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a b s t r a c t 

The radio-thermal oxidation of silane cross-linked polyethylene (Si-XLPE) was studied in air under differ- 

ent γ dose rates (6.0, 8.5, 77.8, and 400 Gy.h −1 ) at different temperatures (21, 47, and 86 °C). The changes 

in the physico-chemical and mechanical properties of Si-XLPE throughout its exposure were determined

by FTIR spectroscopy, differential scanning calorimetry (DSC), swelling measurements, rheometry in rub- 

bery (DMTA) and in molten states, and uniaxial tensile testing. It was found that oxidation leads to the

build-up of a wide variety of carbonyl and hydroxyl products (mostly carboxylic acids and hydroperox- 

ides) and an efficient chain scission process that catastrophically reduces the concentration in elastically

active chains and the elongation at break from the early periods of exposure. A new analytical model

was derived from the current radio-thermal mechanistic scheme without making the usual assumption

of thermal stability of hydroperoxides. After an initial period where the oxidation kinetics occurs with a

constant rate, this model allows also predicting the auto-acceleration of the oxidation kinetics when the

hydroperoxide concentration reaches a critical value of about 1.6 × 10 −1 mol.L −1 . Choosing this critical 

value as a structural end-of-life criterion allows a more direct assessment of the lifetime of Si-XLPE in

the various radio-thermal environments under study, except at the highest temperature (i.e. 86 °C) where 

the kinetic model can still be noticeably improved.

1. Introduction

Since the early 1980s, in order to meet the urgent need of nu- 

clear power plant operators, the polymer aging community is look- 

ing for a non-empirical approach for lifetime prediction of poly- 

meric materials exposed in nuclear environments. A practical case 

that mobilized renowned research teams around the world is the 

radio-thermal ageing of electric cable insulations under normal op- 

erating conditions in a nuclear reactor. According to Khelidj et al. 

[1] , at room temperature in air, the lifetime t F of electric cable

insulations made of unfilled and unstabilised polyethylene (PE)

varies with dose rate I according to the general trend depicted in

Fig. 1 . This almost universal long-term behavior of PE seems to be

completely independent of its macromolecular structure (i.e. linear,

branched or chemically cross-linked) and its crystallinity.

This curve displays a negative curvature in the domain of low 

dose rates where it tends towards a horizontal asymptote (when 
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I → 0) corresponding to the “ceiling lifetime” t F0 due to “pure”

thermal oxidation. Schematically, it can be decomposed into three 

distinct domains, each one corresponding to a different kinetic 

regime: 

- “Pure” thermal oxidation predominates at very low dose rates

(typically for I < I T ≈ 1.6 × 10 −7 Gy.s −1 ) and is characterised

by very long lifetimes:

t F 0 ≈ 18 . 5 years (1)

- “Pure” radio-oxidation predominates at high dose rates (typi- 

cally for I > I R ≈ 5.0 × 10 −1 Gy.s −1 ) and is characterized by a

lethal dose independent of the dose rate. As a result, the life- 

time is proportional to the reciprocal dose rate:

t F = 1 . 6 × 10 

5 I −1 (2)

- A combination of the two previous reactions occurs at inter- 

mediary dose rates (i.e. for I T < I < I R ), which is the range of

practical interest for nuclear power plant operators. This radio- 

thermal oxidation is initiated by two competitive sources of

radicals, neither of which can be totally neglected compared to
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Fig. 1. Shape in logarithm co-ordinates of the lifetime t F versus γ dose rate I in

air at room temperature for unstabilised and unfilled PE [1] . The shaded area (in

red) corresponds to the normal operating conditions of electric cables in a nuclear

reactor.

the other during the exposure [2] : polymer radiolysis (1R) and 

thermal decomposition of hydroperoxides (1T): 

1R) PH + h ν → P 

•+ 

1 / 2 H 2

(
r i = 10 

−7 G i I
)

1T ) δPOOH → λP 

• + μPO 

•
2 ( k 1 )

where r i is the rate and G i is the radical yield (expressed in num- 

ber of radicals P • per 100 eV absorbed) of the radiochemical ini- 

tiation. k 1 is the rate constant and δ, λ, and μ are stoichiometric 

coefficients describing the molecularity of thermal initiation such 

as: 

k 1 = k 1u , δ = 1, λ = 2 and μ = 0 for unimolecular decomposi- 

tion, 

and k 1 = k 1b , δ = 2 and λ = μ = 1 for bimolecular decompo- 

sition. 

To our knowledge, there is still no analytical equation for de- 

scribing the entire shape of the curve t F = f(I) reported in Fig. 1 . 

In the second past half century, the vast majority of stud- 

ies were devoted to the rigorous identification and understanding 

of the oxidation mechanisms, but exclusively at high dose rates 

where the duration and cost of aging experiments under irradia- 

tion can be significantly reduced [3-8] . When I > I R , it was noted 

that the induction period is really too short to be measured. It 

was thus concluded that the oxidation kinetics already starts in 

steady regime from the early periods of exposure. In addition, it 

was also observed that the effect of dose rate is a simple kinetic 

consequence of the radio-oxidation reaction. Schematically, the for- 

mation rate of oxidation products is proportional to I 1/2 when 

they result from the propagation step (of the mechanistic scheme), 

whereas it is proportional to I when they result from the initiation 

or termination step. 

Based on only two assumptions: steady-state (for radical 

species) and thermal stability of hydroperoxides throughout the 

exposure, analytical equations were proposed in the literature to 

account for these experimental trends. As an example, the two fol- 

lowing general equations were determined from a kinetic analysis 

of the mechanistic scheme for the formation rate r Y (expressed in 

mol.L −1 ) and the radiochemical yield G Y (dimensionless) of a given 

chemical event Y, respectively [1] : 

r Y = 10 

−7 G Y I (3) 

with G Y = 10 

7 a Y + 10 

7 b Y I 
−1 / 2 (4) 

where a Y and b Y I −1/2 are initiation/termination and propagation 

terms, respectively. 

However, even at low temperature close to ambient, the second 

assumption (thermal stability of hydroperoxides) can only be valid 

for sufficiently short durations. Indeed, it should be recalled that 

the rate of the thermal decomposition of hydroperoxides is an in- 

creasing function of their concentration [9] . Consequently, thermal 

initiation is expected to gradually gain in importance with the ac- 

cumulation of hydroperoxides throughout the exposure, to finally 

become competitive with the radiochemical initiation. It is obvious 

that the global oxidation kinetics should be even more impacted in 

the case of an industrial application for which a very long lifetime 

of several decades is expected. 

To our knowledge, the pioneering researchers in this field, 

to have propose a kinetic model in which irradiation generates 

hydroperoxides which decompose thermally to give radicals ini- 

tiating new oxidation chains, are Gillen & Clough [10] . Their 

model predicts an auto-acceleration of the oxidation kinetics dur- 

ing the exposure whereas, in all the previous models (for in- 

stance, see Eq. (3) ), oxidation occurred at a constant rate. Unfor- 

tunately, Gillen & Clough chosen questionable initial conditions: 

[ POOH ] = [ POOH ] 0 = 0 at t = 0 . However, polymers (especially in- 

dustrial grades having undergone processing operations) contain 

always thermally unstable species such as hydroperoxides, other- 

wise it would be difficult to explain their thermal or photochemi- 

cal oxidizability. As a consequence of these unrealistic initial con- 

ditions, the model developed by Gillen & Clough diverges in the 

domain of very low dose rates. Indeed, it predicts that t F → ∞ 

when I → 0. 

In most recent publications [ 11 , 12 ], Gillen tried to get around 

this problem by relying on the research works of Ito [13-16] and 

Mares et al. [17] . He considered an extremely simplified radio- 

thermal oxidation mechanistic scheme composed of only three 

first-order reactions: “pure” radio-oxidation, “pure” thermal oxida- 

tion, and their coupling, which is assumed to lead to synergistic 

effects. To take into account these synergistic effects, he defined a 

global time-dependent rate constant k R+T as follows: 

k R+T ( t ) = k R ( t ) + k T ( t ) + k S ( t ) (5) 

where k R and k T are effective rate constants to be determined ex- 

perimentally from the changes in mechanical properties (conven- 

tionally, elongation at break) in pure radiochemical (i.e. under high 

dose rate at low temperature) and pure thermal environments (i.e. 

in the absence of irradiation), respectively. The effective rate con- 

stant k S of the synergistic reaction is deduced from the changes in 

mechanical properties measured in radio-thermal environment. 

Finally, Gillen defined the synergistic effects as follows: 

q ( t ) = 

k R+T ( t ) 

k R ( t ) + k T ( t ) 
= 1 + 

k S ( t ) 

k R ( t ) + k T ( t ) 
(6) 

If the ratio q > 1, the synergistic effects are clearly indicated. 

However, as the rate constants k R , k T and k S are time dependent, 

q varies non-monotonically throughout the exposure [11] . 

However, at its current state, this new approach is not yet com- 

pletely convincing for the following reasons. From a practical point 

of view, it does not allow avoiding the issue of the choice of initial 

conditions. Instead of an initial concentration ( [ POOH ] 0 ), it is now 

necessary to determine an initial rate constant for thermal oxida- 

tion ( k T0 ), but also for radio-oxidation ( k R0 ) and for synergistic re- 

action ( k S0 ). 

From the perspective of a non-empirical lifetime prediction, this 

new approach raises a series of fundamental issues that have never 

been addressed by its author, for instance: 

i) Eq. (5) was postulated but never justified. Thus, the assump- 

tion of a simple linear combination of the contributions of the



Fig. 2. Consequences of oxidation on the fracture properties of semi-crystalline polymers.

radio- and thermal oxidations and their synergistic effects re- 

mains to be demonstrated. 

ii) Even if Eq. (5) was valid, it would remain to determine non- 

empirical equations for the three rate constants: k R , k T , and

k S = f(t) .

iii) After having fully developed the kinetic model of radio-thermal

oxidation, it will also remain to predict the consequences of

chemical changes on the mechanical properties.

In our opinion, the two first issues could be solved by a careful

kinetic analysis of the radio-thermal oxidation mechanistic scheme. 

In contrast, the last issue requires the rigorous identification and 

understanding of the embrittlement mechanisms and their kinet- 

ics (for instance, the relative predominance of chain scissions over 

cross-linking), but also the establishment of a series of struc- 

ture/property relationships in order to fully describe the causal 

chain presented in Fig. 2 , as already done, for instance, in refer- 

ences [18-21] . 

The present research work aims at developing a robust ana- 

lytical model for accurately simulating the radio-thermal oxida- 

tion kinetics of electrical cable insulations in nuclear power plants. 

To reach this goal, a new analytical method for solving the sys- 

tem of differential equations derived from the mechanistic scheme 

will be detailed. Then, the reliability and limitations of the corre- 

sponding analytical solution will be checked experimentally from 

the changes in the physico-chemical properties of a silane cross- 

linked polyethylene (Si-XLPE) exposed in various radio-thermal en- 

vironments. All these results will allow identifying accurately the 

radio-thermal oxidation behavior of this new generation insulating 

material, and will help to compare it with other types of PE much 

better known in the literature [ 1 , 2 ], which will be naturally chosen 

as reference materials in this study. 

2. Experimental

2.1. Materials 

Free additive Si-XLPE films of about 500 μm thick were directly 

provided by Nexans NRC. These films were produced by extrusion 

of a linear low density polyethylene (LDPE) grafted with vinyl tri- 

methoxy silane side-groups. The chemical cross-linking was then 

performed by immersion in water at 65 °C for 48 h [22] . The 

density and gel content of the resulting Si-XLPE are about 0.912 

g.cm 

−3 and 71%, respectively.

2.2. Radio-thermal ageing conditions 

Radio-thermal ageing was performed in the Panoza facility at 

UJV Rez, Czech Republic, with a 60 Co γ -ray source at different tem- 

peratures. All the exposure conditions are summarized in Table 1 . 

It should be noted that the ageing experiments numbered 1, 3, and 

4 were performed at three distinct dose rates (8.5, 77.8, and 400 

Gy.h 

−1 ) at low temperature close to ambient in order to investi- 

gate the effect of dose rate on the oxidation kinetics. In contrast, 

ageing experiments numbered 1 and 2 were performed at almost 

the same dose rate (6.0 and 8.5 Gy.h 

−1 ) but at two different tem- 

peratures (47 and 86 °C) in order to investigate the effect of tem- 

perature on the oxidation kinetics. 

2.3. Experimental characterization 

2.3.1. Uniaxial tensile testing 

After ageing, some films were characterized by uniaxial tensile 

testing to determine their lifetime t F and thus, compare the long- 

term durability of Si-XLPE with PE (see Fig. 1 ). The elongation at 

break ε R was measured with a Instron 5500K8810/4505H2190 ma- 

chine at 23 °C, 50% RH and a 50 mm.min 

−1 crosshead speed on 

dumb-bell specimens according to standards ISO 527-1:2012 and 

ISO 527-2:2012 [ 23 , 24 ]. For each radio-thermal ageing condition, 

ε R was plotted as a function of the time of exposure and the cor- 

responding lifetime t F was determined using the conventional end- 

of-life criterion ε F for electric cable application in nuclear industry: 

t = t F when ε R = ε F = 50% . 

2.3.2. FTIR spectroscopy 

Other films were characterized by classical physico-chemical 

laboratory techniques to evaluate the progress of oxidation and to 

determine the consequences of oxidation on the structure of the 

macromolecular network. In particular, FTIR spectroscopy was used 

in transmission mode to monitor and titrate the oxidation prod- 

ucts. FTIR spectra were recorded from 40 0 0 to 40 0 cm 

−1 with 

a Perkin Elmer FTIR Frontier spectrometer, after averaging the 16 

scans obtained with a resolution of 4 cm 

−1 . For each film, at least 

three FTIR measurements were performed. As expected, a large 

amount of carbonyl and hydroxyl products was detected within the 

film samples from the early periods of exposure. 

As an example, Fig. 3 shows the changes in the carbonyl region 

(i.e. between 1650 and 1800 cm 

−1 ) of the IR spectrum in air un- 

der the highest (i.e. 400 Gy.h 

−1 ) and lowest dose rates (8.5 Gy.h 

−1 ) 

at low temperature close to ambient. In both cases, it can be 

clearly observed that a broad IR absorption band centered at 1714 

cm 

−1 rapidly builds up. According to literature [25-30] , this band 

is mainly attributed to the stretching vibration of the C = O bond of 

carboxylic acids. However, due to its large width, the presence of 

many other secondary carbonyl products such as: unsaturated (at 

1690-1705 cm 

−1 ) and saturated ketones (1720-1725 cm 

−1 ), alde- 

hydes (1730-1735 cm 

−1 ), linear (1740-1750 cm 

−1 ) and cyclic esters 

(i.e. γ -lactones, 1780-1790 cm 

−1 ), is highly probable [25-30] . 

In the same way, it was clearly observed that an even broader 

IR absorption band in the hydroxyl region (i.e. between 3100 and 

Table 1

Radio-thermal ageing conditions.

Ageing no. Dose rate (Gy.h −1 ) Dose rate (Gy.s −1 ) Temperature ( °C) Maximum duration (h) Maximum dose (kGy)

1 8.5 2.36 × 10 −3 47 12800 109

2 6.0 1.67 × 10 −3 86 16267 98

3 77.8 2.16 × 10 −2 47 3830 298

4 400 1.11 × 10 −1 21 668 269



Fig. 3. Changes in carbonyl region of the FTIR spectrum of Si-XLPE before and after radio-thermal ageing in air under 400 Gy.h −1 at 21 °C (a) and under 8.5 Gy.h −1 at 47 °C 
(b).

Fig. 4. Changes in the hydroxyl region of the FTIR spectrum of Si-XLPE before and after radio-thermal ageing in air under 400 Gy.h −1 at 21 °C (a) and under 8.5 Gy.h −1 at 

47 °C (b).

3700 cm 

−1 , see Fig. 4 ) also quickly grows. According to literature 

[ 25 , 27-30 ], this band is attributed to the stretching vibration of the 

O-H bond of hydroperoxides, alcohols, and carboxylic acids.

The concentrations of carboxylic acids and hydroxyl products

[Prod] were determined by applying the classical Beer-Lambert’s 

law: 

[ Prod ] = 

OD

ep ε 
(7) 

where OD is the optical density of the IR absorption band (dimen- 

sionless), ε is the molar extinction coefficient for the correspond- 

ing oxidation product (expressed in L.mol −1 .cm 

−1 ), and ep is the 

film thickness (in cm). 

The orders of magnitude of ε were determined in a previous 

publication [28] . It was found that ε = 680 and 70 L.mol −1 .cm 

−1 

for carboxylic acids and hydroxyls, respectively. 

2.3.3. Differential scanning calorimetry 

Differential scanning calorimetry (DSC) was used under pure ni- 

trogen to monitor and titrate the hydroperoxides (POOH), but also 

to highlight the changes in crystalline morphology during the ex- 

posure. DSC thermograms were recorded with a TA instruments 

DSC Q10 0 0 calorimeter beforehand calibrated with an indium ref- 

erence. Film samples with a mass ranged between 5 and 10 mg 

were introduced in a closed standard aluminum pan to be ana- 

lyzed between - 50 °C and 250 °C, with a heating rate of 10 °C.min 

−1 

under a nitrogen flow of 50 mL.min 

−1 . 

As an example, Fig. 5 shows the changes in the DSC thermo- 

gram in air under the highest (i.e. 400 Gy.h 

−1 ) and lowest dose 

rates (8.5 Gy.h 

−1 ) at low temperature close to ambient. It can be 

clearly observed that an exothermic peak starts to grow above the 

melting zone of the crystalline phase. This new peak is typically 

ranged between 130 and 230 °C. As shown in a previous publica- 

tion [28] , it results from the thermal decomposition of POOH in 

the DSC cavity. 

The concentration of hydroperoxides [POOH] was determined as 

follows: 

[ POOH ] = 

�H POOH

�H theory 

(8) 

where �H POOH is the area under the exothermic peak between 130 

and 230 °C on the DSC thermogram and �H theory is the theoret- 

ical value of the decomposition enthalpy of POOH, which can be 



Fig. 5. Changes in the DSC thermogram of Si-XLPE before and after radio-thermal ageing in air under 400 Gy.h −1 at 21 °C (a) and under 8.5 Gy.h −1 at 47 °C (b). 

calculated from the classical theoretical concepts of thermochem- 

istry or determined experimentally from POOH model compounds: 

�H theory = 291 kJ.mol −1 [28] .

In addition, the global crystallinity ratio X C of the polymer was 

determined with the common equation: 

X C = 

�H m 

�H m0 

× 100 (9) 

where �H m 

is the sum of the areas under the endothermic peaks 

observed between 50 and 125 °C on the DSC thermogram, and 

�H m0 is the melting enthalpy of the PE crystal: �H m0 = 292 J.g −1 

[31] .

2.3.4. Swelling measurements 

Film samples were swelled with a good solvent to determine 

their swelling ratio and deduce the concentration of elastically ac- 

tive chains in the macromolecular network. A sample having an 

initial mass m i was introduced into xylene previously heated at 

130 °C for 24 hours until reaching its equilibrium mass m S after 

complete swelling. This sample was then dried under vacuum at 

80 °C for 48 hours in order to determine the gel mass m d . The 

swelling ratio Q was calculated as follows: 

Q = 1 + 

ρpol 

ρsol 

.
( m S − m d ) 

m d 

(10) 

where ρpol and ρsol are the respective densities of Si-XLPE ( ρpol = 

0 . 912 ) and xylene ( ρsol = 0 . 761 ). 

The Flory-Rhener’s theory [32] was then used to determine the 

concentration of elastically active chains ν between two consecu- 

tive chemical cross-links in the macromolecular network: 

ν = 

[
ln ( 1 − V r0 ) + V r0 + χV 

2 
r0

]
V sol 

[ 
V 

1 
3

r0 
− 2 V r0

f

] (11) 

where V sol is the molar volume of xylene ( V sol = 139 . 3 c m 

3 . mo l −1 ),

χ is the Flory-Huggins’ interaction parameter between xylene and 

Si-XLPE ( χ = 0.31 [ 33 , 34 ]), f is the functionality of chemical cross- 

links (f = 4 for Si-XLPE) and V r0 is the volumic fraction of poly- 

mer in the swollen macromolecular network, of which expression 

is given below: 

V r0 = 

1 

1 + 

( Q −1 ) ρpol

ρsol

(12) 

2.3.5. Rheometry in solid state (DMTA) 

Rheometry in solid state (DMTA) was used in tension mode 

to determine the storage modulus E’ at the rubbery plateau and 

Fig. 6. DMTA thermogram of unaged Si-XLPE.

check the concentrations of elastically active chains determined by 

swelling in xylene. DMTA thermograms were recorded with a TA 

instruments DMA Q800 viscoelastic analyzer. Parallelepipedic film 

samples of about 30.3 mm long and 6.3 mm large were attached 

to the device clamps to be analyzed between 25 and 200 °C, with 

a heating rate of 3 °C.min 

−1 , a frequency of 1 Hz, and a strain am- 

plitude of 0.2% under nitrogen. 

As an example, Fig. 6 shows the DMTA thermogram of Si-XLPE 

before its radio-thermal ageing. It can be clearly observed that the 

melting of the crystalline phase leads to sudden decrease of the 

storage modulus of more than one decade around 120 °C. The rub- 

bery plateau of the completely amorphous Si-XLPE is clearly visible 

for temperatures higher than 140 °C. 

The Flory’s theory [35] was used to determine the total con- 

centration of elastically active chains νt from the values of E’ mea- 

sured at 140 °C: 

E 

′ = 3 νt ρpol RT (13) 

where ρpol is the polymer density at 140 °C ( ρpol = 897 kg . m 

−3 ), R

is the perfect gas constant ( R = 8 . 314 Pa . m 

3 . mo l −1 . K 

−1 ), and T is 

the absolute temperature (expressed in K). 

When the macromolecular network is not swollen by a solvent, 

in addition to chemical cross-links, it is expected that E’ depends 

also on a second type of cross-links, which are not of a chemical 



but physical nature, namely entanglements. In a first approach, νt 

can be written as the sum of these two contributions: 

νt = ν + νe (14) 

where νe would be the concentration of elastically active chains 

resulting only from entanglements in the macromolecular network 

(i.e. in the total absence of chemical cross-links). The value of νe 

can be simply deduced by comparing the rheometry and swelling 

data. 

For the unaged Si-XLPE, it was found that: νt = 0 . 14 ±
0 . 01 mol . L −1 and ν = 0 . 12 ± 0 . 02 mol . L −1 , so that: νe = 0 . 03 ±
0 . 02 mol . L −1 . In other words, it was found that νe is very low and 

almost of the same order of magnitude than the experimental scat- 

tering of ν , i.e. almost undetectable. It was thus concluded that 

there are too few entanglements to significantly influence the con- 

centration of elastically active chains. Consequently, entanglements 

were neglected in Si-XLPE and the concentration of elastically ac- 

tive chains ν resulting only from chemical cross-links was simply 

deduced as follows: 

ν = 

E 

′ 
3 ρpol RT 

(15) 

2.3.6. Rheometry in molten state 

For the radio-thermal ageing conditions under consideration, 

chain scissions were found very efficient in Si-XLPE. Indeed, a very 

advanced damage of the macromolecular network was observed 

for moderate to high conversion ratios of the oxidation reaction, as 

the film samples were almost completely dissolved in xylene and 

their rubbery plateau was no longer detected by DMTA (the poly- 

mer passed directly from semi-crystalline to molten state). There- 

fore, when swelling and DMTA measurements were no longer pos- 

sible, rheometry in molten state was performed at 140 °C to deter- 

mine the shear modulus G’ and thus, access the concentration of 

elastically active chains. Strain sweep curves were recorded with a 

TA Instruments ARES viscoelastic analyzer. Disc film samples of 25 

mm diameter and 1 mm thick were introduced in a coaxial parallel 

plate geometry to be analyzed at 140 °C with an angular frequency 

of 1 rad.s −1 and a strain amplitude ranging between 0.01 and 100% 

under nitrogen flow. 

As an example, Fig. 7 shows the strain sweep curve after 167 h 

of radio-thermal exposure in air under the highest dose rate (i.e. 

400 Gy.h 

−1 ) at room temperature. As expected, it can be observed 

that G’ reaches a constant value in the domain of low strains (typ- 

ically for ε < 10%) where linear viscoelasticity is valid. This value 

Fig. 7. Sweep strain curve of Si-XLPE after 167 h of exposure in air under 400

Gy.h −1 at 21 °C. 

was thus chosen for calculating the concentration of elastically ac- 

tive chains with Eq. (15) . Knowing that: E ′ = 3 G 

′ , it comes finally: 

ν = 

G 

′
ρpol RT 

(16) 

3. Theory

3.1. Radio-thermal oxidation mechanistic scheme 

As said in introduction, in the domain of practical interest for 

nuclear power plant operators (i.e. for 1.6 × 10 −7 < I < 5.0 × 10 −1 

Gy.s −1 ), oxidation is initiated by both polymer radiolysis (1R) and 

thermal decomposition of hydroperoxides (1T). The corresponding 

radio-thermal oxidation mechanistic scheme can be thus written 

as follows: 

Initiation: 

1R) PH + hn → P 

•+ 

1 / 2 H 2

(
r i = 10 

−7 G i I
)

1T) δPOOH → λP 

•+ μPO 

•
2 ( k 1 )

Propagation: 

2) P 

• + O 2 → PO 2 
• (k 2 )

3) PO 2 
• + PH → POOH + P 

• (k 3 )

Terminations:

4) P 

• + P 

• → Inactive products (k 4 )

5) P 

• + PO 2 
• → Inactive products (k 5 )

6) PO 2 
• + PO 2 

• → Inactive products + O 2 (k 6 )

where PH, POOH, P •, and PO 2 
• designate an oxidation site, an hy- 

droperoxide, alkyl and peroxy radicals, respectively. δ, λ, and μ are 

stoichiometric coefficients. r i , G i , and k j (with j = 1, …, 6) are a 

rate, the radical yield, and rate constants, respectively. 

In most cases of “pure” thermal oxidation, POOH decomposi- 

tion is exclusively unimolecular at high temperature (i.e. k 1 = k 1u , 

δ = 1, λ = 2, and μ = 0) or mainly bimolecular at moderate to 

low temperature (k 1 = k 1b , δ = 2, and λ = μ = 1), but rarely a 

combination of both modes. In fact, it can easily be shown that 

there is a hyperbolic shape boundary delimiting the two domains 

in which each thermal initiation predominates over each other in 

a map (T, t). This boundary corresponds to a critical hydroperox- 

ide concentration [ POOH ] C reached when the respective rates of 

the two thermal initiation modes are equal [3] . Since the activa- 

tion energy is higher for the unimolecular than bimolecular mode: 

E 1u > E 1b , [ POOH ] C is an increasing function of temperature. In PE, 

it writes [36] : 

[ POOH ] C = 

k 1u 

k 1b 

= 2 . 9 × 10 

3 Exp 

(
−35 0 0 0

RT

)
(17) 

The numerical application of Eq. (17) gives that [ POOH ] C would 

be ranged between 10 −3 and 10 −2 mol.L −1 at low temperature 

close to ambient for PE. This is the same order of magnitude of 

the initial concentration of hydroperoxides [ POOH ] 0 usually re- 

ported in the literature for many hydrocarbon polymers [ 28 , 37 ]. 

That is the reason why, in the present study, it will be considered 

that “pure” thermal oxidation is directly initiated in bimolecular 

mode: 

1b) 2POOH → P 

• + PO 2 
• (k 1b )



3.2. System of differential equations 

At the low conversion ratios of the oxidation reaction (i.e. for 

[PH] ≈ [PH] 0 ≈ constant), the following system of differential 

equations can be derived from the previous radio-thermal oxida- 

tion mechanistic scheme: 

d [ P 

•] 

dt 
= r i + k 1b [ POOH ] 

2 − k 2 C [ P 

•] + k 3 [ PO 

•
2 ] [ PH ] − 2 k 4 [ P 

•] 
2

−k 5 [ P 

•] [ PO 

•
2 ] (18) 

d [ PO 

•
2 ]

dt 
= k 1b [ POOH ] 

2 + k 2 C [ P 

•] − k 3 [ PO 

•
2 ] [ PH ] − k 5 [ P 

•] [ PO 

•
2 ]

− 2 k 6 [ PO 

•
2 ] 

2 (19) 

d [ POOH ] 

dt 
= −2 k 1b [ POOH ] 

2 + k 3 [ PO 

•
2 ] [ PH ] (20)

where the oxygen concentration C is related to the oxygen partial 

pressure P O2 in the exposure environment by the classical Henry’s 

law: 

C = S . P O2 (21) 

and S is the coefficient of oxygen solubility into the polymer. Typi- 

cal values of S reported for low density polyethylene (LDPE) in the 

literature are about 1.8 × 10 −8 mol.L −1 .Pa −1 regardless the tem- 

perature [38] . Knowing that in air under atmopspheric pressure: 

P O2 = 0 . 21 × 10 5 Pa , it comes finally: C = 3 . 8 × 10 −4 mol . L −1 . 

There is no rigorous analytical solution for this system of dif- 

ferential equations, which can be solved numerically without any 

simplifying assumption [2] . However, an approached analytical so- 

lution would be very useful because it would allow appreciating 

the behavioral trends of the reactive species [P °], [PO 2 °], [POOH] 

with key exposure parameters, in particular: γ dose rate I, temper- 

ature T, and oxygen partial pressure P O2 . In addition, this analytical 

solution would then allow calculating key physico-chemical prop- 

erties, from a practical point of view, because they can be checked 

experimentally, such as: oxygen consumption (Q), carbonyl build- 

up ([P = O]), damage state of macromolecular network ( ν), etc. (see 

section 3.4 ). Finally, if a structural end-of-life criterion was identi- 

fied, it would be then possible to propose an equation for predict- 

ing the lifetime of the insulating material (see section 3.5 ). 

Analytical solving is only possible through the use of simplify- 

ing assumptions. As said in introduction, the two most widely used 

simplifying assumptions are: steady-state (for radical species) and 

thermal stability of hydroperoxides. If the first assumption seems 

to be well founded and allows explaining the constancy of the ox- 

idation rate in the first periods of exposure in radio-thermal en- 

vironments, in contrast, the second one prevents accounting for 

the auto-acceleration of the oxidation kinetics in the rest of the 

exposure. This acceleration is due to the decomposition of hy- 

droperoxides above a critical concentration [ POOH ] F , which is as- 

sumed to be a fraction of the steady concentration of hydroperox- 

ides [ POOH ] ∞ 

reached in the case of “pure” thermal oxidation [2] . 

Next sections are devoted to the proposal and validation of a 

sound analytical kinetic model for radio-thermal oxidation taking 

into account the hydroperoxide decomposition. 

3.3. Analytical solving 

Denote r 1 the global initiation rate of the oxidation reaction. 

It writes as the sum of the radiochemical and thermal initiation 

rates: 

r 1 = r i + 2 k 1 [ POOH ] 
2 (22) 

In all the developments which follow, it will be assumed that 

oxidation is mainly initiated by the polymer radiolysis throughout 

the exposure (i.e. r i � 2 k 1 [ POOH ] 2 ) even if, at long-term, hydroper- 

oxide decomposition is added as additional (but secondary) source 

of radicals. In other words, only the right part of the domain of in- 

termediary dose rates will be the subject of a kinetic analysis (see 

Fig. 1 ). 

Applying the steady-state assumption to radical species leads 

to: 

d [ P 

•] 

dt 
+ 

d [ PO 

•
2 ] 

dt 
= 0 (23) 

i . e . k 4 [ P 

•] 
2 + k 5 [ P 

•] [ PO 

•
2 ] + k 6 [ PO 

•
2 ] 

2 − r 1 
2 

= 0 (24) 

whose positive root is: 

[ P 

•] = 

k 5 [ PO 

•
2 ]

2 k 4 

{
−1 +

[
1 + ψ 

(
[ PO 

•
2] 

2
0

[ PO 

•
2 ] 

2
− 1

)]1 / 2 
}

(25) 

where � is a kinetic parameter quantifying the competition be- 

tween the different terminations of radical species: 

ψ = 

4 k 4 k 6

k 2 
5 

(26) 

and [ PO 

•
2 ] 0 is the steady concentration of peroxy radicals in oxygen

excess: 

[ PO 

•
2 ] 0 =

(
r 1

2 k 6 

)1 / 2

(27) 

i . e . [ PO 

•
2 ] 0 = ( 

r i
2 k 6

) 1 / 2 ( 1 + 

2 k 1 [ POOH ] 2

r i
) 1 / 2 (28) 

i . e . [ PO 

•
2 ] 0 ≈

(
r i

2 k 6 

)1 / 2

(29) 

As expected, [ PO 

•
2 ] 0 takes approximatively the same value as in

a “pure” radiochemical environment [39] . 

If, as shown by Gillen et al. [40] , � << 1, then there is a more 

or less wide range of oxygen concentrations for which: 

1 ≥ [ PO 

•
2 ] 

2

[ PO 

•
2] 

2
0

> 

5 ψ 

1 + 5 ψ 

(30) 

In this range of oxygen concentrations, Eq. (25) can be simpli- 

fied as follows: 

[ P 

•] = 

2 k 6 
k 5 

(
[ PO 

•
2 ] 0 − [ PO 

•
2 ]

)
(31) 

If introducing Eq. (31) into Eq. (19) and if applying the steady- 

state assumption to peroxy radicals, it comes finally: 

[ PO 

•
2 ] = [ PO 

•
2 ] 0 

βC 

1 + βC 

(32) 

i . e . [ PO 

•
2 ] =

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

(33) 

where β−1 corresponds to the critical value of the oxygen concen- 

tration C C above which oxygen excess is reached: 

β = 

1

C C 

= 

2 k 6 k 2 

k 5 
[
k 3 [ PH ] + ( 2 r 1 k 6 ) 

1 / 2 
] (34) 

i . e . β = 

2 k 6 k 2 

k 5 

[
k 3 [ PH ] + ( 2 r i k 6 ) 

1 / 2
(

1 + 

2 k 1 [ POOH ] 
2 

r i

)1 / 2
] (35) 

i . e . β ≈ 2 k 6 k 2 

k 5 
[
k 3 [ PH ] + ( 2 r i k 6 ) 

1 / 2 
] (36) 

As also expected, β takes approximatively the same value as in 

a “pure” radiochemical environment. 



Finally, Eq. (31) leads to: 

[ P 

•] = 

2 k 6 
k 5 

[ PO 

•
2 ] 0

(
1 − βC

1 + βC 

)
(37) 

i . e . [ P 

•] = 

( 2 r i k 6 ) 
1 / 2 

k 5 

(
1 − βC

1 + βC 

)
(38) 

It is now possible to integrate Eq. (20) . The introduction of 

Eq. (33) into Eq. (20) leads to: 

d [ POOH ] 

dt 
= −2 k 1b [ POOH ] 

2 + k 3 [ PH ] 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

(39) 

This equation can be rewritten such as: 

d [ POOH ] 

[ POOH ] 
2 − k 3 [ PH ] 

2 k 1b

(
ri

2 k 6

)1 / 2 βC 
1+ βC

= −2 k 1b dt (40) 

i . e . Ln 

⎧⎪⎨
⎪⎩

(
k 3 [ PH ] 

2 k 1b

(
ri

2 k 6

)1 / 2 βC 
1+ βC

)1 / 2

− [ POOH ](
k 3 [ PH ] 

2 k 1b

(
ri

2 k 6

)1 / 2 βC 
1+ βC

)1 / 2

+ [ POOH ]

⎫⎪⎬
⎪⎭ = −Kt + a (41) 

i . e . 

(
k 3 [ PH ] 

2 k 1b

(
ri

2 k 6

)1 / 2 βC 
1+ βC

)1 / 2

− [ POOH ](
k 3 [ PH ] 

2 k 1b

(
ri

2 k 6

)1 / 2 βC 
1+ βC

)1 / 2

+ [ POOH ]

= b Exp ( −Kt ) (42) 

i . e . [ POOH ] = 

(
k 3 [ PH ] 

2 k 1b 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

)1 / 2 
1 − b Exp ( −Kt ) 

1 + b Exp ( −Kt ) 

(43) 

where a and b are constants to be determined from boundary con- 

ditions, and K is a first-order rate constant expressed by: 

K = 2 

(
2 k 3 [ PH ] k 1b 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

)1 / 2

(44) 

Imposing initial conditions (i.e. [ POOH ] = [ POOH ] 0 when t = 0 ) 

to Eq. (43) gives finally: 

[ POOH ] = [ POOH ] ∞ 

1 − b Exp ( −Kt ) 

1 + b Exp ( −Kt ) 
(45) 

with [ POOH ] ∞ 

= 

(
k 3 [ PH ] 

2 k 1b 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

)1 / 2

(46) 

and b = 

[ POOH ] ∞ 

− [ POOH ] 0
[ POOH ] ∞ 

+ [ POOH ] 0
(47) 

For weakly pre-oxidized samples, [ POOH ] ∞ 

� [ POOH ] 0 . Experi- 

mental measurements [ 28 , 37 ] show that: [ POOH ] ∞ 

> 10 [ POOH ] 0 , 

therefore it can be reasonably considered that: b ≈ 1 . 

According to Eq. (45) , triggering thermal initiation will com- 

pletely slows down hydroperoxide build-up during the exposure 

to finally lead to a maximum concentration of hydroperoxides 

[ POOH ] ∞ 

, in the same way as for “pure” thermal oxidation [41] . 

If this is really the case, it would be interesting to consider this 

asymptotic value in order to define a more relevant end-of-life cri- 

terion in this study, given that this latter now depends on all the 

exposure conditions (i.e. γ irradiation dose rate, temperature, and 

oxygen partial pressure). 

3.4. Calculation of physico-chemical properties 

From these analytical solutions for [ POOH ] , [ PO 

•
2 ] , and [ P •] , it

is now possible to calculate several key physico-chemical proper- 

ties, from a practical point of view, because these properties can be 

checked experimentally. Undoubtedly, hydroperoxide concentration 

[POOH] and oxygen consumption Q are the most relevant proper- 

ties because their mathematical expressions can be derived from 

the radio-thermal oxidation mechanistic scheme without using any 

additional adjustable parameter. 

Recall that the rate of oxygen consumption writes: 

r ( C ) = −d [ O 2 ]

dt 
= k 2 C [ P 

•] − k 6 [ PO 

•
2 ] 

2 (48) 

i . e . r ( C ) = 

2 k 6 k 2 C 

k 5 

(
[ PO 

•
2 ] 0 − [ PO 

•
2 ] 

)
− k 6 [ PO 

•
2 ] 

2 (49) 

i . e . r ( C ) = k 3 [ PH ] 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

+ r i 
βC 

1 + βC 

(
1 − βC 

2 ( 1 + βC ) 

)
(50) 

It can be easily checked that, when βC � 1 , Eq. (50) leads to 

the expression of the rate of oxygen consumption in oxygen excess 

[1] :

r 0 = k 3 [ PH ] 

(
r i

2 k 6 

)1 / 2

+ r i
2

(51) 

The integration of Eq. (50) between 0 and t gives access to the 

concentration of oxygen consumed by the chemical reaction Q: 

Q = ∫ t 0 r ( C ) dt (52) 

i . e . Q = 

[
k 3 [ PH ] 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

+ r i 
βC 

1 + βC 

(
1 − βC 

2 ( 1 + βC ) 

)]
t 

(53) 

Other key physico-chemical property in the literature are the 

concentrations of carbonyl products [P = O] and chain scissions S. 

In the radio-thermal oxidation mechanistic scheme, carbonyl prod- 

ucts can only be formed in thermal initiation (1T) and termination 

(6) through specific chemical events (e.g. β scission, disproportion- 

ation, etc.) which generally compete with many other chemical

events, in particular with hydrogen abstraction which gives alco- 

hols. Consequently, the calculation of the formation rate of these 

oxidation products requires the use of adjustable parameters: 

d [ P = O ] 

dt 
= γ1 CO k 1b [ POOH ] 

2 + γ6 CO k 6 [ PO 

•
2 ] 

2 (54) 

where γ1 CO and γ6 CO are the respective formation yields of car- 

bonyl products in thermal initiation (1T) and termination (6), see 

section 3.1 . 

If replacing [ POOH ] and [ PO 

•
2 ] by their analytical solutions in

Eq. (54) , it comes: 

d [ P = O ] 

dt 
= γ1 CO k 1b [ POOH ] 

2 
∞ 

(
1 − b Exp ( −Kt ) 

1 + b Exp ( −Kt ) 

)2

+ γ6 CO 
r i 
2 

(
βC 

1 + βC 

)2

(55) 

i . e . 
d [ P = O ] 

dt 
= γ1 CO 

k 3 [ PH ] 

2 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

(
1 − b Exp ( −Kt ) 

1 + b Exp ( −Kt ) 

)2

+ γ6 CO 
r i 
2 

(
βC 

1 + βC 

)2

(56)



i . e . 
d [ P = O ] 

dt 
= γ1 CO 

k 3 [ PH ] 

2 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

+ γ6 CO 
r i 
2 

(
βC 

1 + βC 

)2

− γ1 CO k 3 [ PH ]

(
r i

2 k 6 

)1 / 2

× βC 

1 + βC 

2 b Exp ( −Kt ) 

( 1 + b Exp ( −Kt ) ) 
2 

(57) 

The integration of Eq. (57) between 0 and t leads finally to: 

[ P = O ] = 

[
γ1 CO 

k 3 [ PH ] 

2 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

+ γ6 CO 
r i 
2 

(
βC 

1 + βC 

)2
]

t 

+ 2 γ1 CO
k 3 [ PH ] 

K 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

×
(

1 

1 + b Exp ( −Kt ) 
− 1

1 + b 

)
(58) 

Similarly, chain scissions can only be formed in thermal initi- 

ation (1T) and termination (6) through β scissions. Consequently, 

their mathematical expressions are identical in form to those pre- 

viously established for carbonyl products, only their formation 

yields are different: 

dS 

dt 
= γ1S k 1b [ POOH ] 

2 + γ6S k 6 [ PO 

•
2 ] 

2 (59) 

i . e . 
dS 

dt 
= γ1S 

k 3 [ PH ] 

2 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

+ γ6S 
r i
2 

(
βC 

1 + βC 

)2

−γ1S k 3 [ PH ]

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

2 b Exp ( −Kt ) 

( 1 + b Exp ( −Kt ) ) 
2 

(60) 

and 

S = 

[
γ1S 

k 3 [ PH ] 

2 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

+ γ6S 
r i
2 

(
βC 

1 + βC 

)2
]

t 

+ 2 γ1S 
k 3 [ PH ] 

K 

(
r i

2 k 6 

)1 / 2 βC 

1 + βC 

(
1 

1 + b Exp ( −Kt ) 
− 1

1 + b 

)
(61) 

where γ1S and γ6S are the respective yields of chain scissions in 

thermal initiation (1T) and termination (6), see section 3.1 . 

In the case of PE oxidation, it is clear that embrittlement re- 

sults essentially from chain scissions [ 18 , 19 ]. Neglecting, in a first 

approach, an eventual chemical cross-linking process, the changes 

in the concentration of elastically active chains in Si-XLPE through- 

out the exposure can simply be calculated as follows [42] : 

ν = ν0 − S (62) 

where ν0 and ν are the respective concentrations of elastically ac- 

tive chains before and after radio-thermal ageing. Swelling mea- 

surements and rheometry in solid state (DMTA) allowed showing 

that ν0 = 0 . 12 ± 0 . 02 mol . L −1 for Si-XLPE. 

3.5. Lifetime prediction 

Embrittlement is expected to occur at very low conversion ratio 

of the chain scission process. On one side, the corresponding crit- 

ical ratio S F is related through Eq. (62) to a critical concentration 

of elastically active chains νF to be determined experimentally. On 

the other side, as explained at the end of section 3.2 , S F would 

also be related to a critical hydroperoxide concentration [ POOH ] F 
corresponding to the onset of the rapid auto-acceleration of the 

oxidation reaction when triggering thermal initiation. As shown in 

a previous publication [2] , the definition of this last structural end- 

of-life criterion is quite simple: 

[ POOH ] F = 

[ POOH ] ∞
q 

(63) 

where q is an arbitrary criterion, higher than unity but not so far, 

to be determined experimentally. 

In a first approach, it was decided to use [ POOH ] F for predicting 

the lifetime t F of the insulating material. It was thus assumed that 

t = t F when [ POOH ] = [ POOH ] F . 

In this case, introducing Eq. (63) into Eq. (45) leads to: 

q = 

1 + b Exp ( −K t F )

1 − b Exp ( −K t F ) 
(64) 

i . e . Exp ( −K t F ) = 

q − 1

b ( 1 + q ) 
(65) 

i . e . t F = 

1

K 

Ln 

[
b ( 1 + q ) 

q − 1 

]
(66) 

4. Results and discussion

4.1. Long-term behavior of PE insulating materials 

Fig. 8 shows the changes in the elongation at break ε R of Si- 

XLPE in air under the three dose rates under study at low temper- 

ature close to ambient. As expected, γ irradiation induces a catas- 

trophic embrittlement of Si-XLPE. The horizontal dashed line plot- 

ted for ε R = ε F = 50% was used to graphically determine the life- 

time under these various exposure conditions. It was found that t F 
is about 30, 50, and 260 days under the highest (i.e. 400 Gy.h 

−1 ), 

medium (77.8 Gy.h 

−1 ), and lowest dose rates (8.5 Gy.h 

−1 ), respec- 

tively. 

These t F values were plotted as a function of dose rate in Fig. 9 

where they compared to those previously reported in the literature 

for other types of PE [1] . It should be note that the t F value deter- 

mined at 25 °C for “pure” thermal oxidation is also plotted, but for 

a dose rate of 1 . 5 × 10 −10 Gy . s −1 corresponding to natural radioac- 

tivity. 

The almost universal character of the long-term behavior of 

PE is confirmed. It appears to be completely independent of the 

chemistry (grafted with chemical group or not), macromolecular 

Fig. 8. Changes in the elongation at break of Si-XLPE in air under the three dose

rates under study at low temperature close to ambient.



Fig. 9. Plot in logarithm co-ordinates of lifetime t F versus γ dose rate I in air at

room temperature for unstabilised and unfilled linear PE. Comparison of the t F val- 

ues determined for Si-XLPE in this study with those reported for various other types

of linear (i.e. LDPE, MDPE and HDPE) and chemically cross-linked LDPE (i.e. XLPE)

in the literature [1] . The general trend of the curve is shown using a dotted line.

Table 2

Experimental values of the lifetime and steady and critical hydroperoxide concen- 

trations determined experimentally for Si-XLPE in air in the various radio-thermal

environments under study.

I (Gy.h −1 ) 400 77.8 8.5 6.0

T ( °C) 21 47 47 86

t F (days) 30 50 260 ̶
[POOH] ∞ (mol.L −1 ) 2.4 3.1 × 10 −1 1.7 × 10 −1 4.1 × 10 −2 

[POOH] F (mol.L −1 ) 1.5 × 10 −1 1.8 × 10 −1 1.6 × 10 −1 ̶

structure (i.e. linear, branched or chemically cross-linked) and crys- 

tallinity of PE. It can be clearly seen that all the t F values de- 

termined for Si-XLPE are well positioned on the master curve. 

In addition, these values are located in the right part of the do- 

main of intermediary dose rates where radio-thermal oxidation 

proceeds. Consequently, all the physicochemical data determined 

in this study will be used to check the reliability of the analytical 

equations established in previous sections. 

4.2. Reliability of the analytical kinetic model 

In a first stage, Eqs. (45) , (58) , and (62) were used to respec- 

tively simulate the changes in concentration of hydroperoxides 

[POOH], carbonyls [P = O], and elastically active chains ν of Si-XLPE 

in air under the three dose rates under study (i.e. 8.5, 77.8, and 

400 Gy.h 

−1 ) at low temperature close to ambient. Simulations are 

reported in Fig. 10 , Fig. 11 , and Fig. 12 , respectively. These results 

call for the following comments. 

At short term, [POOH] increases with time until reaching an 

asymptotic value [ POOH ] ∞ 

which depends on the radio-thermal 

exposure conditions. All this first part of the kinetic curves is sat- 

isfyingly simulated with Eq. (45) , the resulting values of [ POOH ] ∞ 

have been reported in Table 2 . As expected, [ POOH ] ∞ 

is an increas- 

ing function of irradiation dose I, but a decreasing function of tem- 

perature T. Indeed, this asymptote is the consequence of the sud- 

den acceleration of the thermal initiation (1T), which counteracts 

completely the build-up of hydroperoxides formed in the propaga- 

tion step of the oxidation reaction. 

At longer term, for certain radio-thermal exposure conditions 

(e.g. under 77.8 Gy.h 

−1 at 47 °C), a beginning of decrease in [POOH] 

Fig. 10. Changes in the hydroperoxide concentration of XLPE in air in the vari- 

ous radio-thermal environments under study. Comparison between simulation with

Eq. (45) (solid lines) and experimental data (symbols).

Fig. 11. Changes in the carbonyl concentration of XLPE in air in the various

radio-thermal environments under study. Comparison between simulation with

Eq. (58) (solid lines) and experimental data (symbols).

due to the depletion of oxidation sites (PH) can be observed, but 

this second part of the kinetic curves cannot be correctly described 

by Eq. (45) because this latter is based on the assumption of low 

conversion ratios. 

[ POOH ] F was determined graphically in Fig. 10 (i.e. when t = t F ) 

for the various radio-thermal exposure conditions under study. Its 

values are also reported in Table 2 . It was found that [ POOH ] F 
is independent of the radio-thermal exposure conditions, which 

completely validates the choice of this critical quantity as struc- 

tural end-of-life criterion in this study. The average value of ≈
1.6 × 10 −1 mol.L −1 was chosen for predicting the lifetime of Si- 

XLPE. This is exactly the same [ POOH ] F value that was retained 

in a previous publication for other types of (linear and chemi- 

cally cross-linked) PE, but without making real demonstration, just 

based on mechanistic considerations [2] . 

In the early periods of exposure, [P = O] and ν vary linearly with 

time (absence of induction period). Then, when thermal initiation 

gains in importance, a small loss in linearity (progressive slow- 



Table 3

Values of the kinetic parameters used for modeling the oxidation kinetics of Si-XLPE in the various radio- 

thermal environments under study. Papers in which the same orders of magnitude were previously re- 

ported are referenced in the last column on the right.

T ( °C) 21 47 47 86

I (Gy.h −1 ) 400 77.8 8.5 6.0 References

G i 8 8 8 8 [1,2,39]

k 1b (L.mol −1 .s −1 ) 5.0 × 10 −9 2.5 × 10 −7 2.4 × 10 −7 1.0 × 10 −5 [ 2 , 3 , 20 , 36 , 39 , 43 , 44 ]

k 2 (L.mol −1 .s −1 ) 10 8 10 8 10 8 10 8 [ 2 , 3 , 20 , 36 , 39 , 43 , 44 ]

k 3 (L.mol −1 .s −1 ) 1.6 × 10 −3 1.9 × 10 −2 1.9 × 10 −2 3.6 × 10 −1 [ 2 , 3 , 20 , 36 , 39 , 43 , 44 ]

k 4 (L.mol −1 .s −1 ) 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 [ 2 , 3 , 20 , 43 , 44 ]

k 5 (L.mol −1 .s −1 ) 1.2 × 10 10 7.0 × 10 10 9.0 × 10 10 2.4 × 10 11 This study

k 6 (L.mol −1 .s −1 ) 5.0 × 10 4 1.0 × 10 6 2.0 × 10 6 6.0 × 10 7 [ 2 , 3 , 20 , 36 , 39 , 43 , 44 ]

γ1S (%) 90 42 52 51 [ 20 , 43 , 44 ]

γ6S (%) 90 42 52 51 [ 20 , 43 , 44 ]

γ1CO (%) 90 70 75 100 [ 20 , 43 , 44 ]

γ6CO (%) 90 70 75 100 [ 20 , 43 , 44 ]

Fig. 12. Changes in the concentration of elastically active chains of XLPE in air in

the various radio-thermal environments under study. Comparison between simula- 

tion with Eq. (62) (solid lines) and experimental data determined by swelling (solid

symbols) and rheometry (empty symbols).

down) can be observed for both physico-chemical quantities. The 

whole kinetic curves are satisfyingly simulated with Eqs. (58) and 

(62) , respectively.

In a second stage, Eqs. (45) , (58) , and (62) were used to respec- 

tively simulate the physico-chemical changes of Si-XLPE in air un- 

der 6.0 Gy.h 

−1 at 86 °C. Simulations are also reported in Fig. 10 , 

Fig. 11 , and Fig. 12 , respectively. It can be clearly seen that the 

impact of the thermal initiation on the global oxidation kinetics 

is much more important at 86 °C than at 47 °C. Unfortunately, the 

three analytical equations are not able to accurately account for 

the whole kinetic curves, presumably due to the starting assump- 

tion, which was deduced from Eq. (22) . In order to reach this goal, 

it would be necessary to take into account that thermal initiation 

could be of the same order of magnitude as (if not greater than) 

radiochemical initiation. This further kinetic analysis will be the 

subject of a future publication. At this stage of investigations, it 

can be seen that the three analytical equations allow accounting 

for the general trends of the oxidation kinetics under these critical 

exposure conditions (i.e. under low dose rate at moderate tempera- 

ture) where, obviously, a stronger coupling between radiochemical 

and thermal oxidations operates. 

The values of the kinetic parameters used for all these simula- 

tions, i.e. radiochemical yield G i , rate constants k j (with j = 1, …, 

6) and the formation yields γ1 CO and γ6 CO of carbonyls products,

Table 4

Values of the rate constant K and criterion q used for pre- 

dicting the lifetime of Si-XLPE in air under the three dose

rates under study at low temperature close to ambient.

I (Gy.h −1 ) 400 77.8 8.5

T ( °C) 21 47 47

K (s −1 ) 4.8 × 10 −8 3.1 × 10 −7 1.6 × 10 −7 

q 15.0 1.9 1.1

t F (days) 32 43 246

and γ1S and γ6S of chain scissions, have been reported in Table 3 . 

These values call for the following comments. 

The orders of magnitude previously determined on linear PE 

(i.e. LDPE, MDPE and HDPE) for almost all these kinetic parame- 

ters were kept for these simulations [ 1-3 , 20 , 36 , 39 , 43 , 44 ]. Only k 5 
was slightly reduced at low temperature close to ambient (i.e. at 

47 and 21 °C) because it had already been proposed to allocate a 

small activation energy to this termination rate constant in order 

to better simulate the oxidation kinetics initiated by chlorine dis- 

infectants in PE pipes carrying drinking water at ambient temper- 

ature [ 20 , 43 , 44 ]. Thus, the importance of this activation energy is 

completely checked in this study. In addition, if considering all the 

k 5 values published to date for PE [ 2 , 3 , 20 , 43 , 44 ], it is found that 

its activation energy would be around 14 kJ.mol −1 . 

As there was no notable change in the values of all the kinetic 

parameters, it can be concluded that the reliability of the analytical 

kinetic model was checked in this study. Its great heuristic value 

has been demonstrated in Fig. 10 , Fig. 11 , and Fig. 12 , even if some 

improvements are still possible, in particular at the highest tem- 

perature (86 °C). 

The last stage of this study was to check the reliability of the 

last Eq. (66) . Rate constant K and criterion q were determined with 

Eq. (44) and (63) , respectively. Then, their values were introduced 

into Eq. (66) in order to predict the lifetime t F of Si-XLPE in air un- 

der the three dose rates under study at low temperature close to 

ambient. The resulting t F values are reported in Table 4 . It can been 

seen that they are of the same order of magnitude than those de- 

termined experimentally, thus confirming in turn the great heuris- 

tic value of Eq. (66) . 

5. Conclusion

A new analytical model was developed for predicting the radio- 

thermal oxidation kinetics and the lifetime of electric cable insula- 

tions made of unfilled and unstabilised Si-XLPE in nuclear power 

plants. This model was derived from a mechanistic scheme in 

which the oxidation reaction is initiated both by the polymer ra- 

diolysis and the thermal decomposition of hydroperoxides, with- 



out making the usual assumption of thermal stability of hydroper- 

oxides. After an initial period where the oxidation kinetics occurs 

with a constant rate, this model allows also predicting the auto- 

acceleration of the oxidation kinetics when hydroperoxide decom- 

position is no longer negligible. A structural end-of-life criterion: 

[ POOH] F  ≈ 1.  6 × 10 −1 mol.  L −1,  corresponding to the onset of this 

auto-acceleration, was proposed for predicting the lifetime of Si- 

XLPE in the various radio-thermal environments under study. 

A satisfying agreement was obtained between theory and ex- 

periments as long as thermal initiation remains a secondary source 

of radicals relatively to radiochemical initiation, i.e. under the three 

dose rates under study (from 8.5 to 400 Gy.h 

−1 ) at low tempera- 

ture close to ambient (i.e. 47 and 21 °C). However, under the low- 

est dose rate (i.e. 6.0 Gy.h 

−1 ) at the highest temperature (86 °C), 

the analytical model does not correctly simulate the changes in 

concentration of the three physico-chemical properties investigated 

experimentally, i.e. hydroperoxides, carbonyls products and elasti- 

cally active chains. In fact, in these critical radio-thermal exposure 

conditions, it would be necessary to take into account that ther- 

mal initiation could be of the same order of magnitude as (if not 

greater than) the radiochemical initiation. This further kinetic anal- 

ysis will be the subject of a future publication. The final objective 

will be the proposal of an analytical equation allowing to simulate 

the whole master curve: t F = f(I) reported in Fig. 9 , whatever the 

dose rate. 

However, industrial polymers are rarely used pure, in particular 

they contain antioxidants. That is the reason why the next longer 

term objective will be to extend the kinetic model to Si-XLPE 

stabilized by the most common families of antioxidants, namely 

hydroperoxide decomposers (i.e. sulphides and phosphites) and 

radical scavengers (i.e. hindered phenols and secondary aromatic 

amines). To reach this objective, the main action mechanisms of 

these antioxidants will be introduced into the radio-thermal oxi- 

dation mechanistic scheme in order to derive a new system of dif- 

ferential equations to be solved. It should be pointed out that the 

main role of these antioxidants is to increase the induction period. 

Consequently, when these latter have been completely consumed, 

the Si-XLPE matrix should oxidize according to almost the same 

kinetics and thus, the structural end-of-life criterion established in 

this study should remain valid for predicting its lifetime. 
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