved quantitatively with simpler approaches [DAW 00]. The corol-
lary is that the SO approach, thanks to its accuracy and the limited calculation cost
it requires, can be used in an inverse way to learn more about accommodation pro-
cesses in olivine, by comparing numerical results to experimental data. Implications
of the above results in term of deformation mechanisms and geophysical issues have
been detailed in [CAS 08a]. The next step of this work is to introduce in the actual
formulation the “correct” accommodation mechanisms in olivine (or at least what is
actually known about them), in particular dislocation climb that has been evidenced
experimentally and to account for the evolution of the slip system’s strength with, for
example, pressure, temperature, water fugacity, etc. Also needed for application of this
work to in situ conditions is the consideration of other mineral phases present in the
upper mantle, such as pyroxenes the volume fraction of which is ∼ 30%. This phase
exhibiting essentially a single easy glide slip system, we may expect in peridotites (i.e.
olivine-pyroxene agregates) even larger stress and strain-rate heterogenities than those
obtained here, which in turn may have significant influence on dynamic recrystalliza-
tion processes and subsequent influence on LPO development.
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