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Abstract: The purpose of this paper is to investigate the problem of 3D human tracking in complex
environments using a particle filter with images captured by a catadioptric vision system. This issue
has been widely studied in the literature on RGB images acquired from conventional perspective
cameras, while omnidirectional images have seldom been used and published research works in this
field remains limited. In this study, the Riemannian varieties was considered in order to compute the
gradient on spherical images and generate a robust descriptor used along with an SVM classifier
for human detection. Original likelihood functions associated with the particle filter are proposed,
using both geodesic distances and overlapping regions between the silhouette detected in the images
and the projected 3D human model. Our approach was experimentally evaluated on real data and
showed favorable results compared to machine learning based techniques about the 3D pose accuracy.
Thus, the Root Mean Square Error (RMSE) was measured by comparing estimated 3D poses and truth
data, resulting in a mean error of 0.065 m when walking action was applied.

Keywords: human tracking; omnidirectional camera; ego motion; particle filter

1. Introduction

Catadioptric sensors are widely used in robotics and computer vision. Their popularity is mainly
due to their ability to acquire 360° images with a single shot. They have been used for 3D reconstruction
of large environments, robotics, and video surveillance. In addition, 3D human tracking in complex and
cluttered environments remains a difficult and challenging problem despite the extensive research work
carried out in the literature. In order to get a panoramic view of the environment, several solutions have
been proposed using synchronized cameras [1]. However, this kind of system is difficult to implement,
especially when the workspace is uncontrolled and cluttered. In this research work, we propose to
estimate, through a particle filter, the 3D human pose from images provided by a catadioptric camera.
Our main contribution consists in developing robust likelihood functions, which take into account the
intrinsic properties of the spherical images. As a result, the particle filter becomes able to propagate
the particles in a better manner, which make it more stable and accurate. We provide in detail the
architecture of the proposed approach and give more in-depth the experimental results to demonstrate
its effectiveness.

The rest of the paper is organized as follows. Section 2 provides the related work. Section 3 describes
the proposed particle filter-based 3D tracking approach. Section 4 details the experimental framework
undertaken to validate the performance of the proposed algorithm. Finally, some conclusions and
future works are drawn in Section 5.
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2. Related Work

With regard to the state of the art, many research works have been developed for 3D human
pose estimation. They can be classified into two main categories: model-based and non-model-based
methods. In so-called “model-free” approaches, machine learning techniques [2,3] are often used
to estimate a statistical model formalizing the relationship between the human body appearance in
images and its 3D posture in the real world. However, this mapping function remains difficult to
compute due to the large variability of the articulated human appearance model. With the advent of
deep neural networks, significant progress has been made in monocular 3D human pose estimation.
Li et al. [4] used a convolutional neural network (CNN) to directly estimate the 3D pose from the
image. Tekin et al. [5] use an auto-encoder to learn the pose representation in high dimension and to
regress 3D poses from 2D images. Pavlakos et al. [6] proposed a method for fine discretization of the
3D pose by considering the problem as a 3D key point location issue. Then, they used a coarse-to-fine
prediction method based on several convolution layers to progressively refine the initial estimates.
Other studies have focused on the transition from 2D to 3D. For example, Zhou et al. [7] expressed the
optimization problem as the relationship between 2D pose and 3D geometric features, and predicted
the 3D pose using an expectation maximization algorithm. Fang et al. [8] have developed a pose
grammar to refine the 3D pose using a bidirectional RNN designed to explicitly incorporate a set of
knowledge about the human body posture. Chen et al. [9] used the nearest neighbor search method
to determine the correspondence between the estimated 2D and 3D poses in a large library of poses.
Other works [10,11] adopt adversarial learning to encourage the deep network to acquire plausible
human body postures. More recently, Chen et al. [12] present an unsupervised learning approach
to generate 3D postures from 2D joints; this approach does not require 3D data but uses geometric
self-monitoring as a constraint to learn the 2D-3D lifter. In addition, Habibie et al. [13] propose a deep
learning-based architecture for 3D human pose estimation that encodes explicit 2D and 3D features,
and uses supervision by a new projection model learned from the predicted 3D poses. Despite the
interest in deep convolutional networks, their use in our case would not be appropriate. Indeed,
the implementation of deep learning-based solution would have required a large amount of training
spherical images with 3D pose annotations. However, to our knowledge, this kind of image dataset
does not exist, and the construction of such one requires a lot of time and resources involving a very
high cost. In addition, using available perspective image databases during the learning phase will
certainly worsen the 3D pose estimation for an omnidirectional input image. Indeed, the intrinsic
characteristics of spherical and perspective images are not the same and cannot be correlated in the
same way. Furthermore, the “model-based” approaches require an approximation of the real geometry
and the movement of the human body. In the literature, different geometric models have been used to
represent the human body: articulated model, truncated cylinder, conical, etc. The mechanical and
kinematic constraints associated with the human body movements during its displacement are often
integrated into the pose estimation process in order to reduce the solution space and thus improve
robustness and accuracy. In [14,15] the authors use a “Flexible Mixtures of Parts” [16-18] detector to
localize in the current image the person’s 2D silhouette. The 3D tracking in the real environment is
then determined thanks to a linear regression approach. Moreover, the use of catadioptric cameras
for 3D tracking remains very limited despite the many advantages they offer. Many research studies
have focused on the development of a specific mathematical model of creating an omnidirectional
image while taking into account the particular geometry of the used mirror (hyperbolic, spherical,
parabolic) [19]. Other work used omnidirectional cameras to solve classic robotic problems such as
visual servoing [20], navigation and motion estimation [21,22]. There is only a few research works
using a catadioptric camera for 3D object tracking, like Caron et al. [23] who proposed a sensor
composed of four mirrors and a RGB camera. The authors developed a visual servoing approach
based on a non-linear pose estimation technique. Their results show a good robustness with regard
to illumination changes; however, they only considered simple 3D objects like a box. Tang et al. [24]
proposed to model the nonlinear distortions of omnidirectional images using a mixture of Gaussian.
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The contribution of each part of the human body is weighted according to its detection in the image,
making the tracking more robust in case of partial occlusion. However, this approach is applicable only
for 2D tracking. In this study, we opted for a tracking scheme based on particle filtering (PF) framework.
Indeed, comparing to other approaches, PF is highly accurate and more efficient when dealing with
non-linear and non-Gaussian problems. The other advantage to use PF is that the 2D-3D matching
between the extracted image features and the 3D model does not need to be explicitly computed, it is
implicitly taken into account in the likelihood function. This makes the estimation process more robust
against 2D-3D mismatching errors. In addition, FP has the ability to propagate the generated particles
uniformly through the solution search space, allowing the method to quickly find the lost target.

3. 3D Human Pose Estimation

Our approach takes into account the intrinsic geometric properties of the catadioptic sensor as
well as omnidirectional images in all steps of pre-processing and pose estimation process (Figure 1).
In the detection step, the regions of interest (ROI) corresponding to the human silhouette are extracted
and used to initialize the 3D tracking process.
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Figure 1. The Overview of the proposed 3D human tracking scheme. HoG (histogram of oriented
gradients) features and Support Vector Machine (SVM) classifier are combined to detect the human
body in the images. The predicted 3D human model and the extracted 2D features are associated and
fed into the Likelihood estimator providing the 3D pose update for the particle filter.

We used HoG (histogram of oriented gradients) descriptors to extract human feature because they
effectively describe the local distribution of the human body and they are invariant to illumination
changes and small movement in the images. Moreover, linear Support Vector Machines (SVM) trained
on HOG features demonstrated an excellent performance for human detection [25]. Thus, the HOG
descriptors have been adapted to omnidirectional images before being combining with an SVM classifier.
For that, the image gradient is computed in the Riemannian space [2]. The obtained results clearly
demonstrate the effectiveness of the catadioptric-adapted gradient comparing to the conventional
methods directly computed in the pixel space. Once the tracking initialized, the particle filter allows
the generation of several hypotheses of 3D human posture thanks to its particle propagation process
around the current pose. Each generated particle corresponds to a probable posture of the 3D human
body model in the current image; it takes into account the mechanical and kinematic constraints of the
movement due to the articulated aspect of the human body. In order to take into account the distortion
caused by the catadioptric sensor, the weight assigned to each particle is computed according to several
likelihood functions. The calculation of these functions is given in the following subsections.

3.1. The 3D Human Model

In state-of-the-art research, the human body is often represented by an articulated 3D model
whose number of degrees of freedom (DOF) differs according to the application, for example it is equal
to 82in [26] 14 in [27] and 32 in [28]. The number of DOF model directly impacts the behavior of the 3D
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tracking algorithm, since it corresponds to the vector size of parameters to be estimated. A high number
of DOF would increase the estimation time but would allow us to model complex human postures.
Recently, more flexible and parameterizable 3D human models have been developed, such as SMPL [29],
which allows the representation of different body shapes that deform naturally with the pose, like a
real human body. However, this kind of model needs to be trained on thousands of aligned scans of
different people in different poses. Their use in our case is not appropriate, as we want to develop a
low-cost real-time tracking solution. Thus, we opted for cylinders to model the head and trunk of the
human body, and truncated cones for the upper and lower limbs (Figure 2). This representation has
the advantage of being simple to handle (few parameters to define a cylinder/cone) [30,31] and easy to
project into images. Our model has 34 degrees of freedom, composed of 11 parts: pelvis, torso, head,
head, arms, forearms, legs and thighs. The model shape is represented by the length and width of the
upper/lower limbs and trunk, while the 3D posture is defined through 30 parameters that give the
position and orientation of the pelvis as well as the angles at the joints between the different body parts.
In the end, all these parameters were grouped into a single vector x = [x(1),x(2),...,x(29),x(30)] that
defines a complete 3D model of the human body.

0 = ® °
Figure 2. 3D Human body model. Head and trunk are modeled by cylinders whereas the upper and

lower limbs by truncated cones. 34 degrees of freedom are considered to represent the 3D posture with

vertex and joints.

In addition, used the unified model to take into account the geometry of the catadioptic sensor
when projecting the 3D model into the current image. Thus, the projection of a straight-line segment
gives conics on the image plane (Figure 3).

Figure 3. 3D human body model projected on the omnidirectional image. The geometrical model of
the Catadioptic sensor has been taken into account in the projection process.
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3.2. The Filtering

Filtering consists in estimating the current state x; taking into account all past measurements
vt = {y1,..., ¥} [32]. From a mathematical point of view, this results in estimating the posterior
distribution of the current state p(xt)yl:t). In our case, the state vector includes all the parameters
describing the 3D posture of the human body as explained in the previous section, and the measurements
that feed the filter at each iteration correspond to visual primitives extracted from the current
image. The posterior distribution of the current state p(xt) y1:t) can be recursively computed from the
distribution of the previous state p(x;_1 |y1:t_1) in two steps:

e  Prediction step:
p(xt|yr-1) = fp(xtlxlzt—l)‘p(xt—1|]/1:t—1)‘dxt—1 D

e Update step
p(xilye) o plyelee) p(xelyrea) @

In Equation (1) the temporal diffusion model p(x¢|x1.4—1) is used to compute the predicted state.
In this study, we use the random walk model that gives the best results when setting the standard
deviations at 0.1 m for translation and 1.5° for rotation. The filtered solution (posterior distribution)
corresponds to the predicted pose weighted by the likelihood function p( yt’xt), which corresponds
to the observation probability conditioned by the estimated pose. It is known that the filtering
equations can generally not be solved in closed form, except for linear Gaussian systems where the
Kalman Filter (KF) provides the exact solution [24]. A large amount of research has been carried
out to generalize the KF solution to non-linear systems. Different numerical methods have been
developed such as the EKF (Extended Kalman Filter). In this work, we used the Particle filter
framework for its simple implementation and its effectiveness in managing complex and random
motion. So, we implemented an annealed particle filter (APF) which is based on Sequential Importance
Resampling (SIR) algorithms [33,34] or CONDENSATION algorithm [35]. The APF filter was developed
by Deutscher et al. [36] to solve the problem of articulated body motion tracking with a large number
of degrees of freedom. The basic principle of the APF is the use of the annealing in an iterative way in
order to better estimate the peaks of the probability density. Therefore, at each time, the APF algorithm
proceeds in a set of “layers”, from layer M down to layer 1, that update the probability density over
the state parameter. A series of weighting functions are employed in which each wj, differs only
slightly from w,, 1, where w;, is designed to be very broad representing the direction of the search
space. The posterior distribution after each layer m 4 1 of an annealing run is represented by a set of N
weighted particles: S 41 = {x?m 1 nlt',m +1 }11 For the prediction step at layer m, a Gaussian diffusion
model is implemented. Specifically, a “Monte Carlo sampling with replacement” method is used to
generate the new hypotheses at layer m from the posterior density at the previous layer m + 1 using;:

CRGINN JNCRAD
! ~ ] ] M-m
{xt,m}izl ~ Z nt,m—‘rlN(xt,m+1’ a C) ®)
=1

The sampling covariance matrix C controls the extent of the research space at each layer,
where a large covariance matrix allows for a more widespread distribution of the sampled particles.
The Parameter o is used to gradually reduce the covariance matrix C in the lower layers in order to
guide the particles to the modes of the posterior distribution. In our case, o is set at 0:4. Sampled poses
that do not respect the geometric constraints of the articulated model of the human body (limits of

the articular angle of the model exceeded or interpenetration of the limbs) are rejected and are not
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resampled in a layer. New normalized weights are assigned to the remaining particles based on an
“annealed” version of the likelihood function:

i ’Bnl
(i)

20 -
£ (vt

tm+1 =

iel,...,N )

The value of B will determine the annealing rate at each layer. Generally, the parameter g™ is set
so that about half of the particles are propagated to the next layer by Monte-Carlo sampling.

3.3. Likelihood Functions

The likelihood of each particle in the posterior distribution measures how well the projection of a
given body pose fits the observed image. Therefore, it is important to correctly choose, which image
features are to be used to construct the weighting function. Many image features could be used,
including appearance models and optical flow constraints. In our case, we use edge and silhouette
features for their simplicity (easy and efficient to extract) and their degree of invariance to imaging
conditions, namely with omnidirectional images.

3.3.1. Edge-Based Likelihood Function

The image gradient is first used to detect the edges in the omnidirectional images. Then,
we propose to use geodesic metrics to process spherical images and measure the distance between a
pixel and the edge. For that, a gradient-mapping on the Riemannian manifold [30,31] is considered.
Let S be a parametric surface on R® with an induced Riemannian metric g’/ that encodes the geometrical
properties of the manifold. A point on the unit sphere can be represented according to Cartesian
or polar coordinates by (x, y,z) = (sinBsin¢, sinbcosp, cos6). The Riemannian inverse metric is then
given by:

i [ —PE-1)+E+1 xy(E-1) )
g]_y( xy(£-1) —H(E-1)+E+1 ©)
where )
AP+ (14 8)
( ) o

A+ &)(E+2+ T (T @ -1 F2E 1 &)

and ¢ is a projection parameter which takes into account the shape of the mirror. When & = 0 we are
back to the pinhole model.

This Riemannian metric is then used as a weighting function applied to the classical gradient
computed on the omnidirectional image:

.. 0
Vf=g 8_3]; ?)

and on the spherical images:

dI5(6,¢) 1 dIs(0,9)
90 7" Sino 20

Vels(0,¢) = e ®)

where (60, ¢) represent, respectively, the longitude and colatitude angles; and (eg, e(P) are the unit vectors.

For each pose hypothesis (defined by a particle of the APF filter), the 3D human model is projected
into the generated gradient image. Then the distance between the projected model and the contour is
determined. In omnidirectional images, the distance between two neighboring pixels differs according
to the image region under consideration and therefore using the Cartesian distance is not suitable.
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We have therefore opted for the geodesic distance in order to build the distance map. The geodesic
distance between two points in a spherical image, x; = (01, ¢1) and x, = (62, ¢), is given by:

cos¢p15in0q c05(h2sin0y
dg(x1,x2) = arcos| | singycosO1 || singacosOr 9)
cos0 c0s0;

An edge distance map M is then constructed for each image. The likelihood is estimated by
projecting the complete model into the edge map and computing the mean squared error:

P (yilxr) o Elfq Z(l - Mg(&5, (f)))2 (10)

where & () represents the coordinates of the image points corresponding to the projected 3D model
points in the image along all the body parts, using the estimated 3D pose x;. In order to improve the
computing speed, we calculate the geodesic distance according to given direction. Thus, the large
circle that passes through the ends of each 3D model cylinder is determined. Then, several circles
belonging to the perpendicular planes on this large circle are generated in order to sample the projected
3D model. The points of intersection between these circles and the cylinder contour correspond to the
sample points of the projected 3D model (Figure 4). This reduces the number of pixels whose distance
from the edge must be calculated. Indeed, unlike the case of perspective images, the complexity of the
Distance Map calculation is very high when spherical images are considered.

Figure 4. Geodesic distances in the spherical image. An example of sampled points from a part of the
3D model projected in the image. The dots represented by yellow circles correspond to the sampled
points of a part of the 3D model projected in the image.

3.3.2. Silhouette-Based Likelihood Function

The scene background is estimated using a Gaussian mixture model, then subtracted at each
time to generate the binary foreground silhouette map M;. The silhouette likelihood function is then
estimated by the equation:

) o = Y (1= Mi(e5,7) a1

However, this function constrains the body to lie inside the image silhouette. In order to correct
this defect, we define a new silhouette likelihood that penalizes non-overlapping regions. Let Mf
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represents the binary Body model silhouette map obtained by projecting the 3D model to the spherical
image. Three regions can then be defined to estimate the likelihood of the overlap region between the
two silhouettes M; and Mf : the overlap region Rt1 corresponding to the intersection between M; and
Mf , R? and R? regions corresponding to the difference between the M and R! on one side, and Mf
and R! on the other side. The size of each region can be computed by summing all the image pixels
as follows:

R} =) MY (i)-M; (i) (12)
R? = ZM;(i)-(l - M (i)) (13)
R} = ZM’j(i).(l — M(i)) (14)

Thus, the dual likelihood function is defined as a linear combination of these regions:

2 3
Ry R; ] (15)

1
sd

Xt) o< = +
P (yt| 2 2(R}+R§’ Rtl—i—Rf’

Finally, we use the multiple probability formulation to combine the different likelihood functions:
1
p(yifx) = ] Y ~Log(p' (vi]x1)) (16)
leL

where y; is the image observations obtained at time t and L € f{e, s, sd} is the set of the proposed
likelihood functions.

4. Experimental Results

In this section, we detail the experiments we have carried out under real conditions to study
the behavior of our 3D tracking algorithm and to evaluate its performance. We used the SmartTrack
“capture motion” system [37] to generate the ground-truth of the 3D body poses. We first detail the
experimental protocol put in place, as well as the construction of our test database, and then we present
the used evaluation criteria and discuss the obtained results.

4.1. Acquisition System Setup

The used acquisition system is composed of the SmartTrack device and an omnidirectional camera
realized by combining a hyperbolic mirror with a perspective camera, as shown in Figure 5.

SmartTrack sensor

Omnidirectional camera

Figure 5. Data acquisition setup. The SmartTrack device and the Omnidirectional camera are mounted
on a tripod. A calibration process was carried out to determine the rigid transformation between the
two systems.
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The SmartTrack is an integrated tracking system. This means, inside the small housing are
integrated not only two tracking cameras but also the Controller, which performs all calculations and
generates the data output stream. It is composed of two infrared (IR) cameras with a field of view of
approximately 100 degrees in horizontal and 84 degrees in vertical. The IR cameras allow the tracking
of targets within reflective surface. Indeed, these markers reflect the incoming IR radiation into the
direction of the incoming light. More precise: the IR radiation is reflected into a narrow range of angles
around the (opposite) direction of the incoming light. Passive markers are mostly spheres covered with
retro reflecting foils. However, they can also be stickers made from retro reflecting material. In our
experiment, we placed the passive markers on the person’s pelvis and head to record their 3D position
and orientation in real time. We used a WIA (Windows Image Acquisition) server to synchronize the
data provided by the SmartTrack device with the images acquired from the omnidirectional camera.

4.2. Database Construction

Thanks to the acquisition system, we built a database composed of four sequences. The first one
represents a person moving slowly around the sensor (Figure 6a). In sequence 2, the person follows
the same trajectory as in sequence 1 with an oscillating movement of his arms. In the third sequence,
a movement around the sensor with a forward/backward motion has been performed (Figure 6b).

26m 2.60m

7m 7m
(a) (b)

Figure 6. Path Movement for the three sequences. The blue lines correspond to the path followed by
the person during his movement around the sensor. The green areas represent the regions where the
person is tracked by the SmartTrack system. (a) Sequence 1 and 2, (b) Sequence 3.

The fourth sequence presents a more complex scenario where the person rotates around himself
and climbs stairs. This sequence allows us to evaluate the robustness of the algorithm against the
self-occlusion problem. The video sequences were captured at frame rate of 25 images per second.
The characteristics of the collected dataset are summarized in Table 1.

Table 1. Specification of the collected video dataset.

Characteristics Sequence 1 Sequence 2 Sequence 3 Sequence 4
Number of frames 600 682 768 432
Duration (second) 49 56 63 35
Kind of movement Circular Circular with arms  Forward/Backward Walk/occlusion

4.3. Performance Criteria

We use two evaluation metrics based on the mean square error (MSE) [38,39] to compare the
estimated body poses given by our algorithm and the truth data. The first one computes the average
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Euclidean distance between the markers placed on the joints and extremities of the limbs and the
estimated poses. This distance is given by:

— 1 a 2
Ds(x,%) = 5 ) _|mix) = mi(®)| (17)
i=1

where m;(x) € R® are the locations of the markers corresponding to the 3D ground truth, and m;(X)
represent the 3D joint positions induced by the estimated pose x.

The second criterion is a pixellic distance measured in the images. To do this, we manually
annotated the videos in the dataset with extra information representing the ground-truth of the body
posture in the image sequence. Thus, for each frame of each video, we annotated the positions of 11
ends of the human silhouette. For the evaluation, we project the human body model into the images
and then compute the 2D distance between the projected ends and the annotated dataset, as follows:

N
Dy 7) = 5 Y Jpit) - a3 18)
i=1

where p;(x) is the 2D points annotated in the reference image of the database, d;(¥) € R? is the projection
in the image of the 3D coordinates of the target i knowing the predicted pose x.

4.4. Evaluation of the APF Parameters

Given the stochastic nature of our 3D tracking approach, the results obtained when performing
the same experiment with the same APF configuration parameters often support different results.
Thus, to obtain consistent measurements and repeatability of the performance, each experiment is run
10 times for each sequence. We calculate the average of the errors (3D or 2D) obtained at each moment
on all the estimated positions. First, we evaluated the effect of the resampling parameter a used in the
APF to limit the spread of particles from layer M to layer M — 1. It can be seen, as shown in Figure 7,
that this parameter has an important influence on the obtained results, especially when the number of
particles is low.

Sequence 2
25 T T T T T
alpha=0.4
alpha=0.5
alpha=0.6
alpha=0.7 7

20

Error (pix)
o
T

ol | | ' .
. \ ‘x,
% “ l \ \ A '\ MW
5= : A A | j' (
M O \J l“) J \‘ ""\‘ ‘l ""\’,‘ x ~( l'- 4[

0 50 150 200 250 300
Image

0

Figure 7. Influence of the parameter a—sequence n° 2. The results suggest that a good choice for the
alpha parameter can improve the performance of the annealed particle filter (APF) and consequently
increase the accuracy of 3D tracking.
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Thus, we varied the value of the parameter a from 0.2 to 0.7 and compute the average data of the
2D error for all sequences. The obtained results are summarized in Table 2. We can see that that the
value a = 0.4 allows us to obtain the best performances for all sequences. Indeed, this value allows
the constraint of the propagation space from one layer to the next when the human movements are
significant. This is the case with the arms in sequence 2 where the system no longer allows us to
track the joints that have undergone a great movement. For example, the obtained 2D error (in pixels)
when a = 0.4 is about 4.15 + 0.73 pixels for sequence 2. a = 0.6 gives the poorest results with an
error of 5.06 + 1.16 pixels. Therefore, appropriate choice of the parameter a can improve the tracking
performance by 22%.

Table 2. Average 2D error according to the parameter .

Sequences a=02 a=04 a=0.6

Sequence 1 6.48 +1.02 6.04 +0.94 6.32+1.26
Sequence 2 451+0.82 4.15+0.73 5.06+1.16
Sequence 3 7.36+1.42 6.54 +1.03 7.03+1.21
Sequence 4 7.94+1.73 7.09+1.14 7.52+1.42

4.5. Comparing of Likelihood Functions

In this section, the effect of the likelihood function on the performance of the proposed 3D tracking
algorithm is studied. Thus, four likelihood functions are considered: Spherical Gradient with Geodetic
Distance (GG) (defined by Equation (10)), Omnidirectional Gradient (OG), Dual Silhouette (DS) (defined
by Equation (11)), and a combination of DS and GG likelihood functions (given by Equation (15)). As a
reminder, the likelihood function (OG) uses the classical gradient function (Equation (7)) weighted
by the Riemannian metric and calculated on the omnidirectional image. The results obtained when
we apply our approach to sequence 1 and 2 demonstrate that GG likelihood function performs better
than OG function. It improves the accuracy by 11% compared to the OG function. This demonstrates
that handling omnidirectional images in spherical space and using the geodesic distance increases the
pose estimation quality. The second result that is clearly seen is that the combination of the likelihood
functions DS and GG always gives the best results. Figure 8 shows the obtained results for sequence 4
using DS + GG likelihood function; we found an average error of 15 pixels per image. This is because
of the complexity of sequence 4, which presents many self-occlusions of the upper and lower limbs.

Sequence 4
T
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Figure 8. Obtained results on sequence 4 using the combined likelihood function (DS+GG). Average
2D distance between the projected 3D model and the annotated data. This error increases significantly
when the tracking of the upper limbs is lost due to self-occlusion, this is the case between frame 40
and 50.
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Table 3 summarizes, for each sequence, the average pixel error obtained for the proposed likelihood
functions (computed using Equation (17)). It can be seen that this error is in the range of 4.15 to
7.95 pixels for sequences 1, 2 and 3, whereas it reaches 22 pixels for sequence 4. This can be explained
by the fact that sequence 4 has self-occlusion of the upper limbs. Thus, when the person rotates on
itself, and the arms remain stuck along the body, then neither the contour nor the silhouette can provide
enough information to detect the person’s rotation.

Table 3. The Mean localization error in the image (pixels) of different sequences in the database.

Likelihood Functions Sequence 1 Sequence 2 Sequence 3 Sequence 4
DS 6.86 + 0.70 7.15 + 0.65 795+ 0.76 20.15+1.51

OG 6.37 + 0.60 8.15+0.72 7.01 £0.73 22.00 + 1.86

GG 4.40 + 0.45 5.70 + 0.53 7.20 + 0.62 18.40 + 1.63

DS + GG 415+ 0.63 5.30 + 0.58 6.72 + 0.61 1520 £ 1.26

Figure 9 shows the tracking results of the body extremities: head, hands and feet. We note that the
head is the part of the body that is best tracked, while the feet are less well tracked. Indeed, the position
of the feet in the omnidirectional images are close to the center, which reduces their size and makes
their detection more difficult.

Error for Articulation

151
““. .f
N
o L
i A s
10 4,_\"‘““ "‘I l I‘I;vl\"h | l““L‘U‘\" “I il '
. (LN /R
9 | | |w NL‘ ‘ ‘ “."!‘ “‘L IJ:,{I
2 [ b
R | ‘||‘ | } I fl [‘ "y | |
sk ” I (. !l
h Ir 1 ,“4"“' | ’ ‘L\ qu{ |‘[wf ”“ ‘ l Iw ‘*‘F:
t! e
Forearm ! ‘ql 1"‘ L,"“ ':|.J1| | ‘ w "ﬁ“-‘w U“tl
| Lowel; leg ‘ | m‘i | l " )‘ 'L"' . Il ['|r‘ "‘ "ﬂ
00 50 100 150 200 250 300 350 400 450 500

Figure 9. Tracking errors of the body extremities. Placing the omnidirectional camera at a height of
1.5 m allows the person’s head to be visible in all images, which facilitates its tracking and explains the
good obtained accuracy.

Figure 10 illustrates an example of head tracking compared to ground truth. The blue and red
trajectories on the image correspond to the history of the estimated and real head positions, projected
into the current image. We can see that the head displacement estimated by our tracking algorithm
corresponds to the real trajectory recorded by the SmartTarck system. This demonstrates the accuracy
of our approach and its effectiveness when processing real data.
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== Ground truth position | .
o &
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Figure 10. Head tracking results. The average location error between the estimated 3D pose of the
head and the ground-truth data is about 20 mm.

4.6. Evaluation of the Computation Time

The computation time is directly proportional to the number of particles as well as to the number
of layers of the APF filter. It also depends on likelihood functions. Table 4 summarizes the computation
times obtained for the slowest case when a combination of two likelihood functions (gradient with
geodesic distance and dual silhouette) is used with 100 particles for a single layer (the computation
time of propagation likelihood function will be multiplied by the number of layers). The computation
time to perform the 3D tracking on one frame of 800 x 600 pixels is about 0.79 s when using a 3 GHz
Intel Core-i7 with Matlab implementation. We note that the time required for image pre-processing
(calculation of the gradient and geodetic distance) represents about 57% of the total computing time.
This high time is mainly due to the multiple omnidirectional projections towards the spherical space.
In our case, we limit the calculations to a restricted image space thanks to the HOG detection window.
In addition, the time required to estimate the likelihood functions represents 37% of the overall
calculation time, while the time required to propagate the particles of the APF filter and subtract the
background is relatively small; it represents only 1% of the total time.

Table 4. Computation times for our 3D tracking algorithm (100 particles, m = 1).

Image Size 800 x 600 1028 x 738
Subtracting the background 0.0067 s (1%) 0.0073 s (1%)
Gradient + geodesic distance computation 0.39 s (59%) 0.46 s (58%)
Propagation 0.032 s (5%) 0.043 s (5%)
Likelihood functions computation (dual silhouette) 0.23 s (35%) 0.28 s (36%)
Total 0.66s 0.79s

4.7. Comparison with Other Works

For completeness, we present a qualitative analysis that compare our results against other 3D
human pose estimation methods. This is just meant to be an indicative result, as the considered
methods are evaluated differently. Indeed, public omnidirectional image datasets are unfortunately not
available, which did not allow us to carry out a quantitative comparison with state-of-the-art techniques.
We evaluate the accuracy of 3D human pose estimation in terms of average Euclidean distance between
the predicted and ground-truth 3D joint positions and Head. We compare the results obtained from
the “walking” action in our investigation with recent state-of-the-art approaches which are tested in
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the walking action of popular public datasets like Human3.6M and HumanEva-I. The walking action
in our database corresponds to one person’s movement towards the camera, with a coherent swing
of the left (right) arm and the right (left) leg with each other in space, which is quite similar with
the walking action of Human3.6M and HumanEva-I databases. The reported results are presented
in Table 5. We can see that the performance of our approach is similar to state-of-the-art methods,
validating the effectiveness of our tracking scheme. Nevertheless, it would be interesting to generalize
this result by testing the robustness of our approach under more challenging conditions with complex
human actions.

Table 5. 3D errors (mm) of 3D human pose estimation methods in the walking actions.

Methods Evaluation Datasets Error
Pavlakos et al. [6] Human3.6M 59.1
Fang et al. [8] Human3.6M 47.5
Chen et al. [9] Human3.6M 55.7
Habibie et al. [13] Human3.6M 54.3
Wang et al. [40] HumanEva-I 71.1
Makris et al. [41] Berkeley MHAD 80.0
Our approach Our own dataset 64.7

5. Conclusions

This paper presents a new approach for human pose estimation by using a catadioptric vision
system within the context of Bayesian filtering. We developed original likelihood functions in
Riemannian/spherical space to take into account the geometrical properties of the omnidirectional
images. The spherical image derivatives were then used to adapt the gradient computation to this
space, and the geodesic distance was considered when generating the distance map. Numerous
experiments were carried out with real image sequences to evaluate the performance of the proposed
approach. We used the MSE criteria to measure the quality of the estimated 3D pose in comparison to
the ground truth data. The results show that the performance is further improved when using the
combined Silhouette/Edge likelihood function. Indeed, our algorithm converges in less than 1 s in
most cases, while the 3D pose estimation error generally remains below 10 cm. However, we have
observed that the AFP filter sometimes has some limitations, in particular, when the body extremities
are partially occluded or when the person is more than 5 m away from the sensor. As future work,
we plan first to explore the use of additional information provided by other sensors, like Kinect and
IMU (Inertial Measurement Unit), to improve the estimation accuracy, and second to use deep learning
approaches such as those that have been demonstrated to produce remarkable results for classical 3D
object localization.
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