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a b s t r a c t

To facilitate the transfer, storage and manipulation of intricate parts’ geometry whose fabrication has
been made possible thanks to the rise of Additive Manufacturing (AM) technologies, an encoding
framework reducing the resulting file size has been developed. This approach leverages the fact that
many AM parts are presenting repetition patterns, by encoding the repetition of similar geometry
chunks. The decomposition of the part into chunks is a complex optimization problem, whose
identification as a Weighted Exact Cover (WEC) problem allowed to develop a new heuristic algorithm
dedicated to its fast resolution in linear time O(n). The encoding strategy is implemented through a
variation of the AMF file standard (for quick adoption of the format by existing software), and also
through a new ad-hoc hybrid file format. To demonstrate the efficiency of the approach, the encryption
of lattice and support structures through these two encoding strategies are compared to the results of
several state-of-the-art encoding approaches. The way this data weight lightening strategy preserves
the overall accuracy is discussed while considering different floating points encoding precisions with
respect to the AM process requirements. This comparison exhibits file size reductions up to -84% in
comparison with file sizes generated by state-of-the-art approaches. Not only the proposed repetition
pattern encoding framework allows file size reductions, but it could also be exploited to optimize and
speed-up some steps of the Product Development Process (PDP), including process planning phases.

1. Introduction

In the context of Industry 4.0, the recent scientific advances
in terms of Additive Manufacturing (AM) are revolutionizing the
fabrication of complex industrial parts so far inconceivable [1].
Thanks to the design freedom these technologies offer, intricate
geometries with numerous small features and extended repeti-
tion patterns (e.g. lattice structures, topology optimized geome-
tries or cooling inner channels) are being drawn and
manufactured by both private experts and 3D printing enthusi-
asts. This fourth industrial revolution and the underlying digital
transformation have naturally brought some needs for developing
new innovative solutions to best exploit the potential of such
breakthrough technologies. This is particularly true when con-
sidering the models, methods and tools to support the entire
Product Development Process (PDP) of those value-added 3D
printed products, including the needs to easily store, share and
exchange digital data and notably the 3D ones often abundant.

Describing such intricate shapes requires a lot of information
and generates large files when using the current AM file standards
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(i.e. STL or OBJ). As a consequence, AM machines are sometimes
experiencing computing difficulties and slow-down when trying
to process complex parts. For instance, geometries such as heat
exchangers, composed largely of either lattice structures or thou-
sands of intricate cooling channels [2], are sometimes impossible
to slice with a reasonable amount of time and memory, because
of the number of trajectories that need to be computed [3,4].
When the slice is realized on the AM machine, simultaneously
with the actual production, computation time and memory al-
location are all the more crucial. An overconsumption of the
available resources can cause the build to fail at mid-production,
leading to disastrous economical consequences, considering the
amount of wasted material, but also the production time spent
(several hundred of hours). Furthermore, large files are harder
to exchange through communication channels (e.g. e-mails or
online 3D geometry platforms), they require a lot of storage space
for back-ups or archives, and are slower to manipulate when
modifications must be made. These are some of the drawbacks
that can slow down the adoption of AM technologies and the
development of a full digital thread in the context of the Industry
4.0. Thus, there is a clear need to reduce the weight of the
data manipulated all along the PDP, from the early design to
the recycling steps, including process planning related phases.E-mail address: jean-philippe.pernot@ensam.eu (J.-P. Pernot).
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Such data weight lightening should preserve an overall accuracy
consistent with the adopted AM technologies.

To tackle this problem, the present work exploits the fact that
many features present in AM part’s geometries are repeated and
can therefore be stored only once, together with the mechanisms
to be used to retrieve the complete geometries. Though the
application of this approach is not beneficial to geometries with
no repeated features (like results from topology optimization
for example), it is particularly interesting for parts suited for
AM which are demonstrating a repeated feature in at least a
portion of their volume (e.g. heat exchangers composed of lattice
structures or parallel cooling channels [5], injection molds, static
mixers, medical implants, water and gas turbines, crankcases,
protection casings with multiple screw holes). This represents an
important portion of the parts produced by AM. The underlying
NP-complete problem behind the identification of the repetition
pattern in such geometries is solved with a new heuristic algo-
rithm that tends to minimize the overall size of the file used to
store the compressed data. The repeated features are encoded
within the file as the repetition (through 3D translations) of
the mesh of a single feature. Through the description of similar
features with only one mesh, this strategy avoids the encoding
of similar facets. In addition, the way the geometric information
are encoded is discussed with a particular focus on the accuracy
required for AM, and two file formats are tested. Not only the
proposed repetition pattern encoding framework allows file size
reductions, but it can also be exploited at various steps of the
Product Development Process (PDP): during the meshing and
simulation phases so as to consider similar treatments for dupli-
cated features (so as to reduce computation time or to ensure
identical meshes), during pre-production modifications and for
process planning to automatically repeat a required adjustment
or treatment (such as closure of a hole or addition of a machining
allowance), or even after fabrication to optimize repeated oper-
ations (e.g. automatic support removal). For all these steps, the
repetition pattern can be exploited without having to decom-
press the whole part geometry, by applying the operation on the
elementary feature and only repeating the computed outcome.
More broadly, the preservation and exploitation of part repetition
patterns throughout the production workflow thus permits to
optimize and speed up the end-to-end AM process.

The proposed repetition patterns encoding framework works
on AM file standards, i.e. on meshes stored in .STL or .OBJ files.
Preserving the repetition patterns directly from the CAD model,
and exploiting these information all along the PDP would be
certainly more efficient. However, when dealing with AM parts,
some digital operations are still performed at the level of the 3D
mesh: geometry healing, lattice generation (in some cases) and
support generation. For the moment, these operations cannot be
carried out with classical CAD software, but only with dedicated
ones and the geometry must be transferred from one software
to another. Thus, preserving the repetition patterns through-
out the whole numerical process would require modifications
in many pieces of software, and this is not the option that has
been considered in this work. Advantageously, the proposed re-
identification of the repetition patterns is performed a posteriori,
and the encryption into a dedicated file format is thus a functional
and robust solution, that adapt smoothly to the current AM
preparation process.

The contribution is threefold: (i) the NP-complete problem
behind the compression of 3D geometries through repetition
patterns is identified and formalized; (ii) a heuristic algorithm for
its fast resolution is proposed; (iii) two implementations of this
approach through a variation of the AMF (Additive Manufactur-
ing File) standard and through a dedicated new file format are
detailed.

This article is structured as follows. After a literature overview
of the works focusing on file formats, pattern detection and
mesh compression (Section 2), the proposed framework and its
file size-reducing mechanisms are introduced in Section 3. The
linear problem governing the optimization step of this frame-
work is then identified and formalized in Section 4, followed
by the description of the heuristic algorithm proposed for its
fast resolution. The results presented in Section 5 analyze both
the file sizes and compression times when running the proposed
encoding strategy on several test cases. They clearly demonstrate
the efficiency of this new encoding strategy within the proposed
framework. Finally, Section 6 ends this article with conclusions
and perspectives.

2. Related works

The work presented in this article covers several literature
domains: file formats when considering the way geometric infor-
mation can be stored and read in an efficient manner, pattern
detection to identify patterns in geometric models, mesh com-
pression to reduce the size of the data with or without loss of
information.

File formats. The inadequacy and inefficiency of AM file formats
have been pointed out by many authors. In recent articles, various
file representations of AM data have been compared, including in-
dustrial standardized formats [6], academical representations [7],
and CAD native formats [8]. Among other points, it has been
identified that many superior standardized formats adapted to
AM (such as AMF) are struggling to be adopted within the in-
dustrial sector, while the earliest simpler file formats (such as
STL) are still widely used in spite of their poor definition level.
By comparing various standardized file encoding formats, the
poor performances of AMF have also been identified, especially
regarding the time required to open and save lattice and organic
structures [9]. The idea behind the work presented in our article
is not only to propose a new lightweight mesh file format but
also to show how the proposed encoding strategy can best exploit
an existing file format, namely the AMF one. The diverted and
enhanced use of the proposed AMF file format could broaden its
adoption within the AM industry.

Pattern detection. The literature is rich in articles related to pat-
tern detection. For instance, a few years ago, Pauly et al. proposed
a framework identifying repetition patterns (including combina-
tions of rotation, translation and scaling) with no prior knowledge
of the 3D geometry structure [10]. More recently, Shi et al. com-
pleted this work by detecting symmetry and circular repetition
patterns using the Lie-Algebra theory [11]. Nevertheless, two
types of pattern detection in point clouds and meshes can be
distinguished: symmetry detection and similarity detection. The
first focuses on identifying planes or symmetry axes [11,12],
whereas the other consists of localizing repetitions of the same
feature in different parts of a mesh [10,13,14]. Many articles
are applying these detections to urban structures reconstruction,
such as building facades [15,16] or tunnels [17]. However, to the
best of our knowledge, no article is exploiting these patterns to
reduce geometry files size, which is the purpose of this work.

Mesh compression. In their recent survey, Maglo et al. gives a
comprehensive overview of the existing mesh compression tech-
niques that can be divided into 3 main categories [18]: single-rate
approaches (compressing and decompressing the totality of an
input mesh at once), progressive approaches (decompressing the
mesh with consecutive level of details) and random-accessible
approaches (enabling the decompression of only a part of the
encoded mesh). Considering the AM context, and the needs to



Fig. 1. Vertex Indexing (VI) mechanism avoiding duplicated vertices.

exchange with existing machines whose exchange protocols are
standardized, only single-rate compression processes are of inter-
est (even if they employ quantization as described in Section 5.1).
In this domain, many articles have proposed algorithms demon-
strating compression rates ranging from 11 bit per vertex (bpv)
to 1.8 bpv (under certain circumstances). Some of them will be
compared to the encoding framework proposed in this article.
Regarding the reduction of AM geometry file sizes, implicit slicing
has also been investigated [19].

As a conclusion, though many works have been focusing on
reducing the size of 3D geometry files, fewer have tried to do it in
the context of AM parts [20,21]. Because they sometimes present
heavily repeated features, adapted strategies can exploit this par-
ticularity to further reduce file sizes as it will be demonstrated
in this article. Again, the proposed repetition pattern encoding
framework not only aims at reducing file sizes, but it can also help
simplifying and optimizing repetitive treatments arising when
processing patterned geometries all along the PDP, and notably
to support process planning steps. Indeed, the identified patterns
could also be used to speed up and further optimize the slicing
for instance, but it is not directly the purpose of this paper that
focuses on reducing files size. These perspectives are discussed in
the conclusion.

3. Overall lightweight encoding framework

To reduce the encoding files size of 3D meshes, two encoding
mechanisms have been identified and are leveraged within the
lightweight encoding framework proposed in this article. Even
though the following figures illustrate the mechanisms and algo-
rithms on triangle meshes, the core of the proposed approach can
also tackle other mesh types (such as quad-based or tetrahedron-
based meshes) for which repetition patterns can be identified. The
two mechanisms are as follows:

• Vertex Indexing (VI) encoding mechanism associates with each
vertex of the mesh an index, and each facet is defined as a
list of vertex indices (denoted i

Tj
k for the facet Tj in Figs. 1

and 2). It thus generates a non-redundant encryption of the
vertices: when the same vertex is shared by two facets of the
mesh, this vertex is encoded only once (Fig. 1). Though this
mechanism is not adopted in the most widespread STL for-
mat, it is implemented within more efficient file standards
such as OBJ, PLY or VRML [22].
• Repetition Pattern (RP) encoding mechanism reduces the file

size by leveraging the presence of repetition patterns within
the mesh: isometric facets are not encoded separately but
as translations of a unique facet. Several facets can even be
encoded through the translation of a multiple facets mesh,
as illustrated in Fig. 2.

In order to exploit these two size-reducing mechanisms, an
encoding and decoding framework is proposed and illustrated
in Fig. 3. First, the optimization problem associated with the VI
and RP mechanisms, formalized in Section 4.1, is resolved by

Fig. 2. Repetition Pattern (RP) encoding mechanism exploiting the isometric
properties of facets.

a new heuristic algorithm run during the RP optimization step.
The interest of using a heuristic is to provide a sub-optimal but
good solution in a reasonable amount of time (see Section 4.3).
This step is only required when the repetition pattern of the
geometry is unknown, in case of a support structure for example
(see Sections 5.4 and 5.5). However, in case of a lattice structure
generated by the 3D repetition of a unit-cell mesh, the pattern is
imposed by the lattice generation. This pattern is a priori known
and can therefore directly be exploited during the encoding step
in order to reduce the file size through the VI and RP encoding
mechanisms. Similarly, if the mesh has been obtained from a CAD
model on which patterns have been identified prior to its tessel-
lation, then this information can directly be exploited within the
proposed framework, and some steps might be bypassed.

Once the geometry encoded, the resulting file can be easily
stored or transmitted to another party, as its size is greatly re-
duced. At reception, the file can be decoded through the adapted
procedure (associated with the encoding strategy). Because of the
RP mechanism, a final step of facets stitching is required in order
to ensure the watertightness of the mesh (see details in Sec-
tion 5). This operation is the same as the one required when im-
porting an STL file, and will therefore not be extensively detailed
in this article that mostly focuses on the encoding steps. How-
ever, as discussed in the conclusion, some of the PDP steps (e.g.
slicing or geometry healing) could also benefit from this approach
without having to decompress the whole part geometry. In this
case, time-consuming operations could be performed just once
and the resulting geometries could then be repeated according to
the characteristics of the identified patterns.

4. Identification of repetition patterns in facet meshes

This section details the algorithm used to identify one of the
most promising repetition patterns in a meshM, i.e. one that best
reduces the encoding file weight. This identification results from
the resolution of an optimization problem that tries to minimize
the weight w(M, κ) of the file resulting from the encoding of
M according to an encoding strategy κ . As there exists a huge
amount of admissible repetition patterns decompositions when
considering AM parts, a heuristic algorithm is proposed to solve
this problem, and its efficiency is demonstrated in Section 5.



Fig. 3. Encoding and decoding framework used to generate easily transferable lightweight mesh files.

4.1. Mesh decomposition problem formalization

Let us note F the set of all facets f of the mesh M, and S a
subset of F , i.e. S ⊂ F . Encoding S according to a certain encoding
strategy κ generates a certain file weight wκ

S that contributes
to the resulting overall file weight. From these definitions, the
encoding optimization problem can be defined as a Weighted
Exact Cover (WEC) problem, where the objective is to find a
decomposition of F into subsets, minimizing the overall encoding
cost function, i.e. the sum of the file weights of the encoded sub-
sets. This can be written as the following Integer Linear Problem
(ILP), where each subset is associated with a boolean activation
variable xS defining whether or not S is part of the solution:
Minimize

w(M, κ) =
∑
S∈AS

wκ
S .xS (1a)

subject to

∀f ∈ F,
∑

S∈AS :f∈S

xS = 1 (1b)

xS ∈ {0, 1} (1c)

where AS corresponds to the partition of F (i.e. the set of all the
possible subsets of F). The cardinality of AS (i.e. |AS | = 2|F |) can
be very large when considering AM parts potentially defined by
hundreds of thousands of facets. The exact nature of the problem
is formalized by Eq. (1b), which constrains each facet of F to be
contained by only one subset of the solution.

The WEC problem has been extensively studied, and has been
proven to be NP-complete [23]. One of the most famous strategy
to solve this problem is the Dancing Link (DL) algorithm [24]. It
is a simple greedy recursive back-tracking algorithm allowing to
efficiently identify all the solutions of the WEC problem, i.e. all
the divisions of the universe U (that is F in the present case)
into disjoint subsets covering all the elements of U . The concept
is straight forward: first, a subset S is selected to be part of the
first solution. Then all the subsets containing at least one facet
of S are removed from the list of selectable subsets, in order to
ensure the exact nature of the solution (i.e. with disjoint subsets).
By identifying the facets of the universe that are not already
contained in one of the subsets of the solution, a sub-universe
U ′ ⊂ U is obtained on which the DL algorithm can recursively
be executed. The main issue with the DL algorithm is that it
requires to list all the possible subsets of F , and this enumeration
of 2|F | subsets can be very time-consuming. Therefore, in this
article, a heuristic based on 3 considerations has been developed
to solve the identified WEC problem, and its execution is detailed
in Section 4.3.

4.2. Exploitation of the RP encoding mechanism

In order to best exploit the previously introduced RP encoding
mechanism (and thus find out a decomposition of M into dis-
joint subsets that reduces the overall encoding file weight), the
isometries between the facets of a subset S ⊂ F can be exploited,
reducing its encoding weight.

In this article, only the case of isometries by translation be-
tween the facets is considered. Two facets (f , f ′) ∈ F2 are
isometric by translation if it exists a translation tf→f ′ (associated
with a 3D vector t⃗f→f ′ ) by which f ′ is the image of f and so
that f ′ = tf→f ′ (f ). This implies that the two facets have the
same angles, but also the same edge lengths, the same normal
and the same area. The benefit of only considering isometries
by translation instead of all the similarities (such as rotation
and scaling) is that no rounding error is introduced. Indeed, the
translation of a point by any vector can be obtained only through
addition and subtraction, whereas is it not the case for the other
similarities for which inaccuracies can be introduced depending
on the angle of rotation or the scaling factor.

Let us define an isometric subset as a subset I ⊂ F in which
all the facets are isometric by translation. Let us define the facet
translation group Γ I

f associated with a facet f ∈ I as the set of all
translations transforming f into another facet of I:

Γ I
f = {tf→f ′ : f ′ ∈ I} (2)

Let us also define the translation group Γ I associated with the
isometric subset I as the union of the facet translation groups
associated with each facet f ∈ I:

Γ I
=

⋃
f∈I

Γ I
f (3)

Because of the two size-reducing mechanisms identified in
Section 3 (VI and RP mechanisms), one particular case for S is of
interest to compute its encoding weight: the case where S can be
written as the Cartesian product of a set of facets FS ⊂ F and a set
of 3D translation vectors TS with 0⃗ ∈ TS . This is noted S = FS×TS .
This means that if the translation t (associated with each vector
t⃗ ∈ TS) is applied to each facet f ∈ FS , each facet of S is obtained
only once.

Finally, let us define VS the set of non-redundant vertices of S.
Therefore, the computation of the encoding cost of a subset S of
facets falls into two cases:

• if S can be written as FS × TS :

wκ
S = wκ

V .|VS | + wκ
F .|FS | + wκ

T .|TS | + wκ
cste (4a)

• otherwise,

wκ
S = wκ

V .|VS | + wκ
F .|S| + wκ

cste (4b)



Fig. 4. Isometric subsets identification (b) and translation groups computation (c) on a facet mesh (a) : first two steps of the Isometric Clusters (IC) heuristic
algorithm.

As it will be discussed in Section 5.3, the coefficients wκ
V , w

κ
F ,

wκ
T and wκ

cste depend on the adopted encoding strategy κ and file
format in which the information is encoded. Because encoding a
facet is usually more expensive than encoding a translation (wκ

F ≥

wκ
T ), encoding Cartesian product based subsets of facets is more

beneficial than encoding regular subsets. This is particularly in-
teresting to reduce the resulting file size. These two functions are
finalizing the previously introduced ILP definition (Section 4.1).

4.3. Heuristic resolution

To solve the ILP associated with the RP optimization step, the
Isometric Clusters (IC) heuristic algorithm has been developed. It
is composed of three consecutive stages, namely the isometric
subsets identification, the translation group computation and the
clusters formation, which executions are detailed in the next
paragraphs. In comparison to using a metaheuristic algorithm,
the IC heuristic produces a good solution almost instantly. The
computation time is especially important for such an encoding
problem for which it should not exceed a few seconds.

4.3.1. Isometric subsets identification
In the first stage of the IC heuristic algorithm, the isometric

facets are grouped together through the creation of isometric
subsets. This is illustrated in Fig. 4, where each isometric subset is
identified by a specific color. In order to speed up the association
of facets, a hash table data structure is used. Through the defi-
nition of a hash function invariant by translation, i.e. a function
outputting the same value for two facets isometric by translation
(this value being the common hash key of the considered facets),
a hash table data structure enables to group isometric facets
together with a linear O(n) worst-case complexity (compared to
the quadratic O(n2) complexity of a one-to-one comparison). For
example, the same technique is employed to reduce the time of
triangles stitching during a mesh reconstruction operation [25]. In
our implementation, this hash key is defined as the concatenation
of the edge vectors coordinates of the facet, starting from the
longest edge and contouring the facet according to its orientation,
as illustrated in Fig. 5. This hash function is adapted for any
oriented polygon regardless of its number of edges. Thus, two
facets are guaranteed to have the same hash key if and only if
they are isometric by translation. In the rest of this paper, the
hash key corresponding to a facet f will be denoted as H1(f )

4.3.2. Translation groups computation
Before combining subsets together so as to form facet clusters,

each isometric subset I must also be associated with a specific
hash key. This second hash function denoted H2, must associate
the same key to isometric subsets demonstrating the same rep-
etition pattern, so as to clusterize them together. To do so, in
our implementation, a reference facet f Iref is first selected for each

Fig. 5. Hash function for a fast identification of isometric facets.

isometric subset I . The hash key associated with I is then defined
as the facet translation group corresponding to f Iref :

H2(I) = Γ I
f Iref

(5)

Let us consider I0 and I1 two isometric subsets demonstrating
the same repetition pattern. To ensure that H2 associates the
same key to I0 and I1, their respective reference facet f I0ref and
f I1ref must be identically located (with respect to I0 and I1) in
order to have the same facet translation group Γ

I0
f
I0
ref

= Γ
I1
f
I1
ref

.

Therefore, in our implementation, the reference facet f Iref of each
isometric subset I is defined as its left-most facet (i.e. having the
vertex with the smallest x-coordinate. In case of equality, the
disambiguation is done on the vertices y-coordinates, and then
on the z-coordinates).

Let us now consider any isometric subset I . For the identi-
fication of the translation group Γ I

f Iref
, each facet f ∈ I must

be associated with a reference point rf , identically located with
respect to f . Considering two facets (f0, f1) ∈ I2, the associated
reference points rf1 and rf0 must ensure that f1 = tf0→f1 (f0) where
the associated 3D translation vector of t is t⃗f0→f1 = rf1 − rf0 . The
use of the facet barycenter could lead to inconvenient approx-
imations, therefore in our implementation, the left-most vertex
(i.e. with the smallest x-coordinate) of each facet is considered as
a reference point, as illustrated in Fig. 6. Here again, in case of
equality, the disambiguation is performed on the y-coordinates,
and then on the z-coordinates).

4.3.3. Clusters formation
Once the first two stages of the IC algorithm are executed (as

illustrated in Fig. 4), the isometric subsets are grouped according



Fig. 6. Reference points rf0 and rf1 used for the computation of the translation
vector t⃗f0→f1 .

to their translations group Γ I : isometric subsets with the same
translation group are joined together in a so-called isometric
cluster. Then, the IC heuristic algorithm decomposes each cluster,
according to the three following considerations (Fig. 7):

• Identical isometric subsets: if a cluster contains several iso-
metric subsets (i.e. if two or more isometric subsets have
identical translation groups), it is beneficial to encode them
together, as the repetition of a generating mesh by a set of
translations. In that case, the generating mesh contains one
facet of each isometric subset, and all of these facets have
the same facet translation group (defining the repetition
pattern of the generating mesh). Fig. 7.d1 to g1 illustrate this
process.
• Isolated isometric subset: if an isometric subset I does not

have any counterpart with the same translation group Γ I

(i.e. is the only item of its cluster), but contains more than
one facet, it is beneficial to encode this subset as the repe-
tition of one of its facets f0 by its own translation group Γ I

f0
.

This is illustrated in Fig. 7.d2 and e2.
• Mono-facet subsets: all the isometric subsets with only one

facet can be encoded together within a single mesh in order
to benefit from the Vertex Indexing (VI) mechanism (see
Fig. 7.d3 and e3).

The pseudo-code of algorithm 1 details the execution of the IC
heuristic algorithm. Using this heuristic, all the facets of the initial

mesh are encoded only once. Indeed, each facet within the initial
mesh belongs exclusively either to a multiple facets isometric
subset, or to a mono-facet subset.

Let us define n = |F| so as to compute the time complexity
of the IC algorithm. Thanks to the definition of the hash function
H1 and the use of a hash table data structure, the regroupment
of the facets of F into isometric subsets is realized with a linear
time complexity O(n). For each isometric subset I , the complexity
of the reference facet identification is linear (i.e. in O(kI ), where
kI = |I| ≤ n), and the same applies to the computation of
H2(I). This ultimately leads to a linear complexity of the isometric
subsets regroupment into isometric clusters. Finally, the last steps
of the IC algorithm, which corresponds to the actual encoding of
the repetition pattern, are also realized in linear time. Indeed,
the translation group associated to each isometric subset refer-
ence facet Γ I

f Iref
has been computed for the calculation of H2(I).

Consequently, the overall time complexity of the IC algorithm is
O(n).

Algorithm 1 Isometric Clusters heuristic algorithm

Require: F: list of facets
AI ← group F by f ↦−→ H1(f )
G← group AI by I ↦−→ H2(I) = Γ I

f Iref
for all isometric cluster c ∈ G do

Γ c
← Γ

I0
f
I0
ref

where I0 is first element of c

for all isometric subset I ∈ c do
Mc
← add f Iref

end for
encode (Mc,Γ c)

end for

5. Implementation and results

In order to demonstrate the efficiency of the proposed heuris-
tic algorithm to solve the file weight optimization problem identi-
fied in Section 4.1, three geometries presenting repetition

Fig. 7. 3-considerations based clusters formation: third step of the Isometric Clusters (IC) heuristic algorithm.



patterns are encoded according to different encoding strate-
gies (κ). The resulting file sizes are compared to the ones of
state-of-the-art approaches such as the OpenCTM format (a com-
pression file format and library created by an open-source project)
implemented in the MeshLab software and the compression
algorithm proposed by Alliez et al. [26]. Because the encoding
precision of each strategy is different, some are more efficient
than others in generating lighter files. The various encoding
precisions are discussed in this section, along with the assets and
efficiency of each approach.

5.1. Quantization and additive manufacturing

In a 3D geometry file, many objects such as points or vectors
must be encoded as floating-points. Two types of encodings can
be distinguished: loss-less (ensuring that the decoding of any fi-
nite floating-point produces exactly the same floating-point with
all the same digits) and lossy encodings (producing a close but
not necessarily identical floating-point at decoding).

In case of an ASCII encoding, any finite floating-point can
be encoded in a loss-less manner. In this case, all the digits
from both the integer and the decimal part of any floating-point
are represented by ASCII characters. Thus, the more precise the
floating-point needs to be, the longest the ASCII chain is. In case of
a binary encoding, only a finite number of floating-points can be
encoded. The loss-less nature of the encoding therefore depends
on the floating-points to encode and on its precision. Three main
encoding precisions are usually considered, based on the IEEE
754-2008 standard: the half, single and double-precision formats,
requiring respectively 16, 32 and 64 bits to encode a floating-
point [27]. For each of these approaches, the resulting code is
divided into 3 sections: the sign, the exponent and the fraction
part (as illustrated by Fig. 8). In all cases, only a finite number of
floating-points can be encoded (respectively 216, 232 and 264): this
is called floating-point quantization.

In this article, the encoded geometries used for performance
evaluation are a lattice structure, a support structure and a static
mixer, all designed for AM production. Assuming the geometry
coordinates are defined in mm, it is admitted that a precision of
10−3 mm is sufficient. Though large AM machines are emerging,
the common size of a printing platform is 250 mm × 250 mm.
Let us thus consider that the coordinates of the mesh are lying
between −125 and 125. In the IEEE 754-2008 floating point
format standard, the precision of the encoded number depends
on its value: the bigger a number, the less precise its encoding.
For example, a floating-point between 64 and 128 will be encoded
with a 2−4 = 0.0625 precision with the half-precision standard,
and with a 2−17 ≈ 0.000008 precision with the single-precision
standard. Therefore, the half-precision quantization scheme does
not meet the 10−3mm constraint imposed by the AM process,
but the single-precision standard does and this is the one that
should be privileged for AM applications. However, in this paper,
encodings with the half-precision format will be realized in order
to make some fair comparisons with the algorithm proposed by
Alliez et al. [26].

In the framework of Fig. 3, the floating-points quantization
must be performed before the isometric facets identification, in
order to maximize the compression rate of the heuristic algo-
rithm. Indeed, two facets can be isometric after quantization even
if they were not before this operation.

5.2. Implementation of the RP encoding mechanism

The RP mechanism has been implemented and tested follow-
ing three encoding strategies (κ) introduced in the next para-
graphs: RP-AMF, RP-32 and RP-16. The RP-AMF one directly ex-
ploits the formalism of the AMF (Additive Manufacturing File)

format. AMF is a standard specification developed specifically
for AM applications. Its creation was motivated by the need
to supplement the low-information and inefficient formats still
in use within the AM domain (i.e. STL and OBJ). Among other
features, an AMF file can associate with a mesh-based part various
pieces of information, regarding its color, texture, 3D orientation
and so on. Moreover, it natively includes a VI mechanism in
order to reduce the resulting file size. Finally, it can encapsulate
constellations containing several instances of the same part. Here,
an instance refers to an object (containing a mesh) through an
object id (see Appendix B) and includes a set of translations and
rotations locating a copy of the object in the 3D space. The aim
of the AMF instance objects was originally to locate several iden-
tical parts onto the build platform, without needing to duplicate
vertices and facets of the mesh.

The same VI and RP mechanisms can also be found in the
emerging 3MF file format, also dedicated to Additive Manufac-
turing applications. In this format, elements called components
are equivalent to the constellations objects of the AMF standard,
and are used to repeat several instances of the same triangle
mesh. Because of these similar entities, the proposed approach
can seamlessly be applied with the AMF or 3MF specifications,
and would demonstrate the same performances. Therefore, it
has been chosen in this work to exploit only the AMF standard
specification to develop the RP-AMF file format.

RP-AMF encoding strategy directly exploits the RP mechanism
and AMF standard to reduce the overall size of AMF files while
avoiding multiple definitions of highly repeated geometries. Let
us consider a part with a specific feature repeated several times.
Using the RP-AMF encoding strategy, the mesh corresponding
to this feature is encoded only once, and each repetition of
this feature is encoded as an instance of the previous mesh.
The rest of the part facets is encoded into another independent
mesh. This encoding strategy is not restricted to one-feature
Repetition Patterns only, and this example can easily be extended
to parts presenting multiple repeated features. The RP-AMF en-
coding strategy preserves the AMF formalism: ASCII encoding,
standard tags, vertices collection and triangles indices structure.
The *.amf extension is also preserved, ensuring that any software
able to open an AMF file format is also able to open an RP-AMF
file. At opening, all the individual meshes are repeated according
to its corresponding encoded instances. However, as intended by
the AMF standard, each fragment repetition will be considered as
an independent part on the building platform. Therefore, a stitch-
ing operation is required in order to ensure the watertightness of
the opened mesh. This is similar to what is needed when import-
ing an STL file. Indeed, the overall geometry being composed of
several meshes, the points at the border of each mesh are gener-
ally duplicated within the definition of another mesh. The aim of
the stitching step is thus to identify and merge duplicate vertices
and edges, thus connecting neighboring triangles. By preserving
the AMF formalism, the RP-AMF exchange is instantly exploitable,
without any software modification required. However, the AMF
formalism is not a concise 3D geometry description, and thus
creates heavy files in comparison to other formalisms. Indeed, it
is an ASCII description, employing redundant tags, separators as
well as other artifacts.

RP-32 and RP-16 encoding strategies make use of a binary
format to further reduce the size of the files. These new formats
stand out from the RP-AMF because the encoding of each floating-
point is realized through an IEEE 754-2008 floating point format
standard. Thus two versions of this format must be distinguished:
the RP-32, using the single-precision standard, and the RP-16,
using the half-precision standard. The structure of this format is
similar to the one of the AMF file format, in so that it implements
a 3-blocks VI mechanism. For each mesh, a collection of points is



Fig. 8. IEEE 754-2008 standard: half (a), single (b) and double (c)-precision floating point formats.

defined, followed by a collection of point indices triplets (each
triplet representing a triangle): these two blocks are encapsulat-
ing the VI mechanism. The last block consists of a collection of
3D vectors locating the multiple instances of the mesh in the 3D
space. The overall part geometry is thus defined by a succession
of block triplets. To further lighten the file, the unnecessary tags
of the AMF encoding have been removed: no separation between
floating points are required since the bit length of each encoded
number is constant in binary. Only a separation between a block
and the next is required, and is realized by a line jump.

5.3. Cost coefficients

In Section 4.1, the ILP governing the RP optimization has been
identified and formalized. Eqs. (4a) and (4b) reveal the use of
cost coefficients which values depend upon the adopted encoding
strategy (κ). Table 1 summarizes the coefficients of the file for-
mats considered in this article (for triangle meshes only). Because
the RP-AMF is an ASCII based formalism, the number of bits used
to encode each vertex, facet and translation (respectively wκ

V , w
κ
F

and wκ
T ) is not constant. Indeed, the number of ASCII characters

used depends upon the number of digits of the floating point (or
the integer in the case of vertex indices for the facet definitions).
However, because the AMF format uses encompassing tags for
defining each of these objects, an average number of characters
can be given, around which the variations are small (considering
the process precision requirements of 10−3mm as discussed in
Section 5.1). For the binary formats, the number of octets used
to encode a floating-point is constant (because it is a binary
encoding) and is only defined by the IEEE 754-2008 standard
employed (4 octets by floating point for the single-precision in
RP-32 and 2 octets by floating point for the half-precision in
RP-16). However, looking at the encoding cost per facet wκ

F , the
number of octets used to encode an integer is the same for both
versions of the binary format since the chosen binary precision
must not impact the number of vertices that can be encoded.
Indeed, 4 octets are used to encode each vertex index ensuring
that each positive integer between 0 and 232

≈ 4 294 967 295
can be encoded. These costs are also much lower because the
unnecessary tags of the AMF have been removed with the use
of binary formalism.

5.4. Experimentation on lattice structures with known RP

This section illustrates how the proposed RP encoding frame-
work can be used to reduce the file size when storing geometries
for which the repetition patterns are already known. This is the
case when the software used to model the part is also the one

Fig. 9. Full lattice structure of the Stanford Bunny (a) with repeated features
mesh (blue) and residual mesh (red), and repetition pattern (b). (For interpre-
tation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 1
Cost coefficients associated to each file format κ for the RP optimization.
File format (κ) wκ

V (in octets) wκ
F (in octets) wκ

T (in octets)

RP-AMF ≈77(±9) ≈64(±14) ≈97(±9)
RP-32 12 12 12
RP-16 6 12 6

encoding its geometry into an exchange file. In this case, the
first framework steps of pattern identification (illustrated in Fig. 3
with an asterisk) can be bypassed.

To demonstrate the efficiency of the proposed framework, the
compression of a lattice structure generated within the famous
Stanford Bunny has been realized (Fig. 9). This lattice structure
has been generated through the repetition of a simple BCC unit
cell of 4 mm side. The border unit cells have been trimmed to
the envelope of the bunny, resulting in a total of 1330 complete
unit cells, each one composed of 154 triangles (using the lattice
meshing approach of Chougrani et al. [28]), and a residual mesh
composed of 312834 triangles (i.e. 517654 triangles total). In the
case of a known RP, the geometry is initially divided into two
meshes: a repeated features mesh (in blue on Fig. 9.a), associat-
ing the facets of each repeated feature with the corresponding
repetition pattern ( Fig. 9.b), and a residual mesh, gathering all
the individual facets (in red on Fig. 9.a). Only the repeated feature
mesh benefits from the use of the proposed repetition encoding
framework. Since the residual mesh does not present any repe-
tition pattern, its encoding through the proposed framework is
generally not optimal, but is necessary to complete the overall
part geometry during the decoding step.



Table 2
Compressed file sizes for a known repetition pattern part (Stanford Bunny lattice
structure).
File format (κ) Bits per Lattice structure File

floating 133440 vertices size

point Unzipped Zipped reduct.

AMF 8–48 (ASCII) 76 511 Ko 4564 Ko
RP-AMF 8–48 (ASCII) 32 774 Ko 3062 Ko −33%

OpenCTM 32 (binary) n/a 3524 Ko
RP-32 32 (binary) 1773 Ko 1316 Ko −63%

Alliez et al. [26] 16 (binary) n/a 933 Ko
RP-16 16 (binary) 872 Ko 646 Ko −31%

Six encoding strategies have been experimented: the classical
AMF format, the newly developed variation of this format exploit-
ing RP and encoded in ASCII (RP-AMF), with a single-precision
binary format (RP-16) and with a half-precision binary format
(RP-32), the OpenCTM format (a compression file format and
library created from an open-source project) implemented in the
MeshLab software and a compression algorithm proposed by Al-
liez et al. [26]. Because the OpenCTM and the format proposed by
Alliez et al. are both implementing binary-wise data compression
schemes (hence the ‘‘n/a’’ abbreviations in the ‘‘unzipped’’ column
of the following result tables), the zipped version of the other
formats is also considered.

The file sizes resulting from these various encoding approaches
are summarized in Table 2 along with the file size reductions
obtained comparing same precision encodings. From these re-
sults, RP-based formats are demonstrating lower file sizes, for
both their unzipped and zipped versions, with file size reductions
reaching −63%. These results well illustrate the interest of the
proposed framework with respect to state-of-the-art approaches.

5.5. Experimentation on support structures with unknown RP

Beyond lattice structures, the proposed framework can also be
used to efficiently compress any 3D shape presenting repetition
patterns. Such repeated geometries are more common in AM than
in other manufacturing fields due to the design freedom permit-
ted by the ‘‘layer-by-layer’’ approach, and support structures are
great examples of such geometries. Generated after the design of
the part and before the slicing step, they usually are regularly per-
forated with rhombus-shaped holes, in order to ensure the good
evacuation of the powder once the part fabrication is completed
(with the Laser Beam Melting technology in particular).

Therefore, the efficiency of the proposed framework has been
demonstrated with the compression of a support structure geom-
etry (Fig. 10) and a static mixer geometry also presenting several
repeated features (Fig. 11). The considered encoding strategies
and file formats are the same as the ones used for the compres-
sion of the lattice structure in Section 5.4. Initially composed of
13196 and 21610 triangles respectively, the support structure
and the static mixer are decomposed respectively into 69 and 71
RP once the IC heuristic algorithm is executed. However, these
patterns are particularly different: most of the support structure
generating meshes are composed of less than 10 facets repeated
up to 440 times, whereas the biggest generating mesh of the
static mixer contains 317 triangles duplicated only twice. The
support structure presents also more repeated facets since its
residual mesh contains only 1629 triangles compared to 14042
facets for the one of the static mixer.

Similarly to the lattice structure, the file sizes resulting from
the proposed encoding strategies of these two test cases are
lower than the ones of the files generated by the other strategies
(Table 3). The file size reduction ratios are also indicating the

Fig. 10. Support structure test case: initial mesh and supported part (a), mesh
decomposed after repetition pattern encoding (b) and its generating meshes (c).

Fig. 11. Static mixer test case: initial mesh (a), mesh decomposed after
repetition patterns encoding (b) and its generating meshes (c).

same trend. Comparing the various RP-based encoding strategies
between the support structure and the static mixer, the file size
reduction ratios are similar, even though the number of repetition
patterns (and the generating mesh facet counts) are different
between the two geometries.



Table 3
Compressed file sizes for the two test cases (support structure and static mixer) with unknown RP.
File format (κ) Bits per Support structure File Static mixer File

floating 5721 vertices size 10791 vertices size

point Unzipped Zipped reductions Unzipped Zipped reductions

AMF 8–48 (ASCII) 1827 Ko 89 Ko 3180 Ko 167 Ko
RP-AMF 8–48 (ASCII) 346 Ko 15 Ko −83% 389 Ko 26 Ko −84%

OpenCTM 32 (binary) n/a 42 Ko n/a 75 Ko
RP-32 32 (binary) 53 Ko 9 Ko −79% 31 Ko 14 Ko −81%

Alliez et al. [26] 16 (binary) n/a 20.2 Ko n/a 28.1 Ko
RP-16 16 (binary) 27 Ko 6 Ko −70% 16 Ko 9 Ko −68%

Table 4
IC heuristic algorithm computation times for the two considered test cases.
Framework steps Support Static

structure mixer

Isometric subsets identification 169 ms 372 ms
Translation groups computation 390 ms 576 ms
Clusters formation 18409 ms 556 ms

Table 5
Overall encoding times for the different encoding strategies considered.
File format (κ) Bits per Lattice Support Static

floating structure structure mixer
point

AMF 8–48 (ASCII) 9 s 1 s 1 s
RP-AMF 8–48 (ASCII) 13 s 25 s 5 s

OpenCTM 32 (binary) 11 s 4 s 3 s
RP-32 32 (binary) 9 s 27 s 4 s

Alliez et al. [26] 16 (binary) 82 s 2 s 3 s
RP-16 16 (binary) 6 s 30 s 3 s

5.6. Encoding times comparison

One of the obstacles to the adoption of a compressed format is
the encoding time taken to obtain the resulting files. In order to
analyze computation time issues, the duration of each IC heuristic
algorithm stage is first measured and the results are presented in
Table 4. In the case of a lattice structure, the IC heuristic algorithm
is not run as the RP is known a priori and can thus be directly
exploited during the encoding step.

These results are illustrating the different behaviors that can
arise from the execution of the IC algorithm on geometries with
different unknown repetition patterns. For example, in the case of
a mesh with a simple feature repeated a lot of times such as the
one of the support structure, numerous isometric subsets must
be clustered together, and the clusters formation is therefore the
more time-consuming step. Inversely, when the part presents
several complex features replicated only a few times like for
the static mixer, the duration of the clusters formation step is
considerably reduced.

To compare the speed of the proposed framework to the ones
of the literature, the overall encoding times of the previous test
cases have also been measured and listed in Table 5. On an indica-
tive basis, the times to encode the three considered structures
in AMF have also been added, though it does not include any
optimization mechanism.

The computation time of the lattice structure encoding demon-
strates the speed of the proposed framework regarding geome-
tries for which the repetition pattern is known in advance.
Indeed, for this particular test case, the compression algorithms
of the literature (namely the Open CTM format, and the algorithm
proposed by Alliez et al.) are presenting longer optimization
times. However, in the case of geometries where the repetition
pattern is not a priori known, such as the support structure and

the static mixer, the proposed framework optimization times are
not competing with the literature algorithms.

Focusing on the RP-encodings results, though the lattice struc-
ture is composed of more facets, its encoding is faster than the
one of the support structure, since the RP optimization step does
not need to be executed (Fig. 3).

However, comparing the results obtained with the RP-based
encodings between the static mixer and the support structure,
one can identify the longest time requirements for the latter.
This can be explained by the difference between the two pattern
structures (as detailed in Section 5.5). Since the longest operation
is the clusters formation, and since the pattern structure of the
static mixer is composed of larger generating meshes with fewer
repetitions than the ones of the support structure, its encoding
is performed more rapidly. This corroborates with the results
displayed in Table 4.

In conclusion, though the proposed framework performances
are surpassing the ones of the literature algorithms in terms of
compression rate, this comes at a small temporal cost. This cost
can vary according to the prior knowledge of the repetition pat-
terns, and according to its balance between the number of facets
and the number of repetitions of each generating mesh. However,
the order of magnitude of the RP-based encodings optimization
durations are remaining reasonable, ergonomically speaking, for
a compression encoding operation.

6. Conclusions and perspectives

This article has introduced a new framework for the file com-
pression of faceted 3D geometries presenting repetition patterns.
This approach diminishes the size of the 3D geometry file by
encoding a repeated feature as one mesh and several repetitions
of it, rather than encoding each similar mesh once. This frame-
work is particularly suited for parts produced by AM machines
and often presenting repetition patterns. It can straightforwardly
be applied on geometries for which the repetition pattern is
already known (such as lattice structures). But in the broader
case, the geometry’s 3D mesh must first be decomposed into
repeated submeshes, in order to ensure a high compression rate.
The identification of repeated submeshes is performed by a new
heuristic algorithm especially developed to solve the underlying
NP-complete Weighted Exact Cover (WEC) problem.

The benefits of this framework have been demonstrated on
three test cases and for several file encodings: a variation of
the standard AMF format (the RP-AMF format), and a dedicated
binary file format with different floating point precisions (the
RP-32 and the RP-16 formats). By exploiting the numerical ob-
jects included within the AMF standard definition, this work
encourages its adoption within the AM community. The results
of the three test cases have demonstrated both good compression
rates and reasonably short computation times when compared to
state-of-the-art approaches.

This work only takes advantage of the repetitions consisting of
3D translations. Other similarities could be exploited (such as ro-
tation, scaling or symmetries) to further enhance the compression



rate. The identification algorithms for such patterns proposed
by Shi et al. could therefore be employed [11]. However, en-
coding circular repetition patterns, scaling or symmetries can
lead to approximation errors, resulting in a non-watertight mesh.
Furthermore, many AM parts (especially the ones with lattice
structures features) mostly present translated pattern repetitions,
which already makes the proposed framework useful.

To further increase the efficiency of the proposed framework,
the computation time required for the RP optimization could be
reduced. Indeed, the more time-consuming step of the IC heuris-
tic algorithm has been identified, namely the clusters formation
stage, and could be accelerated by using GPU parallelization for
example. Moreover, to further decrease the encoding file sizes
generated by the framework, the quality of the mesh decompo-
sition obtained after the RP optimization step could be improved
by implementing a more complex algorithm. Such an algorithm
could for example benefit from a splitting operation applied on an
isometric subset, in order to create a more efficient clustering. In
the same intent, a multi-scale approach could also be developed
to encode repetitions of repetition patterns (nested repetitions)
within the resulting file.

Moreover, to further increase the compression ratio, the pro-
posed framework could be coupled with another mesh descrip-
tion encoding (such as the one of Alliez et al. [26]). Indeed, the RP
mechanism is decomposing the part geometry into independent
meshes to be encoded with or without repetition, and the encod-
ing of each mesh can be more complex than the one employed
in the RP formats (i.e. listing all the 3D points and then listing
all the facets as triplets of point indexing). The RP mechanism
is therefore a compression layer that can be coupled with any
existing geometry compression approach.

Finally, not only the proposed repetition pattern encoding
framework allows file size reductions, but it can also be ex-
ploited at various steps of the Product Development Process
(PDP), including process planning phases. For instance, the pro-
posed framework could benefit to the slicing step, wherein the
repetition patterns could be exploited without having to decom-
press the whole part geometry. Indeed, knowing the elementary
feature (that is repeated) and the locations of its various oc-
currences, the slicing operation can be applied once, and the
so computed trajectories can be repeated to match the other
locations of the considered feature. More broadly, the preserva-
tion and exploitation of part repetition patterns throughout the
production workflow thus permits to optimize and speed up the
end-to-end AM process.
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Appendix A. AMF mesh formalism

<?xml version="1.0">
<amf unit="millimeter">

<object id="1">
<mesh>

<vertices>
<vertex>

<coordinates>
<x>1.2</x><y>5.6</y><z>3.468</z>

</coordinates>

</vertex>
. . .

</vertices>
<volume>

<triangle>
<v1>1</v1><v2>2</v2><v3>3</v3>

</triangle>
. . .

</volume>
</mesh>

</object>
</amf>

Appendix B. AMF constellation formalism

<?xml version="1.0">
<amf unit="millimeter">

<object id="1">
. . .

</object>
<constellation id="2">

<instance objectid="1">
<deltax>5</deltax>
<deltay>10</deltay>
<deltaz>0.5</deltaz>
<rx>-10</rx>
<ry>10</ry>
<rz>180</rz>
. . .

</instance>
</constellation>

</amf>
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