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Rotational Molding of Polyamide-12 Nanocomposites: Modeling
of the Viscoelastic Behavior
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Abstract
Nowadays, polyamide 12 (PA-12) is considered as an interesting polymer in the rotomolding process to manufacture different 
pieces like the liner part in the storage hydrogen tank (type IV). In this study, the pure polyamide-12 and PA12 pieces, 
incorporated with 0.5%, 1% and 3% wt Nano Carbon Black (NCB), were manufactured by the rotomolding process. Different 
rotomolding parameters such as heating temperature, time of heating, and cooling rate have been optimized to obtain the ideal 
piece. The effect of volume fraction of NCB in terms of physicochemical and mechanical properties has been studied. Afterward, 
the optimal volume fraction of NCB is revealed using different characterization methods. The tensile results specified the addition 
of NCBs until 0.5% improved the tensile behavior. The addition of NCBs more than 0.5% decreases the mechanical properties in 
terms of failure stress and strain, while it has no significant effect on the elastic modulus of PA-12. The bi-parabolic the Perez 
model has been used to study the viscoelastic behavior of PA-12 using the Cole-Cole method. The constants of the Perez model 
indicate a good correlation between viscoelastic experimental results and the model used.
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Introduction

Rotational molding is a pressure-free process. It provides the
ability to produce hollow plastic containers with different,
homogenate dimensions, with no material wastage and no
weld line. This process comprises four steps: charging of the
polymer; heating of the mold in an oven to processing tem-
peratures with simultaneous rotation in two axes. As heated,
the polymer adheres to the mold and becomes fused. The next
steps are cooling of the mold by air or a water spray and
unloading of a produced item from the mold [1, 2].

Numerous additives, like inorganic fillers, for improving
the mechanical properties of the material can be added
[3–8]. However, the addition of inorganic fillers increases
the viscosity, which results in not a good distribution of the
fillers and an increase of porosity [9–11]. Moreover, enough
toughness of the material is needed to permit extraction from
the molds. This technology, however, contains serious limita-
tions to produce complex geometries [12]. One of the prob-
lems in rotomolding is bubbles of gasses trapped during the
sintering of the powders, which reduce the mechanical
strength of the produced piece [13–15].
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The temperature of the air inside the mold gives an idea
quite precise about the changes in the state of the polymer,
especially when it starts melting when all the powder is
melted, and when it starts to crystallize and when the crystal-
lization is finished [16–20].

More than 85% of the publications wherein the
manufacturing method is rotational molding choose
Polyethylene (PE) [21–23]; however, using other polymers
is an interesting matter. A special PA11 powder (Rilsan®
Roto 11) grade was used for rotational molding [24]. It is
particularly appropriate for the molding of tanks and vessels
requiring chemical resistance such as fuel, hydraulic fluids,
corrosive liquids, coolant mixtures, and tremendous barrier
properties. Besides, it poses excellent dimensional stability
at high-temperature and impact resistance at low temperature.
Like PA-11, polyamide 12 with the abbreviation of PA-12 is a
family of polyamides [25–28]. PA-12 polymers are known for
their different performance properties [29, 30]. Some perfor-
mance properties of this type of polyamide are simple to pro-
cess in typical equipment (extrusion, injection molding, etc.),
gas impermeability, lightweight-enhance fuel economy, excel-
lent noise dampening, very good chemical resistance, low
water absorption (much better dimensional stability than low-
er polyamides (PA-6 or PA-66 for example)), good impact
properties and flexibility, especially at lower temperatures,
outstanding abrasion resistance, and tremendous resistance
to stress cracking.

The temperature of the polymer and mold depends on the
oven, but they also depend on other reasons such as [31]:

& Quantity and nature of the polymer.
& Surface/volume ratio of the mold.
& The material of the mold and its thickness.

Nowadays nanotechnology received increasing attention
due to its mechanical properties including strength, modulus,
and dimensional stability and also thermal stability, chemical
resistance, and electrical conductivity. Nanoparticles and su-
percritical technology combination have an extraordinary po-
tential to produce a novel class of materials that are state-of-
the-art, relatively weightless, high strength and multifunction-
al. A few amounts of well-dispersed nanoparticles in the poly-
mer may affect bypassing micro-particles to nanoparticles a
change in physical properties and an increase in the ratio of
surface area to volume [32–34].

The most common representation of nanoparticles is black
carbon, or carbon black. It has been massively produced for
decades and used in car tires to increase their lifespan. The cause
of black color in the tire is the presence of this black additive.

Therefore, this paper is aimed towards the rotational mold-
ing of PA-12, reinforced with 0.5%, 1% and 3% wt Nano
Carbon Black (NCB). Firstly, rotomolding parameters of
PA-12, such as oven temperature, heating, and cooling times

have been optimized. These optimal parameters have been
applied for different PA-12, reinforced with 0.5%, 1%, and
3%wt Nano Carbon Black (NCB). Then, the physicochemical
and mechanical properties of the final pieces have been char-
acterized. Finally, bi-parabolic Perez model has been used to
study the viscoelastic behavior using the Cole-Cole method.

Materials description, processing,
and methods

Materials

Polyamide 12 (PA-12)

Semi-crystalline Polyamide 12 used in this study was PA-12,
in the form of powder, supplied by ARKEMA Revolve with a
density of 1.01 g/cm3.

Nano carbon black (NCB)

The nanopowders used in this study were provided by
Plasmachem GmbH D-12489 Berlin, Germany, typeCB13
with an average particle size of 13 nm, bulk density of 0.1 g/
cm3 and specific surface area (BET) of 570 ± 20 m2/g.

Rotational molding process

The rotational molding machine “LAB 40” (Fig. 1), of Shuttle
type built by STP and available in the PIMM laboratory, has
employed in this work. This machine is equipped with a
human-machine interface (HMI) to set easily its operating
parameters, namely: the oven temperature, the two rotational
speeds, and the heating and finally cooling times. In this ma-
chine, the cooling process has been achieved by air.

PA-12 and NCBs were mixed completely before process-
ing by shaking in a glass flask for 30 min. PA-12 powders
were initially dried in a vacuum oven at 80 °C for 4 h before
the rotomolding process. After that, the required amount of
polyamide (250 g), in powder form, is introduced into the
mold’s cavity (Fig. 2). This mold is then closed and is situated
in the furnace. During the heating phase, the mold slowly
rotates on two axes (major axis 3.6 rpm and minor axis
9.6 rpm). The heat transfer cause is melting the polymer pow-
der. This molten material almost uniformly covers all the inner
walls of the mold. The temperature of the molten material
attained is well more than the melting point.

After that, the mold is moved to the cooling station. The
need for cooling is important and clearly, rapid cooling is
desirable for economic reasons, but this can cause problems
such as warping. In the last step, the rotation of the mold is
stopped; the mold is removed from the machine and is then



opened, and the manufactured part is demolded. The mold is
so then available for a new cycle.

Characterization methods

Differential scanning Calorimetry (DSC)

DSC Q10 V9.0 was utilized to find out the temperature evo-
lution near the glass transition temperature up to the melting
point. The sample used (from rotomolded parts), was 5.8 mg,
which was first heated from 0 to 200 °C, then cooled to 0 °C,
with a rate of 5 °C/min.

Dynamic thermos-mechanical analysis (DMTA)

DMTA testing was performed using a Q800 V21.2
Dynamic Mechanical Analyzer. Rectangular PA-12 speci-
mens with approximate dimensions of 25 × 4 × 3 mm3

were tested over the entire temperature range of the
DMTA instrument from 30 °C to 100 °C at different fre-
quencies of 0.5 Hz, 1 Hz, 5 Hz, 10 Hz, and 50 Hz with a
constant amplitude of 30 N. The storage and loss moduli
were measured versus temperature. After that, the corre-
sponding parameter was determined.

Fig. 2 Mold used in this study

Fig. 1 Rotational molding
machine LAB 40



Microscopic observations

Scanning Electronic Microscope (HITACHI 4800 SEM), was
utilized to examine the material microstructure qualitatively.

Tensile test

Quasi-static tensile tests were carried out using the specimen
dimension (ISO-527-2-5A) with a thickness of 3 mm at 25 °C.
Tensile tests were performed until the polymer specimen fail-
ure using Instron 5881 machine with a velocity of 2 mm/min.
Each test has been repeated five times.

Experimental results and discussion

DSC analysis

DSC was used to investigate the response of PA-12 at temper-
ature variations. The result presented in Fig. 3 shows PA-12
pure has a melting temperature of 177 °C and a crystallization
temperature of about 147 °C.

According to this result, the glass transition temperature of
PA-12 is about 53 °C. One can note that there is no significant
difference in glass transition, melting and crystallization tem-
peratures of pure PA-12 and PA-12, reinforced with 0.5%and
1% wt Nano Carbon Black (NCB). In principle, the charged
particles are of the nucleating agent. They can modify the
morphology of the crystalline phase. DSC results confirm that
the degree of crystallization is slightly increased by adding the
NBCs which can be improved the mechanical properties. The
values of the crystallinity degree for pure PA-12 and PA-12,
reinforced with 0.5%and 1% wt Nano Carbon Black (NCB)
are 21.5, 22.5, and 23%, respectively. The later shows that the
degree of crystallization is slightly increased by adding the
NBCs because of an increase in the nucleation site which
can be improved the mechanical properties (Table 1).

DMTA measurement

DMTA test is preferentially performed to study the different
transitions temperatures. In this work, DMTA tests have per-
formed according to the alternating frequencies configuration
in the temperature range between 30 °C and 70 °C. DMTA
results (Fig. 4) show that the value of glass transition temper-
ature according to the peak of tan δ is equal to 53 °C. This
value is related to Tα which is the mechanical temperature
transition associated with Tg. Tα depends on the angular fre-
quency. This value is like the value obtained by DSC analysis.

Choice of some parameters of the process

When the oven temperature is not high enough, the time re-
quired to reach the melting point (Tm) of the polymer becomes
important. In this case, if the overall time chosen for a cycle is
insufficient, so then the material will not be completely melted
and which causes malformations of the rotationally molded
part and various imperfections: low strength, stiffness, and
ductility. Conversely, if the polymer overheats at a tempera-
ture above the degradation temperature (TD), degradation pro-
cesses will occur, and the part will be of poor quality.

To better controlling the temperature variation of the poly-
mer or internal mold air over time, the best way is to use the
Datapaq® Tracker Telemetry system that tracks variation of
this temperature. In fact, by recording this temperature, it is
possible to observe the changes in the state of the polymer

Tg = 53 °C

Tm = 177 °C

Tc = 147 °C

a b

Tg = 53 °C

Heating

Cooling

Exo

Fig. 3 (a) DSC results of PA12, PA12–0.5%NCB and PA12–1%NCB and (b) zoom of Tg zone

Table 1 The values of Tg, Tm, Tc and Xc for pure PA-12, PA-12 with
0.5% and 1% of NCBs

Sample Tg (°C) Tm (°C) Tc (°C) XC

Pure PA-12 53 177 147 21.5

PA-12 with 0.5% of NCBs 53 177 147 22.5

PA-12 with 1% of NCBs 53 177 147 23



during the process in real-time. One can note the method of
cooling the mold, following the heating phase, can have a
significant effect on the quality of the part.

After several attempts, using DSC and DMTA analysis, the
values of three important parameters for the rotational mold-
ing process chosen in this study are given below:

& Oven temperatures: 280 °C
& Heating times: 15 min.
& Cooling rate: by blown air

In the beginning, the mold and the polymer are at room
temperature. The heating process is in a way that, first the
mold absorbs heat and then it goes through the polymer pow-
ders. On condition that the polymer does not melt, the tem-
perature inside the mold increases in a steady state.

Close to the melting point (near 147 °C), the coalescence of
the first layer of powder occurs and the first molten layer of the
polymer, adheres to the mold. After that, the following layers
will be formed in the same way on the first layer. One can see
that the slip of temperature around 175 °C decreases. This
decrease can be explained by energy absorption due to the
latent heat of fusion. From this point, the material continues
melting, under the effect of rotation.

Afterward, all the powder is melted and regains its increas-
ing slip, while the melted materials are homogenizing. The
maximum temperature of polymer (220 °C) is chosen to give
enough time and fluidity to the polymer for a homogeneous
distribution. Here, the best-chosen temperature is very impor-
tant because the degradation of the polymer should be con-
sidered. Since the curve starts to decrease, the homogeniza-
tion of the molten polymer takes place. Due to the absence of
pressure in the rotomolding process, some bubbles will trap
between the particles, to eliminate these bubbles which affect
the final product properties; the homogenization period
should be adequate so that the trapped air gradually disap-
pears. Near to 24 min after starting the rotomolding process,
one can observe the polymer begins to solidify. In the case of

semi-crystalline polymers, this point is close to the crystalli-
zation temperature of the polymer. From this point, the speed
of the temperature drops under the exothermic effect of crys-
tallization. After 35 min of cooling stage the piece is
completely crystallized and can be taken off from the mold
(shown in Fig. 5).

Macro and microstructural analysis

In the macroscopic view, one can see the good quality of
finished pieces (Fig. 6). This confirms the chosen parameters
of the rotomolding process in a macroscopic view. However,
the quality of the pieces should be confirmed by other’s anal-
ysis. One can note that by increasing the percentage of NCBs,
in the macroscopic view there is no difference. Because of this
in Fig. 6 macroscopic views of pure PA-12 and PA-12 with
0.5% of NCBs are presented.

For microstructural characterization, samples after
polishing were analyzed with scanning electron microscopy
(SEM). Figure 7 shows SEM micrograph of pure PA-12, PA-
12 with 0.5% of NCB, PA-12 with 1% of NCB and PA-12
with 3% of NCB.

One can note that by increasing the percentage of NCBs
until 0.5% the microstructure doesn’t change; nevertheless,
for 1% and 3% NCBs, the porosity has obviously appeared.
One can note that to analyze the degree of porosity the software
of ImageJ has been used to measure the size of porosities. It has
been verified that the photos presented in Fig. 7 can be the
representative microstructure of final pieces for all conditions.
The results confirm that the size of porosities in the case of 3%
NCBs is about 1.5 times bigger than that of 1% NCBs.

Tensile behavior

Microstructures of the final pieces showed the presence of
porosity for the 1% and 3% of NCBs. To analyze the mechan-
ical behavior of the pieces, tensile tests were performed.
Stress-strain (σ-ε) curves plotted for pure PA-12, PA12–

Fig. 4 DMTA curve of (a) PA-12 and (b) PA-12 with 0.5% of NCB



0.5% NCBs, PA12–1% NCBs and PA12–3% NCBs in Fig. 8.
For each percentage, five samples were tested, and the stress-
strain curves obtained for each sample have remarked that
there is good repeatability of tensile behavior.

Tensile curves in Fig. 8 and Table 2 indicate that the overall
behavior of pure PA-12 was influenced by adding NCBs more
than 0.5% ofNCB. For 0.5% ofNCBmaximum stress reaches
around 55MPa; however, for 3% ofNCBs, its value decreases
to 20 MPa. One can note that by increasing the percentage of
NCBs, the porosities are increased which confirms the reduc-
tion of mechanical properties.

Modeling

WLF equation: Free volume fraction calculation

To explore the effect of temperature on viscoelastic
properties of PA-12 with 0.5% of NCBs, multi-

frequencies DMTA test was conducted on specimens
in flexion mode and the results are shown in Fig. 9.
By increasing the frequency, the α-transition tempera-
ture, Tα (related to Tg) has an increasing trend to high
temperatures.

As mentioned, the viscoelastic behavior of the polymer is
related to the frequency of applied loading. This dependence
between temperature and viscosity which is proportional to
frequency may be explained by Williams-Landel-Ferry
(WLF) equation:

1

Log
f

f r

¼ C2

C1

1

T−Tg

� �
þ 1

C1
ð1Þ

Where f = frequency, T = temperature, fr = reference fre-

quency (0.5 Hz), Tr = reference temperature. C1 ¼ B
fg

and C2

¼ f g
Δα .

Fig. 5 Temperature evaluation
during rotomolding process of
pure PA-12

Fig. 6 Macroscopic view of (a)
pure PA-12 and (b) PA-12 with
0.5% of NCB



While B is constant near to 1, Δα = thermal expansion
coefficient obtained by un dilatometer (1.1 × 10−4) and fg =
free volume fraction.

For verifying the validity of this equation, the linear regres-
sion method is utilized and 1

log f
f r

is plotted versus 1
T−Trð Þ. If this

plot is linear having A ¼ C2
C1

as slope, then the validity of the

WLF equation is validated. Figure 10 shows the result of linear
regression. Therefore, in this temperature range, it can be con-
sidered that, PA-12 with 0.5% of NCBs follows theWLF equa-
tion. Therefore, the value of free volume fraction coefficient for

PA-12 with 0.5% of NCBs by using fg ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� Δα � A

p� �
is

determined by about 1.94 × 10−2. The value of C1, C2, fg, and
Δα are shown in Table 3. The WLF coefficients C1 and C2

Fig. 7 SEM micrograph of (a)
pure PA-12, (b) PA-12 with 0.5%
of NCBs, (c) PA-12 with 1% of
NCBs, (d) PA-12 with 3% of
NCBs, (e) zoom of porosity on c
and (f) zoom of porosity on d

Fig. 8 Representative curves of tensile test of neat PA12

Table 2 The values of E, σ and ε for pure PA-12, PA-12 with 0.5%,1%,
and 3% of NCBs

Sample E (GPa) σmax (MPa) εmax (%)

Pure PA-12 2 46 32

PA-12 with 0.5% of NCBs 2 55 24

PA-12 with 1% of NCBs 2 45 12

PA-12 with 3% of NCBs 1.6 20 4



appear to be intercorrelated C2/C1 = 3.4, which is confirmed by
literature data on epoxy/carbon nanotubes network [35].

Cole-Cole diagram

Different approaches have been used to study the viscoelastic
properties in the temperature range between the glassy and
rubbery domain, and different models have been proposed to
predict these properties. These models generally represent the
curve of E” (loss modulus) versus E’ (storage modulus) and
the curve is called the Cole-Cole diagram. For the validation
of the theoretical model experimental data obtained by the
dynamic mechanical thermal analysis (DMTA) tests are need-
ed. After DMTA tests, an asymmetric Cole-Cole diagram has
been plotted (Fig. 11). According to the Perez model, the
behavior of polymers can be explained by the bi-parabolic
model presented by the following equation:

E* ¼ E0 þ E∞−E0

1þ iωτð Þκ þ Q iωτð Þκ0 ¼ E
0 þ iE

0 0 ð2Þ

With

E
0 ¼ E0 þ E∞−E0ð Þ

1þ cos
kπ
2

� �
ωτð Þ−K þ Qcos

k
0
π
2

 !
ωτð Þ−K

0

D
ð3Þ

E
0 0 ¼ E∞−E0ð Þ

sin
kπ
2

� �
ωτð Þ−K þ Qsin

k
0
π
2

 !
ωτð Þ−K

0

D
ð4Þ

and

D ¼ 1þ cos
kπ
2

� �
ωτð Þ−K þ Qcos

k
0
π
2

 !
ωτð Þ−K

0
" #Ç

þ sin
kπ
2

� �
ωτð Þ−K þ Qsin

k
0
π
2

 !
ωτð Þ−K

0
" #Ç

ð5Þ

Where k and k´ and Q are the constants of this model.ω =
2πf is the angular frequency (f = frequency) and E* is the
complex shear modulus: E∞ and E0 are the value of shear
modulus at the respectively glassy and rubbery states. k and
k´ depend on the slope of the tangents at the beginning and the
end of the Cole-Cole diagram, Q is a constant related to the
maximum value of E”. τ is the average relaxation time.

A numerical method allows the plotting of the theoretical
Cole-Cole diagram to fit it on the experimental curve. The
result of modeling is shown in Fig. 11 and Table 4. The the-
oretical curve fits perfectly with the experimental results, sig-
nifying that the bi-parabolic model can accurately predict the
viscoelastic behavior of PA-12 and PA-12 with 0.5% of NCB.

Fig. 9 Multi-frequencies DMTA
curve of PA-12 with 0.5% of
NCBs: (a) storagemodulus versus
T and (b) loss modulus versus T

Fig. 10 Linear regression of WLF equation on the results obtained from
DMTA test

Table 3 The values of
WLF constants C1 C2 Δα fg

15.1 51.6 1.1 × 10−4 1.94 × 10−2



The parameter k shows molecular motion and the intensity
of the effects of correlation involved during the expansion of
the Somigliana dislocation (smd) [36]. The values of k for PA-
12 and PA-12 with 0.5% of NCB are similar while an increase
in the value of k indicates weaker molecular motion. The
parameter Q is associated with the maximum value of E”
which increases with increasing the value of Q. An increase
in the value of Q is shown with the addition of 0.5% of NCB
to the PA12. With the rise in the value of Q, the loss modulus
increases, and an improvement is observed in the damping
properties. The values of E∞ indicate slight enhancement in
the elastic properties by adding the 0.5% of NBCs.

The parameter k´ accounts for the difficulty with which
local shearing occurs and it is the most important parameter
in the Perez model. When k´ decreases, the movement of
polymer chains becomes slower. As soon as a local shearing
occurs, the molecular orientation resulting from it makes mo-
lecular movement more complicated. The addition of 0.5% of
NCBs to the PA12 did not affect the values of k´. In other
words, in α region, local shearing occurs easily and Tg has
not changed according to DMA results presented in Fig. 4.
Montazeri has investigated the viscoelastic behavior of epoxy/
carbon nanotubes by plotting the Cole-Cole diagram using the
results of DMTA test. There was a good agreement between
the Perez model and the viscoelastic behavior of the compos-
ite specimen [37].

Conclusion

The main aim of this paper is to open the discussion about
Polyamide-12 properties by adding three percentages of
Nanoparticles of Carbon Black produced by the rotomolding
process. Using DSC and DMTA analysis, the values of three
important parameters for the rotational molding process have
been chosen:

& Oven temperatures: 280 °C
& Heating times: 15 min
& Cooling rate: by blown air

In the macroscopic view, one can see that the good
quality of the final pieces. Moreover, one can note that
by increasing the percentage of NCB until 0.5% the
microstructure doesn’t change; nevertheless, for 1%
and 3% NCBs, the porosity has obviously appeared.
The tensile results of the samples indicate the overall
behavior of pure PA-12 was influenced by adding
NCBs. For 0.5% of NCBs maximum stress reaches
around 55 MPa, however, for 3% of NCBs its value
decreases to 20 MPa. The viscoelastic behavior of PA-
12 obeys the time-temperature equivalence principle.
Moreover, using the Cole-Cole method, the theoretical
curve fits perfectly on the experimental results, signify-
ing the bi-parabolic model can accurately predict the
viscoelastic behavior of PA-12.
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Fig. 11 Cole-Cole diagram

Table 4 The values of Cole-Cole constants

Material k k´ Q E0 E∞ τ

PA-12 0.15 0.23 0.40 360 1680 0.2

PA-12 + 0.5% of NCB 0.15 0.23 0.55 410 1690 0.2



References

1. Greco A, Ferrari F, Buccoliero MG, Trono G (2019) Thermal and
mechanical analysis of polyethylene homo-composites processed
by rotational molding. Polymers (Basel) 11(3):1–16

2. R. A. M. Jaziri, “Reactive rotational molding process of PP/PA6
bilayer systems: experimental investigations,” Int J Mater, no. 65,
p. 21, 2013

3. S. Pivsa-Art, S. Thumsorn, S. Pavasupree, N. O-Charoen, and W.
Pivsa-Art, “Effect of poly(butylene adipate-co-terephthalate) con-
tents on crystallization and mechanical properties of polymer
blends of poly(lactic acid) and poly[(butylene succinate)-co-
adipate],” Annu. Tech. Conf. - ANTEC, Conf Proc, vol. 3, pp.
2437–2441, 2013

4. Chang H, Li Q, Xu C, Li R, Wang H et al (2017) Wool powder: An
efficient additive to improve mechanical and thermal properties of
poly(propylene carbonate). Compos. Sci. Technol. 153:119–127

5. Vilakati GD, Hoek EMV, Mamba BB (2014) Probing the mechan-
ical and thermal properties of polysulfone membranes modified
with synthetic and natural polymer additives. Polym Test 34(202–
210):2014

6. Maskery I et al (2018) Insights into the mechanical properties of
several triply periodic minimal surface lattice structures made by
polymer additive manufacturing. Polymer (Guildf). 152:62–71

7. Ramezani, Dana H, Barbe F, Delbreilh L, Azzouna M, Guillet A,
Breteau T (2019) Polymer additive manufacturing of ABS struc-
ture: influence of printing direction on mechanical properties. J
Manuf Process 44:288–298

8. Kang E, Choi B, Park W, Kim I, Han D (2019) One step bulk
modification of poly(L-lactic acid) composites with functional ad-
ditives to improve mechanical and biological properties for cardio-
vascular implant applications. Colloids Surfaces B Biointerfaces
179:161–169

9. Li Z, Fan F, Xia Z, Li Q (2013) Effects of inorganic fillers on the
shear viscosity and fire retardant performance of waterborne intu-
mescent coatings. Prog Org Coatings 76(5):844–851

10. Seleem HEH (Jun. 2006) The effect of inorganic fillers on the
mechanical and thermal properties of polyester. Polym Plast
Technol Eng 45(5):585–590

11. Meincke DK, Ogliari AO, Ogliari FA (2016) Influence of different
fillers on the properties of an experimental vinyl polysiloxane. Braz
Oral Res 30(1):1–10

12. Tcharkhtchi JVA (2004) Structure-processability relationships dur-
ing rotational moulding of plastics. Adv Eng Mater 6(12):983–992

13. Crawford R, Cramez MC, Oliveira MJ, Spence A (2002) The
Importance of Monitoring Mold Pressure During Rotational
Molding

14. “pericles_1548263444.”
15. Gogos G (Feb. 2004) Bubble removal in rotational molding. Polym

Eng Sci 44(2):388–394
16. Benzaine M, Tcharkhtchi A, Hafsaoui SL (2013) Thermal transfer

simulation regarding the rotational moulding of polyamide 11. J
Therm Anal Calorim 112(1):285–292

17. Tcharkhtchi A, Perrot E, Chinesta F (2004) Simulation of thermal
phenomena on the interphasemolten polymer-powder polymer dur-
ing rotational moulding,Plastics. InterPolymer Process XIX 3:296–
302

18. Sarrabi ATS, Boyer SAE, Lacrampe MF, Krawczak P (2013)
Metallocene polypropylene crystallization kinetic during cooling

in rotational molding thermal condition. J Appl Polym Sci
130(1):222–233

19. Bergamo L, Spa P (2019) “https://rotoworldmag.com/
measurement-and-control-of-pressure-inside-rotational-moulds/,”
Measurement and Control ofPressure Inside Rotational Moulds

20. K. R. Kent R (2016) Processing quality management, Qual. Manag.
Plast. Process., pp. 293–336

21. Sari P, Thomas S, Spatenka P, Ghanam Z, Jenikova Z (2019) Effect
of plasma modification of polyethylene on natural fibre composites
prepared via rotational moulding. Compos Part B Eng 177:107344

22. Kulikov O, Hornung K, Wagner M (2009) Novel processing addi-
tives for rotational molding of polyethylene. Int Polym Process
24(5):452–462

23. Robert A, Tcharkhtchi MKA, Briot J, Crawford RG (2001)
Rotomoulage du polyéthylène chargé Mica. matériaux Tech. 9–
10:37–43

24. Arkema (2005) “Rilsan PA 11,” Datasheet, pp. 1–32
25. Greco A, Maffezzoli A, Forleo S (2014) Sintering of PLLA pow-

ders for rotational molding. Thermochim Acta 582:59–67
26. Gomes FPC, Thompson MR (2018) Nondestructive evaluation of

sintering and degradation for rotational molded polyethylene.
Polym Degrad Stab 157:34–43

27. Nugent P (2011) 18 - rotational molding. William Andrew
Publishing

28. Farzaneh S, Hafsaoui ATSL, Mahmoud R (2013) Study of polyam-
ide 12 crystallization behavior within rotational molding process.
Iran. Polym. J. 22(3):187

29. Nugent P (2017) 15 - rotational molding. William Andrew
Publishing

30. Ebnesajjad S (2003) 9 - rotational molding and linings. William
Andrew Publishing, Rotational Molding and Linings

31. Tcharkhtchi A, Rotomoulage de pièces en matière thermoplastique,
Tech. l’ingénieur, vol. AM 3706, pp. 1–15

32. Fu JF, YuWQ,DongX, Chen LY, Jia HS, Shi LY, ZhongQD, Deng
W (2013) Mechanical and tribological properties of natural rubber
reinforced with carbon blacks and Al2O3 nanoparticles. Mater Des
49:336–346

33. Guo S et al (2019) Enhanced mechanical properties and electrical
conductivity of graphene nanoplatelets/Cu composites by in situ
formation of Mo2C nanoparticles. Mater. Sci. Eng. A
766(August):138365

34. Ceran ÖB, Şimşek B, Doruk S, Uygunoğlu T, Şara ON (2019)
Effects of dispersed and powdered silver nanoparticles on the me-
chanical, thermal, electrical and durability properties of cementi-
tious composites. Constr Build Mater 222:152–167

35. Montazeri A, Pourshamsian K (2012) Viscoelastic properties and
determination of free volume fraction of multi-walled carbon
nanotube/epoxy composite using dynamic mechanical thermal
analysis. Mater Des 36:408–414

36. Ferry JD (1970) Viscoelastic properties of polymers, 2nd edn. John
Wiley, New York

37. Montazeri A (2013) The effect of functionalization on the visco-
elastic behavior of multi-wall carbon nanotube/epoxy composites.
Mater Des 45:510–517

https://doi.org/https://rotoworldmag.com/measurementndontrolf-ressurenside-otationaloulds/
https://doi.org/https://rotoworldmag.com/measurementndontrolf-ressurenside-otationaloulds/

	Rotational Molding of Polyamide-12 Nanocomposites: Modeling of the Viscoelastic Behavior
	Abstract
	Introduction
	Materials description, processing, and methods
	Materials
	Polyamide 12 (PA-12)
	Nano carbon black (NCB)

	Rotational molding process
	Characterization methods
	Differential scanning Calorimetry (DSC)
	Dynamic thermos-mechanical analysis (DMTA)
	Microscopic observations
	Tensile test


	Experimental results and discussion
	DSC analysis
	DMTA measurement
	Choice of some parameters of the process
	Macro and microstructural analysis
	Tensile behavior

	Modeling
	WLF equation: Free volume fraction calculation
	Cole-Cole diagram

	Conclusion
	References




