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Abstract

The use of expert knowledge by manufacturing companies to support everyday activities has become an emerging practice 

thanks to the new knowledge management tools. A big set of knowledge is available in the organizations but its proitable 

use to solve problems and assist decision making is still a challenge. This is the case of CAM operations or preprocessing 

steps for which various works have been led to involve experts’ knowledge in the decision-making based on qualitative prin-

ciples. However, so far, there is no methodology to the quantitative representation of that knowledge for more assistance. 

This paper introduces an approach for the conversion of knowledge into quantitative mathematical models. The main idea 

is to go from elicitation data in the form of action rules to simple unitary mathematical images; here desirability functions. 

The whole process carried out to extract the useful information that help building the desirability functions is exposed and 

diferent useful mathematical considerations are proposed. The resulting methodology identiies the categories of concepts 

in action rules and translate them into codiied action rules. Then, through a mathematization process, the desirability func-

tions are built. In short, this new approach allows evaluating the satisfaction level of the rules prescribed by the experts. 

As an illustration, the model is applied to action rules for CAM operations in additive manufacturing and more precisely to 

the deinition of part orientation. This has shown the robustness of the methodology used and that it is possible to translate 

elicitation data into mathematical functions operable in computation algorithms.

Keywords Expert knowledge · Quantitative representation model · Desirability function · Action rule · Additive 

manufacturing · CAM · Part orientation

Introduction

Nowadays, companies are trying more and more to capital-

ize and organize their employees’ knowledge in order to 

share it for better performance. This activity is referred to 

as knowledge management (KM) and has become a vital 

part of successful businesses as demonstrated by Tan and 

Wong (2015) through a work examining the efect of KM 

on manufacturing performance. Indeed, capturing, struc-

turing and transmitting the workers knowledge, is a good 

way to assist activities like decision-making, problem 

solving, dynamic learning or strategic planning (Gupta 

et  al. 1999). The knowledge management methodolo-

gies may vary from one company to another depending 

on their objective use of the created or captured knowl-

edge (Davenport et al. 1998). Various authors worked on 

how leading KM would positively inluence the competi-

tiveness of manufacturing companies (Gunasekaran and 
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Ngai 2007; de Pablos 2002; Singh et al. 2006; Paiva et al. 

2002). Globally, it has been seen as an important element 

that maintains the sustainability and competitive advan-

tage of an organization. In industries, the management of 

knowledge is critical to all processes of the value chain. 

Especially, the domain of product manufacturing requires 

intensive knowledge, from product design to production 

and quality inspection.

To manufacture a product implies to deliver at the right 

time and at an optimized cost in the required speciications, 

such as the right shape, dimensions, roughness, or material 

properties. To do so, multiple manufacturing strategies (for 

instance toolpaths) and parameters have to be set, which is 

the aim of CAM (Computer Aided Manufacturing) opera-

tions. Nevertheless, making the right choices requires a lot 

of knowledge and high expertise from the CAM engineer.

Regarding milling technologies, engineers rely on some 

commercial CAM software based on the following approach: 

feature recognition from the part CAD model; association of 

a process composed of one or several operations related to 

the identiied features; setting of parameters related to these 

operations (Mourtzis et al. 2018). The automation of CAM 

operations mainly relies on expert systems based on if/then 

rules that make the CAM software hardly scalable. Moreo-

ver, relevant feature recognition often remains challenging 

in many situations (Albert 2001; Corney et al. 2005).

For more recent additive manufacturing technologies, 

CAM software are even less developed. They do not ofer 

any assistance to the user for certain operations. On the other 

hand, some other operations that are sometimes fully auto-

mated (i.e. support generation) do not leave any control to 

the user.

Our research aims at deining various means of assis-

tance for CAM operations. The target is to provide the CAM 

engineer with a decision assistant that would be based on 

the expert knowledge of the domain, and that would help 

him/her to make the right choices among numerous param-

eters to be set. In this context, the present paper proposes a 

structured approach for transforming manufacturing rules, 

gathered from a panel of experts and expressed in their natu-

ral language, into a quantitative mathematical model. This 

model will make it possible to assess in a simple way the 

extent to which the diferent manufacturing rules are satis-

ied when decisions are made about the CAM parameters.

In the remainder of this document, background and scope 

related to this research are presented in “Background and 

scope” section. Then, a case study of additive manufacturing 

part orientation that will be used for deining and illustrating 

our modelling approach is presented. The four main steps of 

this modelling approach are afterwards detailed in “Mod-

eling approach” section. “Application to part orientation” 

section presents the modelling of some additive manufac-

turing rules and the application to a part geometry. Finally, 

“Conclusion” section summarizes the results and provides 

concluding perspectives.

Background and scope

Background

The knowledge of CAM experts is the starting point this 

work. It is thus important to state what is meant by knowl-

edge. Although some researchers consider that knowledge 

can be objectiied and directly managed, for instance with 

information systems, the position that we adopt in this paper 

is more in line with Wilson (2002) who claims that knowl-

edge “involves the mental processes of comprehension, 

understanding and learning that go on in the mind and only 

in the mind”. In addition, Nonaka and Von Krogh (2009) 

make the distinction between explicit knowledge, which is 

“accessible through consciousness”, and tacit knowledge 

that is more rooted in action, skills, movement, or senses. 

Knowledge is seen as a continuum between these two 

dimensions.

At the opposite side, information is deined as “every-

thing outside the mind that can be manipulated in any way” 

(Wilson 2002). When available and formalized in documen-

tation, information can be extracted for further processing 

(such as classiication, storage, sharing or reuse).

Knowledge elicitation is “the process of collecting from 

a human source of knowledge, information that is thought to 

be relevant to that knowledge” (Cooke 1994). Various elici-

tation techniques, either based on observations, interviews 

or process tracing, have been widely used and studied in the 

literature (Milton 2007). These techniques make it possible 

for the experts to explain their knowledge, and hence to get 

some relevant information on this knowledge, that can after-

wards be shared and managed. During knowledge elicitation, 

experts might become more conscious about certain parts of 

their knowledge. According to Nonaka and Takeuchi (1995), 

it is believed that some tacit knowledge moves towards the 

explicit dimension, making it possible to get information 

about this knowledge).

Knowledge structuring implies to classify it into, for 

instance, general and domain speciic knowledge, concrete 

and abstract knowledge, formal and informal knowledge, 

conceptual and procedural knowledge (de Jong and Fergu-

son-Hessler 1996). While conceptual knowledge is valu-

able for the understanding of a speciic domain, procedural 

knowledge is of prime importance in order to support action, 

and in particular to provide a CAM assistance.

Recent elicitation activities led in the manufacturing 

domain have enabled the formalization of experts’ knowl-

edge thanks to speciic elicitation tools and techniques. 

When experimenting the use of an inluence matrix in a 
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collective debate, Grandvallet et al. (2017) managed to 

capture crucial knowledge about manufacturing practices, 

and classiied it into diferent categories. Thereby, deini-

tions, examples, inluences, state rules were identiied as 

four sub-categories of conceptual knowledge, and action 

rules that were part of procedural knowledge. The latter, 

action rules (ARs), are of primary interest in this work. 

Indeed, action rules can drive the process of setting mul-

tiple parameters. They are expressed in a natural language 

and integrate action verbs. In computational systems, they 

can be translated into diferent forms. For instance, they 

can take the form of a condition with if/then statement in 

expert systems (Zhou et al. 2019), they can be a basis for 

a reward system in machine learning algorithms, or they 

can be expressed in the form of a speciic mathematical 

function.

Desirability functions prove to be suitable for the 

mathematical transformation of ARs. Desirability func-

tions (DF) allow the conversion of diferent scales of qual-

ity measures into 0 to 1 objective functions (Trautmann 

and Weihs 2006). These functions were irst introduced 

by Harrington, then, Derringer and Suich (1980) pro-

posed a modiication to show their ability to transform 

multi variate responses into only one single aggregated 

output. Diferent types of these functions are available in 

the literature (from the simplest to the most sophisticated) 

(Costa et al. 2011), and have been used combined with 

the response surface methodology or fuzzy logic to solve 

manufacturing parameter optimization problems (Datta 

et al. 2006; Aggarwal et al. 2008; Kim and Lin 2000; 

Singh et al. 2013; Al-Refaie et al. 2017). Figure 1 shows 

examples one sided and two sided desirability functions. 

Another advantage with this approach is the possibility to 

incorporate the decision maker preferences such as giving 

priority levels or weights to each response, for multiple 

response problems (Costa et al. 2011). Equation 1, shows 

an example using geometrical weighted mean proposed 

by Derringer and Suich (1980), where w
i
 represent the 

weights given to each function.

Three types of functions can be found, “the larger the 

better”, “the nominal the best” or the “smaller the better”. 

In this work, only the larger the best is used i.e. the most 

desirable case corresponds to a desirability index near the 

upper bound target U and the less desirable corresponds to 

that near the lower bound L . The formulation of desirability 

functions has evolved through years with a variety of pro-

posals. However, for the sake of simplicity, this study will 

consider the formulation proposed by Derringer and Suich 

(1980).

In the present context, DFs make it possible to quantify 

the satisfaction level of an action rule related to some vari-

ations of given variables. The use of desirability functions 

usually consists of identifying irst the most important fac-

tors ( ̂y ) inluencing the output response of the system of 

interest. Then, those are transcribed into desirability indices 

( d ) (each value of the identiied factor will have an image d 

ranging from “0” to “1”) by experimental means or by using 

any expertise. In the present work, these factors or quantii-

able variables ( ̂y ) are directly referred in the action rules 

either explicitly or implicitly. In the latter case, the variable 

is inferred from the fundamental relationship between the 

constitutive concepts of the AR. For this purpose, a rela-

tional analysis of the rules content must be led in order to 

extract the variable ŷ and its threshold values allowing the 

mapping with desirability.

This short review of literature is summarized by Fig. 2 

which shows the positioning of the paper.

On the right side of the diagram in Fig. 2, experts have 

more or less conscious knowledge that allow them to take 

relevant decisions regarding the choice of CAM parameters. 

Elicitation techniques make it possible to go to the informa-

tion side since they provide information on this knowledge, 

and more especially in the form of action rules that can be 

(1)D =

(

d
w1

1
∗ d

w2

2
∗ d

w3

3
∗ ⋯ ∗ d

wi

i

)

(2)
∑

w
i
= 1

Fig. 1  Example of desirability functions
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used to drive the CAM activities. These action rules can 

then be reworked through a mathematization process, using 

for instance desirability functions, in order to get quantita-

tive representations. The term mathematization refers to the 

action of introducing principles and methods specific to the 

mathematical sciences into a field of knowledge that did not 

belong to it. It also refers to the act of giving a mathematical 

formulation to something (CNRTL - CNRS). It is an act of 

interpreting or expressing mathematically, or the state of 

being considered or explained mathematically (Collins dic.).

Thereafter, once integrated within a CAM environment, 

those quantitative representations will make it possible to 

evaluate easily and quickly the satisfaction or compliance 

level of each one of the action rules for a set of values of the 

CAM parameters. These evaluations will be useful for the 

engineers to make relevant decisions about these parameters.

Although it takes time to achieve this process, and skilled 

operators might consider more eicient to make decision 

based on their own knowledge, the proposed approach has 

the following advantages:

• The task of elicitation and mathematization of the com-

pany knowledge is only done once,

• The approach makes it possible to develop a company-

speciic shared expertise,

• Decisions are justiied based on measurable criteria.

Scope of the paper

The present paper aims at bridging the gap between the 

action rules, expressed in natural language, and a mathe-

matical representation of these rules. The research question 

states as follows: which methodology based on desirability 

functions could be deined in order to get in a systematic 

way, quantitative representations of action rules that drive 

the CAM activities?

The proposed methodology is based on a study case about 

part orientation in AM. In this context, knowledge elicitation 

has been conducted with industry experts (Grandvallet et al. 

2020). The resulting rules are used as the starting point of 

the work presented in this paper.

Study case: part orientation in EBM 
manufacturing

Manufacturing process

Electron Beam Melting (EBM) is one of the Powder Bed 

Fusion technologies (PBF) commonly used in Additive 

Manufacturing. The manufactured part is created layer by 

layer by melting metal powder with an electron beam. Fig-

ure 3 shows a typical PBF manufacturing process. Follow-

ing the design step and preceding the manufacturing step, 

the CAM step encompasses various operations that aim at 

preparing the build ile, including the settings of manufac-

turing parameters. For PBF technologies, this includes the 

selection of optimal build orientation, the creation of support 

structures for overhanging surfaces, the nesting on the build 

platform. But irst and foremost, part orientation is one of 

the most important steps of CAM operations.

Action rules for part orientation in EBM AM

Part orientation is basically the setting of two angles that 

will deine how the part should be oriented regarding the 

building plate of the machine (start plate). Nevertheless, it 

remains a complex and critical activity as it highly afects 

the quality, cost, production and inishing time of the part. 

Fig. 2  Knowledge transforma-

tion

Fig. 3  Example of additive manufacturing process for powder bed 

fusion (PBF)
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Usually, operators arbitrarily orient parts without being 

able to explain why they chose a given orientation. Various 

authors in the literature have investigated the computation 

of part orientation (Frank and Fadel 1995; Delfs et al. 2016; 

Pandey et al. 2007; Das et al. 2015; Rattanawong et al. 2001; 

Zhang et al. 2017; Qin et al. 2019). Typically, the computa-

tion of optimal orientation usually consists in selecting a set 

of criteria to fulill, then evaluating those on geometries of 

interest. The most encountered aspects consist of minimiz-

ing: the support volume or area, the build time, the build 

height, the material consumption, the projected area and the 

distortions.

Today more and more commercial software are used 

to compute these criteria on parts as indicated in Table 1. 

These tools are globally using physical parameters of difer-

ent scales (e.g. support volume, part height, etc.) that cannot 

be compared to each other. Most of them propose optimum 

solutions computed by assigning weights to the aforemen-

tioned dimensional physical parameters. These weights 

remain the only values on which the operator can intervene, 

as the algorithms used by the commercial tools are black 

boxes. Beyond the criteria computation, some of the tools 

allow the deinition of surface category (3DXpert, Netfabb 

and Magics). Only one software (Amphyon) allows a heat-

map presentation of the criteria values over the possible ori-

entations to support decision-making. Moreover, the criteria 

deined by the software editor cannot be evolving with the 

expertise of the company; they do not ofer to experts the 

possibility to add new orientation rules or criteria.

As mentioned in “Scope of the paper” section, the origi-

nality of the approach proposed in this paper consists in 

starting from expert knowledge for building a set of rules 

and dimensionless criteria applied to speciic part entities, 

so as to support decision in part orientation.

In an industrial context, Grandvallet et al. (2020) used 

the LIT (Limited Information Task) technique in order to 

capture main concepts involved in the execution of part 

orientation. Eight action rules were constructed from state-

ments of industry experts working on powder-based additive 

manufacturing. Six of them have been more deeply studied 

for mathematization. They are listed and explained hereafter:

(a) Minimize part shadow on start plate: the projected area 

of the part on the build platform (start plate) must be 

minimal to allow the maximum nesting (Chergui et al. 

2018; Wang et al. 2019). The extent of the projected 

area varies with the orientation of the geometry.

(b) Minimize total overhanging non-machined surfaces: 

overhanging surfaces need support structures during 

the manufacturing process to get the surface anchored 

and prevented from distortion or warping (Hussein 

et al. 2013). When support structures are used, their 

removal leaves marks that usually need inishing or pol- Ta
b
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ishing. This rule intends to minimize the marks (thus, 

overhanging surfaces) on surfaces for which machin-

ing will not be performed. An overhanging surface is 

characterized by its normal vector angle with the nega-

tive vertical as shown in Fig. 4 ( � =

(

n⃗,−z⃗

)

 ). Usually, 

support structures are only required for surface angles 

less than a speciied value. This value depends on the 

technology, the material and the machine.

(c) Orient part priority surfaces (PPS) close to vertical: 

priority surfaces constitute the most important surfaces 

of a given part. In PBF, surfaces oriented vertically 

have better quality, thus priority surfaces are oriented 

as close as possible to the vertical.

(d) Orient machining datum surfaces (MDS) out of hori-

zontal: machining datum surfaces allow the positioning 

of the part for post processing. If they are positioned 

horizontally (close to 0° or close to 180°), they might 

exhibit geometrical distortions.

(e) Minimize shape deformation risks: parts made with 

PBF technologies are usually subject to deformations 

linked with the solidiication and cooling process of the 

fused metal layers. According to experts, if a certain 

number of long layers are stacked, there may be risk of 

deformation. Changing the orientation of a part modi-

ies the coniguration of the layers through a diferent 

slicing. Therefore, this issue is to date mainly solved 

by inding the convenient building orientation. Note 

that only shrinkage defect (Vo et al. 2018; Ghaoui et al. 

2020) is concerned with this rule.

(f) Avoid support structures and support removal difficulty 

on surfaces with potential support difficult to remove 

(SSDR): this rule suggests to take into account the sup-

port removal diiculty. In PBF, a tool is used to remove 

the support structures after manufacturing, for this rea-

son, the accessibility needs to be considered. Here, by 

making the assumption that the support is diicult to 

remove when the surface in question has another one 

in front of it, the removability depends on the space 

between the two surfaces. A surface is therefore quali-

ied as a SSDR when its accessibility is limited by sur-

rounding surfaces.

Usually, action rules can easily be interpreted or even 

completed by human reasoning. However, to do so with 

computational systems, mathematical formal models have 

to be established. To this end, the next section presents the 

proposed modeling approach that allows interpreting the 

action rules content into desirability functions.

Modeling approach

The proposed approach consists in translating action rules 

expressed in natural language into fuzzy functions. The main 

aim is to provide a mathematical image as close as possi-

ble to the objective of a given action rule. To achieve this, 

desirability function based modeling is used. This modeling 

approach has got the advantage of normalizing variables of 

diverse natures into dimensionless values between zero and 

one.

Figure 5 summarizes the general steps of the methodology. 

The irst step (1) is to codify the action rule in order to put it 

in the form of an objective (if necessary) using a common 

grammar. The second step proceeds to a mathematization of 

the action rule by performing the following steps: (2) Deine 

Fig. 4  Illustration of overhanging surface

Fig. 5  Proposed modeling steps
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the evaluation concept, (3) Construct the desirability function, 

(4) Deine a combination operator. In (2) a relational analysis 

of AR content is carried out to ind out the quantiiable vari-

ables ŷ and their related evolution laws that will be used for 

the construction of desirability functions in (3). The inal step 

(4) consists of deining how the overall desirability is calcu-

lated on the whole part. It has to be noted that the experts may 

intervene in the whole modeling process.

Codiication of action rules

Action rules captured from expertise are expressed in difer-

ent forms with diferent grammatical structures. This diver-

sity makes it diicult to deine and handle a general modeling 

process. For that reason, this work proposes to codify the ARs 

in the form of objectives using a common grammar made of 

words and classiied in diferent categories of concepts related 

with the domain of interest.

For additive manufacturing, Kim et al. (2019) recently pro-

posed a classiication that includes these categories: Design 

Features, Manufacturing Features, Geometry Parameter, Mate-

rial Parameter, Process Parameter and Feature Constraint. 

The Design Features are linked with the part topology (e.g. 

cylinder, spheres, surfaces, holes…), while the Manufactur-

ing Features are those related to additive manufacturing itself 

(e.g. support structures, powder, layer …). The Geometry 

Parameters correspond to characteristics that a Design Fea-

ture includes; for instance, a cylinder might have the following 

feature characteristics: height, diameter, area and orientation.

The proposition is not completely in line with the rules 

described “Action rules for part orientation in EBM AM” 

section. In fact, industrial practitioners diferentiate the part 

geometric entities (shape entities) and gives them diferent 

attributes. Among those are the post-machined surfaces, the 

priority surfaces and the machining datum surfaces. A given 

surface can have multiple attributes (e.g. a non-machined sur-

face can also be a priority surface). Action rules then apply to 

a subset of the part shape entities identiied by their attributes.

Finally, the following categories have been identified: 

Shape entity, Attribute, Evaluation Concept and Action 

(Fig. 6). Given an action rule, its composition is such that the 

action applies to one or more evaluation concepts. Each evalu-

ation concept is associated to shape entities identiied by the 

given attribute.

Part

This concept clusters the diferent classes of information 

related to the geometry in question. The class Shape is deined 

by the distinct entities (volume, surfaces, edges and vertices) 

constituting the part’s topology. As a complement, the class 

Specifications (corresponding to the global product speciica-

tions) indicates the extrinsic and intrinsic characteristics of the 

Shape entities. For instance, this class provides information 

about the roughness or the tolerances on the dimensions of 

a surface or between surfaces. The class Attributes is used to 

classify the Shape entities according to their expected quality 

or post processing need (e.g. machined surfaces). Figure 7a 

shows a summary of a part composition. A non-exhaustive 

list of attributes including hole, non-machined, machining 

datum and priority are deined based on the ARs formulated 

by experts. It has to be noted that the attributes may or may 

not exist in the action rule. They point to the involved Shape 

entities as illustrated in Fig. 7a by the dashed lines.

Evaluation concept

The evaluation concepts are used for assessing the impact of an 

action on a part of interest. Evaluation concepts are the pivotal 

base of the decision-making through an AR since they allow 

evaluating and understanding the consequences of an action 

onto the inal requirements namely, the quality, cost and pro-

cessing time. In the AR, each evaluation concept is linked to a 

shape entity by quantiiable variables (discussed in “Identify 

the variable ŷ linking the shape and the evaluation concept” 

section). The identiied evaluation concepts for the list of rules 

given in the “Action rules for part orientation in EBM AM” 

section are reported in Fig. 7b.

Action

The Actions are introduced to normalize the ARs in order 

to explicitly express them as objectives by using the follow-

ing word units: minimize, maximize, avoid or require. They 

make it possible to transform an action rule into an objective 

to reach. Minimize and maximize terms are used when inter-

mediary cases are accepted and, avoid and require are used 

when the non-acceptable cases (zero desirability) cannot be 

compensated (i.e. orientation with non-acceptable local situa-

tion has to be excluded).

Fig. 6  Example of action rule’s 

concepts codiication
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Codiication

Each action rule implicitly includes an objective to com-

plete. The codiication intends to explicitly show the objec-

tive of the action rule by replacing its action verb with one of 

the Actions deined in Fig. 7c. For instance, the rule “Orient 

machining datum surfaces (MDS) out of horizontal” seeks 

to get the maximum MDS possible out of horizontal posi-

tion. Therefore, the codiied version of this example could 

be either “Maximize MDS out of horizontal” or “Require 

MDS out of horizontal” depending on the wanted severity. It 

should be noted that the codiication step is not always nec-

essary because action rules are sometimes directly expressed 

in the form of objectives. For instance, in the aforemen-

tioned list, rules (a), (b), (e) and (f) are already codiied.

Deinition of the evaluation concept

In the literal expression of action rules, there are implicit 

laws involving the necessary understanding of the interrela-

tions linking the concepts. Beissner et al. (1994) deine the 

relation between the concepts as structural knowledge. The 

process of building the structural knowledge might require 

the preliminary scientiic comprehension of interactions 

between the involved parameters and the intervention of 

experts to establish threshold values.

The idea in this step is to perform a mathematization of 

the action rules to represent the relationship between the 

concepts by following three main steps. As discussed in its 

deinition, an evaluation concept is linked to the speciied 

shape entity by quantiiable variables. Therefore, the vari-

able ŷ linking the shape entity and the evaluation concept 

is irst identiied by experts; second, the way to measure 

ŷ on the part is determined. Finally, the calculation of the 

evaluation concept evolution according to the variable ŷ is 

established. The expected outputs are ŷ , the way to measure 

it and the function linking ŷ with the evaluation concept 

(Fig. 8).

Identify the variable ŷ linking the shape and the evaluation 

concept

This process involves the manufacturing experts and CAD 

experts’ knowledge. The aim is to identify the evaluation 

concept input variables ( ̂y ). These variables are selected 

with CAD experts as far as they have to be measured from 

the shape entities. In fact, each shape entity has some charac-

teristic parameters that can be used as variables. For instance 

for a surface, the angle, the length of its perimeter, the area 

or the projected area, etc. can be identiied. The parameter 

among those, that its more with the evaluation concept will 

be used as the variable ŷ . Diferent opinions might arise 

among experts for the identiication of ŷ . The part shadow 

onto the machine plate for which diferent types of measures 

have been identiied is one illustration (refer to Fig. 9). The 

Fig. 7  Categories of concepts: a part classiication; b evaluation concepts; c actions

Fig. 8  Relationship between concepts, illustration of variable linking 

a shape entity and an evaluation concept
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measurement of part shadow can be the area of the pro-

jection, the maximum dimension of the projection, and the 

projection itself can be the silhouette (Fig. 9a), the contour 

(Fig. 9b) or the bounding box (Fig. 9c). An iterative discus-

sion with experts helped to inally converged on the solution 

(b) of Fig. 9. Indeed, in PBF it can be foreseen to put another 

part inside the hole of the shadow in order to save place.

Determine how to measure the variable ŷ on the part

According to the part’s involved entity, the way to measure 

the variable might difer. For some cases, a speciic discre-

tization method for local evaluation is required. For instance, 

to ind the local angle ŷ of a complex surface by its normal, 

it is necessary to tessellate the latter to transform it into tri-

angular lat elemental surfaces. Helpful geometrical opera-

tions on shape entities for the evaluation of desirability are 

reported in Table 2.

Find out how to calculate the evaluation concept according 

to the variable ( ŷ)

This establishes the relationship between the ŷ and the evalu-

ation concept. This analysis is one of the most important 

steps that allow going from a conceptual view to a process 

view of the ARs. The expected output for each identiied 

variable is a relational function (RF) showing the evolution 

of the evaluation concept according to ŷ.

For instance, given the codiied action rule depicted in 

Fig. 6, a codiication according to the discussed categories 

irstly allows identifying the concepts on which the analysis 

is carried out. The attribute non-machined indicates that the 

AR does not apply to all of the surfaces of the geometry of 

interest. For the identiication of the linking variable ( ̂y ), the 

response is the inclination angle ( � ) of the surfaces as the 

law of evolution of overhang (evaluation concept) depends 

on the surface orientation (explanation in “Action rules for 

part orientation in EBM AM” section). A tessellation is per-

formed to measure the elementary � of the involved surfaces. 

Then, the evolution of the overhang according to the inclina-

tion angle can be inferred in Fig. 10. The threshold values �
1
 

and �
2
 must be indicated by the experts.

Thereafter, the desirability functions are constructed 

based on the established structural knowledge. As shown in 

Fig. 10, the RFs are mapped between 0 and 1, but for some 

evaluation concepts, a fuzziication is necessary (refer to 

“Fuzziication” section). In case of more than one evaluation 

concept, the mathematical considerations in “Mathemati-

cal combination of various evaluation concepts” section are 

used to carry out logical combinations.

Fuzziication Evaluation concepts can be of diferent types; 

they can be either non-quantiiable notions (e.g. deformation 

risks) or quantiiable notions (e.g. part shadow). In the irst 

case, the relational diagram is built based on the importance 

degree of the evaluation concept according to the variable. 

In the second case, the relation is dictated by the maximum 

and minimum values of the quantiiable evaluation concept. 

Fig. 9  Illustration of part shadow measurement possibilities

Table 2  Geometrical operation 

for variable assessment
Shape entity Request Geometrical operation Discretization

Volume Shadow area or length Projection –

Size (length, width, height) Bound-box –

Layer area Contour illing (triangles, pixels) Slicing

Layer max/min length Multi-directional hatching Slicing

Surface Shadow area or length Projection –

Surface angle Normal vector mapping Tessellation

Surface area Triangular illing Tessellation

Fig. 10  Relational function between the evaluation concept (over-

hang) and the linking variable ( ̂y = �)
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For these reasons, a fuzziication is led to scale the evalu-

ation concepts between 0 and 1. This consists in mapping 

their maximum and minimum possible values with values 

deined in the interval [0, 1].

For a variable ŷ , there is a function associating to each of 

its values a real m ∈ [0, 1] deined by:

This deinition describes the relation between the evalua-

tion concept and the variable linking it to the involved shape 

entity of the part. For instance, if the shadow area is con-

sidered, the maximum and minimum values are not limited 

between zero and one. Therefore, the fuzziication is done 

such that the maximum possible shadow area for this part is 

assigned the value 1 and the minimum the value 0.

Mathematical combination of  various evaluation con-

cepts The previous illustration (Fig.  10) shows a simple 

case for which, there is a single variable, however, in some 

cases, more than one variable can exist depending on the 

number of evaluation concepts. Logical operations such as 

“and” and “or” bind the latter; for instance, the rule (f) in 

“Action rules for part orientation in EBM AM” section, for 

which, there is an “and” operator. Hence, some mathemati-

cal notions are introduced to make possible the combina-

tion of multiple desirability functions. The properties used 

here are the generalization of properties used in fuzzy logic 

theory introduced by Zadeh (1965). A few deinitions such 

as the negation of a RF, the intersection or union of multiple 

RFs are given in “Appendices” section.

Construction of desirability functions

As described in the Introduction, the desirability functions 

make it possible to translate any variable into normalized 

positive values in the [0, 1] interval. For the CAM opera-

tions, the purpose of using expert knowledge is to compare 

diferent scenarios of parameter combination for the sake of 

quality, cost or time optimization (main drivers for experts 

to deine evaluation concepts). Thus, here, the desirability 

approach makes it possible to see any of the experts’ rules in 

the same map of comparable dimensionless values.

The desirability function of each action rule is con-

structed based on the relational function from the mathema-

tization and its relative action. For minimize and avoid, the 

corresponding desirability function is the opposite of the 

relational function (Eq. 4). Then, for maximize and require 

actions, the desirability function will be equivalent to the 

relational function (Eq. 5).

(3)m = f (ŷ)

(4)DF = RF = 1 − f (ŷ)

In the example of Fig. 10, the variable linking the part 

involved shape entity (surface) and the evaluation concept 

(overhanging criteria) is the angle ( � ) between the surface 

and the built direction. This angle measures the surface ori-

entation relative to the Z build direction (see Fig. 4). The 

need of support depends on this angle. In fact supports are 

needed for overhanging surface i.e. with low � values. The 

unit relational function describes when a surface is over-

hanging and needs support i.e. the angle θ is less than �
1
 

and when the surface is progressively not overhanging i.e. � 

tending to be greater than �
2
 . To get the desirability function 

representing the action rule, the related action “minimize” 

is used. Owing to the fact that this action rule prescribes to 

minimize the overhanging non-machined surfaces, the situ-

ation in which those are overhanging is not desirable and the 

opposite situation is desirable. Therefore, the desirability 

function in Fig. 11 is obtained by inverting the relational 

function in Fig. 10.

This function associates to each value of the variable � of 

the considered surface a satisfaction value ranging from 0 to 

1 (the best values being those near 1).

Deinition of combination operator

Analyzing various desirability values simultaneously is not 

a trivial manual task. When the surfaces of a part are consid-

ered for instance, the involved AR satisfaction level has to be 

discretely evaluated on each surface. Specially, if discretiza-

tion has been performed on the shape, it becomes necessary 

to combine the local desirability values. Figure 12 shows an 

example of tessellated part made of over 16,000 triangles; 

this number of entity is impossible to handle manually when 

comparing scenarios. For such reasons, it is better combin-

ing the local desirability values to get a composite one by 

using an adequate averaging operator.

To evaluate the global desirability of a given geometry, 

the desirability is irst calculated locally on each of the n 

elemental facets obtained by tessellation (Fig. 12), then, 

calculated for the whole geometry itself by averaging on 

(5)DF = RF = f (ŷ)

Fig. 11  Desirability function
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n local values. There are various averaging possibilities in 

mathematics, but, as the n facets of the geometry might not 

have the same signiicance, it is necessary to use weighted 

averages. In this study, the generalized Hölder weighted 

power mean (Bullen et al. 2003) is suggested. The two rela-

tions in Eqs. 6 and 7 ( r1,… , r
i
,… , r

n
 are positive weights 

∈ [0, 1] for which 
∑

r
i
= 1 , and d1,… , d

i
,… , d

n
 are positive 

real numbers representing local desirability) are considered.

The result in Eq. 6 is by deinition the geometric mean 

weighted by the reals r
i
 . Similarly, the Eq. 7 indicates the 

weighted arithmetic mean which has been demonstrated to 

be greater than the geometric one (Qi et al. 2000). When the 

weights r
i
 are equal, Eqs. 6 and 7 become equivalent to clas-

sic means. Here, the r
i
 are linked with a characteristic param-

eter of the involved shape element. They can for example be 

relative surface area: r
i
=

A
i

A
total

 . This would give more impor-

tance to big surfaces at the expense of the smaller ones. It 

has been noticed that experts commonly deine weights with 

facet area. Exploring diferent possibilities is part of future 

works.

The choice of the averaging operation depends on the 

Action prescribed in the AR. As aforementioned, the catego-

ries minimize and maximize show that intermediary values 

are accepted, thus they will use a compensatory operation 

i.e. the weighted arithmetic average as it refers to a sum.

On the other hand, avoid and require categories do not 

accept the zero desirability cases and will use the geometric 

weighted average (due to the product, the compensation efects 

are relatively low). This means that even if only one of the 

(6)D =

n
∏

i=1

d
r

i

i

(7)D =

n
∑

i=1

r
i
d

i

elemental entities i has a null desirability, the whole geometry 

of n entities will have an aggregated weak desirability regard-

less the other values.

Note that the discretization parameters afect the com-

bined values very slightly. For the triangulation case, difer-

ent parameters have been tested, but the combined desirability 

remained constant regardless the number of triangle. For com-

plex parts with massive number of surfaces, the computation 

time might be long; its minimization should be considered in 

future developments.

Application to part orientation

Modeling the action rules

This part presents an example of knowledge modeling process 

about one of the most important CAM steps in additive manu-

facturing, which is the orientation of parts in the machine’s 

build space. As suggested by the modeling approach, the irst 

step is the codiication of all action rules. Then, from a rela-

tional analysis of the content, a variable linking the part and 

the evaluation concept is inferred. Finally, the desirability 

functions are built and for each one, the corresponding evalu-

ation formulae or averaging operator is provided. Results are 

summarized in Table 3.

Action rule (f) is a special case as it has two evaluation 

concepts thus, two link variables. The desirability of a SSDR is 

given by the intersection of the support structures requirement 

( A ) and support removal diiculty existence ( B ). A mathemati-

cal formulation of the rule and its equivalent can be written 

this way:

The corresponding relational functions are depicted in 

Fig. 13.

By applying the De Morgan law given in Eq. 14, it follows:

Then, the equivalent desirability function fc of the rule 

will be given by the maximum between ( 1 − fA ) and ( 1 − fB ) 

(Fig. 14).

Experts must indicate the threshold values in all of the 

desirability functions. Note that if the threshold values are 

equal (e.g.  d1 = d2), the functions will become binary func-

tions that can only take the values 0 or 1.

Example of application to a geometry

Problem description

Consider the bracket depicted in Fig. 15; the aim is to deter-

mine an optimal orientation around the X and Y axes with 

Avoid A and B on SSDR = Require A and B on SSRD

Require A and B on SSRD = Require Ā or B̄ on SSDR

Fig. 12  Tessellated geometry (n Facets)
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Table 3  Modeled AM CAM action rules

a. Minimize part shadow on start plate

Codiication: not required

Shape entities: volume

Evaluation concept: shadow

Link variable: shadow area ( A
S
)

Geometrical Operation: orthogonal projection

Averaging Operator: none

b. Minimize total overhanging non-machined surfaces

Codiication: not required

Shape entities: (non-machined) surfaces

Evaluation concept: overhang

Link variable: surface angle ( �)

Geometrical Operation: tessellation

Averaging Operator: arithmetic mean weighted by relative area

c. Orient part priority surfaces close to vertical

Codiication: Maximize part priority surfaces close to vertical

Shape entities: priority surfaces

Evaluation concept: close to vertical

Link variable: surface angle ( �)

Geometrical Operation: tessellation

Averaging Operator: arithmetic mean weighted by relative area
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respect of the action rules (a), (b), (c), (d), (e) and (f) from 

Table 3. Their corresponding threshold values are given in 

Table 4. The threshold values are proposed by the experts 

according to their machine capabilities. Some of them 

depend on the part geometry. For instance, for the part 

shadow rule, the thresholds are maximum  (Amax) and mini-

mum  (Amin) area of part shadow (for the given part).

The green surfaces are post machined, thus, no mat-

ter if they have support structures. In fact, the machining 

price is already expected on those surfaces, that’s why, the 

experts state that it’s better putting support structures on 

them to save the non-machined surfaces (which include 

all of the other surfaces). Priority and datum surfaces are 

highlighted in red and yellow respectively. The surfaces 

with potential support diicult to remove are computed by 

a dedicated algorithm, since their manual selection would 

be diicult to achieve.

Table 3  (continued)

d. Orient machining datum surfaces out of horizontal

Codiication: Require machining datum surfaces out of horizontal

Shape entities: machining datum surfaces

Evaluation concept: out of horizontal

Link variable: surface angle ( �)

Geometrical Operation: tessellation

Averaging Operator: geometric mean weighted by relative area

e. Minimize shape deformation risks

Codiication: not required

Shape entities: volume

Evaluation concept: deformation risks

Link variable: number of stacked long layers ( n)

Geometrical Operation: slicing

Averaging Operator: weighted arithmetic mean

f. Avoid support structures and support removal difficulty on surfaces with potential sup-

port difficult to remove

Multiple desirability function case developed below

Codiication: not required

Shape entities: surfaces with potential support diicult to remove

Evaluation concepts: support structures, support removal diiculty

Link variables: surface angle ( � ), distance face/face ( d)

Geometrical Operation: tessellation

Averaging Operator: geometric mean weighted by relative area
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The evaluation of the ARs on the geometry is made using 

a C ++ program based on Opencascade libraries (for geom-

etry processing). This tool makes it possible to easily add 

Attributes to the shape entities. The rotations around X-axis 

(Rx) range from 0° to 180° and those around Y-axis (Ry) 

range from 0° to 360°. The results displayed in the form of 

response surfaces.

Results

Figure 16 shows for action rule (a) a total of 648 difer-

ent desirability values of the bracket’s orientations. The 

efect of the type of action (e.g. minimize) can be noticed 

on some of the results for which, aggregation on the whole 

part has been carried out (refer to “Deinition of combina-

tion operator” section). That is the case for (b) and (c), that 

include “minimize” and “maximize” respectively. For this 

speciic geometry, (b) is highly compensated. Replacing the 

use of “minimize” by “avoid” would change the result as 

no compensation is allowed. This is illustrated by the ARs 

(d) and (f) for which, a zero local desirability automatically 

causes a zero global desirability.

Each AR’s desirability is bounded by maximum and 

minimal values reported in Table 5. A set of rotations may 

produce conlicts between the action rules. For instance, at 

Rx = 0° and Ry = 50° the deformation risks, the overhanging 

non-machined surfaces and the datum surfaces return good 

desirability values (0.717, 0.893 and 0.785 respectively), 

whereas all the other ARs have a poor desirability less than 

0.3 (Fig. 17i). Another scenario at Rx = 40° and Ry = 120° 

would result in (b), (d), (e) and (f) greater than 0.7 and (a) 

and (c) are lower than average (Fig. 17ii).

For most of the scenarios, the rule (c) does not return 

a good desirability while the others are suicient. In fact, 

the surfaces involved in this rule cannot be simultaneously 

vertical because of their perpendicularity. One maximum 

desirability of (c) is reached for Rx = 90° and Ry = 0°, but 

the rules (d) and (f) would be minimal (Fig. 17iii). Several 

Fig. 13  Relational functions of surfaces with potential support diicult to remove: a support structure requirements; b support removal diiculty

Fig. 14  Desirability functions of surfaces with potential support diicult to remove ( Ā ) support structure requirements; ( ̄B ) support removal dif-

iculty
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diferent other scenarios can also be analyzed. The one in 

Fig. 17iiii is an example that would be recommended for 

manufacturing the part in question. The rule (c) is not high, 

but is more than half of its maximum value.

Obviously, owing to this variety of solutions, it is not 

trivial to choose a point complying all of the AR simulta-

neously. However, one can make trade-ofs by selecting a 

pair of angles for which the individual desirability reach an 

acceptable value. Alternatively, an aggregation of all of the 

responses as in the example of Eq. 1 can be useful to tackle 

this. One can also favor the use of optimization algorithms 

to ind out constrained solutions. Extensive study aiming at 

proposing tools to facilitate the decision-making would be 

necessary.

As mentioned in the Introduction, action rules relect in 

some ways criteria related to quality, cost and time. The 

quantitative evaluation enabled by the proposed knowledge 

modeling approach gives thus to the CAM user a big picture 

of how the extent of those criteria are respected.

Conclusion

This paper proposes a modeling approach to enable the 

transformation of elicitation data, more speciically the 

mathematical transformation of action rules into desirabil-

ity functions. To achieve this quantitative representation 

process, evaluation concepts must be deined, calculated 

and combined thanks to the identiication of variables and 

relational functions. In the framework of additive manufac-

turing, the elicitation of experts’ knowledge has led to the 

identiication of a list of action rules used by CAM engineers 

for part orientation, which is a key step in build preparation.

According to the modelling approach, in a irst step each 

action rule is standardized through a simple grammar by 

the use of four action verbs (namely minimize, maximize, 

avoid, require, which explicitly show the objective of the 

rule) associated with an evaluation concept applied to 

some shape entities. Following that, a mathematization of 

the action rules content is done by performing a relational 

Fig. 15  Example of bracket

Table 4  Threshold values of example action rules

Action rules Threshold values

(a) A
smin

= 3813 mm2;A
smax

= 7737 mm2

(b) �1 = 30◦;�2 = 55◦

(c) �1 = 45◦;�2 = 90◦;�3 = 135◦

(d) �1 = 30◦;�2 = 55◦;�3 = 140◦;�4 = 160◦

(e) n1 = 1;n2 = 4

(f) �1 = 30◦;�2 = 55◦;d1 = 1 mm ;d2 = 35 mm

Fig. 16  Brackets resulting orientation desirability for part shadow 

action rule

Table 5  Minimum and maximum desirability values

Action rule Minimum Maximum

(a) 0.0 1.0

(b) 0.82 0.955

(c) 0.24 0.71

(d) 0.0 1.0

(e) 0.463 0.89

(f) 0.0 0.95



 Journal of Intelligent Manufacturing

1 3

analysis that provides the variable of the evaluation concept 

measurable from the shape. Then the mathematical expres-

sion of the evaluation concept is determined. The step of 

analyzing the relations between shapes entities and evalu-

ation concept is complex; it requires the intervention of 

experts or a prior understanding of the domain of interest. 

The desirability function corresponding to each action rule 

is built based on the variable and the mathematical function. 

Through the modelling approach, mathematical considera-

tions regarding the combination of multiple relational func-

tions are provided.

As shown by the illustrative part, the present quan-

titative representation approach gives a big view of the 

satisfaction level of the expert rules. The results clearly 

show the robustness of the approach for which the aim is 

not to decide for the CAM operator but to assist his/her 

decision-making. Whilst the choice of an orientation is 

still manual, the orientation evaluation model is not arbi-

trary as it is based on desirability functions that represent 

experts’ knowledge.

The way the CAM operator uses the proposed evalua-

tion concepts to make its decision is of key importance. 

In future works, the way these results should be presented 

to the CAM operator to support his decision has to be 

studied. Several possibilities have already been proposed, 

such as:

• showing him the set of desirability side by side for all 

possible orientations (response surfaces),

• calculating and representing a weighted combination of 

the desirability values,

• limiting the orientation possibilities by selecting a thresh-

old for each desirability.

The proposed mathematical models can also be integrated 

into optimization algorithms. How this multi-objective opti-

mization can be done still have to be studied.

Another perspective would be to analyze how the orienta-

tion evaluation could inluence the design of a shape through 

topology optimization. To perform shape optimization in a 

design process with this orientation evaluation used among 

Fig. 17  Comparison of desirability values for the scenario: i Rx = 0° Ry = 50°; ii Rx = 40° Ry = 120°; iii Rx = 90° Ry = 0°; iiii Rx = 0° Ry = 150°
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other optimization criteria is also part of the project COFFA 

in which the current research has been conducted.
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Appendices

Deinition 1 Negation

This operation corresponds to the complementary of fA(ŷ) 

deined as:

Deinition 2 Intersection

For a given scenario, the intersection C (associated 

with m
c
 ) of two relational functions A and B deined by the 

functions fA
(

ŷA

)

= mA and fB
(

ŷB

)

= mB respectively, cor-

responds to the logical “and” operation. Its corresponding 

function is given by:

(8)fA(ŷ) = 1 − fA(ŷ)

Deinition 3 Union

For a given scenario, the union C (associated with m
c
 ) of 

A and B deined by the relational functions fA
(

ŷA

)

= mA and 

fB
(

ŷB

)

= mB respectively, is the logical “or” operation for 

which the corresponding function is:

Deinition 4 De Morgan Laws

Example of pseudocode for surface angle desirability 

computation:

(9)C = A ∩ B

(10)m
c
= Min

[

m
A
, m

B

]

(11)C = A ∪ B

(12)m
C
= Max

[

m
A
, m

B

]

(13)A ∪ B = Ā ∩ B̄

(14)A ∩ B = Ā ∪ B̄

Function SurfaceAngleDesi(ListOfFacet, DesiFunction, ActionType)

{ 

TotalArea = ListOfFacet.getTotalArea()

for (int i = 1; i < ListOfFacet.size(); i++)

 { 

angle = ListOfFacet[i].getAngle()

localDesi = DesiFunction(angle)

area = ListOfFacet[i].getArea()

WeightedLocalDesi = localDesi^(area/TotalArea)

 } 

if ActionType = Minimize or Maximize

return TotalDesirability = Sum(WeightedLocalDesi)

else if ActionType = Avoid or Require

return TotalDesirability = Product(WeightedLocalDesi)

} 
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