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the extrusion process is well suited for the 
processing of highly viscous materials, the 
high shear can still cause self-heating of 
the material and possible side reactions. 
In addition, the short residence time 
limits the number of possible reactions, 
and finally, the scale up to industrial pilot 
and plants comes with many difficulties.

The nature of the reactive extrusion 
process involves a complex flow and a 
large number of parameters, dependent 
variables and phenomena that make it dif-

ficult to understand and therefore to control and to optimize. 
In response to this complexity, various strategies have been 
adopted for the modeling and simulation of reactive extru-
sion.[5] Two main methodologies can be identified.

The first strategy is based on a chemical engineering 
approach. This method consists in considering the extruder as a 
succession of ideal chemical reactors, which number and nature 
depend on the screw profile geometry. A global balance can then 
lead to an approximation of flow conditions. This method has 
been used in several studies, and among them, Choulak et  al. 
used it to develop a dynamic 1D model for automatic control of 
reactive extrusion.[7] This approach is especially well adapted for 
automatic control because of its fast execution due to the simpli-
fications and its ability to perform in transient regime. However, 
it requires to adjust parameters to each situation so it cannot be 
easily used as a predictive tool or to solve scale up issues.

The second strategy is a local description of the flow field 
based on continuum mechanics. It thus reproduces real condi-
tions without ideal representation. The flow is indeed simulated 
by resolving classical mechanics equations relatively to local 
geometry, kinematics, and boundary conditions. These models 
can therefore be totally predictive and can be used for process 
design, but also for its optimization and predictions in case of 
a change in the process. Whereas it is a more flexible and accu-
rate way to simulate the extrusion process, it requires a lot of 
time and computing power and is consequently not adapted for 
automatic process control.

As the flow in the extruder is unsteady, not isothermal, and 
3D, it is more accurate to use a 3D local simulation. But in 
some cases it appears that a 1D local description of the flow 
and temperature field at steady-state can be sufficient for most 
engineering issues.[8] In addition, it allows creating a software 
easily usable for process predictions without needing exces-
sive time or computing power. We used for our simulation 
the LUDOVIC software developed by Vergnes et  al. for twin-
screw extrusion that uses this 1D local description.[9] Actually, 

The purpose of this paper is to combine a classical 1D twin-screw extrusion 
model with machine learning techniques to obtain accurate predictions of a 
complex system despite few data. Systems involving reactive polyethylene 
oligomer dispersed in situ in a polypropylene matrix by reactive twin-screw 
extrusion are studied for this purpose. The twin-screw extrusion simulation 
software LUDOVIC is used and machine learning techniques dealing with low 
data limit are used as a correction of the simulation.

1. Introduction

Reactive extrusion is known to be an efficient and economical 
way of reactive processing of thermoplastic polymers. Co-
rotating and counter-rotating twin-screw extrusion in particular 
are widely used for bulk polymerization, chemical modification 
of polymers and reactive compatibilization of polymer blends.

Whereas polymer synthesis and post synthesis modifications 
were originally exclusively carried out in batch mixers, some 
valuable features of extrusion process make it an advantageous 
alternative for some of these reactions. As a matter of fact, aside 
from being fast and continuous, this process makes possible 
to perform polymerizations or chemical reactions without any 
organic solvent (environment-friendly). It is also an efficient 
way to devolatilization, which can be useful to remove volatile 
organic compounds (VOC) such as monomers or reaction by-
products. Moreover, the adaptability of the screw design helps 
the formulation of complex materials. The screw profile can 
indeed be specifically designed for each formulation and define 
different areas of feeding, kneading, shearing, or conveying, 
depending on the expected final properties of the material.[1]

As reported in the literature, all these features have been 
widely exploited through a large number of chemical reactions 
and polymer systems studied.[2–6] However, some disadvantages 
of using the extruder as a reactor must be considered: While 
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because of the additional complexity of reactive extrusion, most 
simulations of reactive extrusion are based on simplified steady 
state 1D models. It however involves coupling with several sub-
models to obtain constitutive equations (viscosity, chemical 
kinetics, mass and temperature transfers…), which is not trivial 
and takes time.[10] Yet, despite many researches and published 
papers, there is a lack of describing complex polymer formula-
tions such as reactive extrusion systems.

In these circumstances and given the progress made today 
in artificial intelligence tools dealing with small amounts of 
data, it seems interesting to try developing models based on 
data to reinforce possible weaknesses in existing physical 
models, to enrich the models when we are confident in the data 
collected, or even to improve the data when they present a large 
variability. Finally, the aim of this work is to combine the logic 
of physical models with the accuracy of machine learning tech-
niques to describe the reactive extrusion of a complex system. 
This reactive system is based on the in situ reaction of a reac-
tive polyethylene oligomer with a triamine or a sorbitol while 
dispersing in a polypropylene (PP) matrix.

2. Experimental Section

In this work, reactive systems that are model systems, but also 
complex were chosen to study, in order to justify the use of arti-
ficial intelligence methods. The chosen systems consist of dis-
persing a polymer network resulting in the in situ reaction of 
a polyethylene oligomer grafted with maleic anhydride and a 
triamine or a sorbitol in a PP matrix. The reactions were per-
formed by a one-step reactive extrusion process. Several process 
parameters were tested in order to analyze their influence on 
the final materials. The processes were also simulated thanks 
to the software LUDOVIC, whose results have then been com-
pared with the experiments. Finally, machine learning tech-
niques were employed in order to improve the simulation by 
bringing a correction to its outputs.

2.1. Materials

In the present study, a system previously developed in lab in 
the framework of Ph.D. thesis was used.[11] Actually, the reac-
tion between a linear polyethylene oligomer grafted with maleic 
anhydride derivates (Ceramer 1608, Baker Hughes) and a trifuc-
tional polyetheramine oligomer (Jeffamine T-403, Huntsman) 
was studied. The reaction results in a crosslinked network with 
an equilibrium storage modulus value similar to synthetic rub-
bers (Ge ≈ 2 × 106 Pa). The objective of the present paper was 
to perform in situ this reaction in a PP matrix by reactive extru-
sion. A similar system was also studied by replacing the tri-
amine with a Sorbitol (D(-)-Sorbitol, VWR Chemicals).

The PP used in this work was an isotactic homopolymer 
(PPH7060, Total). It has a melting temperature of 165 °C and 
a density of 0.905 g cm−3. Its melt flow index was 12 g/10 min 
(230 °C, 2.16 kg), which corresponds to a zero shear viscosity of 
3.103 Pa s (T = 180 °C).

The Ceramer 1608 from Baker Hughes used in this study 
was a solid at room temperature. It has a melting point of 75 °C 

and a zero shear viscosity of η0 = 2 Pa s (T = 180 °C). The tech-
nical datasheet provided by the supplier specified an acid value 
of 154 mg KOH/g and a saponification value of 215 mg KOH/g. 
The datasheet also specified that the maleic anhydride deri-
vates used for the functionalization of Ceramer 1608 were not 
only maleic anhydride but also mono-isopropyl maleate (Z and 
E isomers) and maleic acid (Z and E isomers). For simplifica-
tion purposes, maleic anhydride will be considered as the only 
maleic anhydride derivate of this functionalized oligomer.

The Jeffamine T-403 trifunctional polyetheramine oligomer 
from Huntsman was liquid at room temperature. It has a density 
of 0.978 g cm−3 with a zero shear viscosity of η0 = 0.07 Pa s (25 °C), 
a molar mass of 400 g mol−1, and a amine hydrogen equivalent 
weight of 81 g eq−1 according to its technical datasheet.

The Sorbitol was conditioned as a white solid powder. The 
chemical structures of the reactants are presented in Table 1.

The amount of functional groups in the oligomers has been 
determined from the acid and saponification values in the case 
of the Ceramer 1608 and from the amine hydrogen equivalent 
weight in the case of Jeffamine T-403. In the case of Sorbitol, 
only the two primary alcohol functions were considered.

The reagent ratios of the two systems were determined 
assuming near stoichiometry. The ratio in weight of Ceramer 
1608 against Jeffamine T-403 was set at 75/25, and the one of 
Ceramer 1608 against Sorbitol was set at 85/15.

The reaction mechanisms are shown in Figure  1. The reac-
tion between the Ceramer and the triamine involved a reaction 
between the maleic anhydride groups of the Ceramer and the 
amine groups of the Jeffamine, yielding a cyclic imide moiety 
along with water as a by-product. As for as the reaction between 
the Ceramer and the Sorbitol, the maleic anhydride cycle was 
opened, forming an ester function and a carboxylic acid function.

Table 1.  Chemical structures of the reactants constituting the reactive 
systems.
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These reactive systems were quite complex due to their 
chemistry and the solubility of the reagents, and it was there-
fore difficult to transcribe the real conditions in a simulation 
such as LUDOVIC in terms of, for example, network forma-
tion (reaction conversion) as a function of time and tem-
perature. This was where data science and machine learning 
become interesting to use to improve existing simulations.

2.2. Process

The chemical extrusion was carried out in one single step 
with a co-rotating twin-screw extruder (Leistritz ZSE18, L/D = 
60, D  = 18  mm). The PP pellets and Ceramer were intro-
duced together at the entrance by a hopper, the Sorbitol was 
introduced at the same spot with a powder feeder, and the Jef-
famine was added once passed the melting zone at bloc 3 by 
means of a HPLC pump. A vent was placed over the second 
last bloc in order to remove the gases generated during the pro-
cess. The final materials were cooled by air at the die exit of the 
extruder and then pelleted. All the experiments were carried 
out at 200 °C with the first blocs at lower temperature to mini-
mize clogging effects at the inlet. The temperature and screw 
profiles used for all the experiments are described in Figure 2.

The formulations with the system Ceramer/Jeffamine dis-
persed in PP were carried out as specified in Table  2, with 

screw rotation speeds from N = 200 to 1000 rpm and exit flow 
rate from w  = 3 to 20 kg h−1. Two formulations were tested for 
this system with φ = 15 wt% and φ = 30 wt% of dispersed phase. 
Concerning the system Ceramer/Sorbitol, it was dispersed at 
φ  = 20 wt% in PP for different processing conditions: screw 
rotation speeds of N = 300 and 800 rpm, and exit flow rates of 
w  = 5 kg h−1 and w  = 10 kg h−1.

Temperature and pressure were measured at the die 
entrance. However, the thermocouple used inside the die did 
not measure the true temperature at the core of the material 
but the temperature on the sides, thus influenced by the die 
temperature. Some temperatures were then measured at the 
exit by means of a manual thermocouple. The experiments per-
formed are summarized in Table 2.

2.3. Characterizations

Tensile-test pieces (5A) were injected with a Babyplast injection 
press at 200 °C and 90  bar. Young modulus was determined 
by tensile test with a speed of 1 mm min−1 and stress at yield, 
elongation at break, and stress at break were measured with a 
tensile speed of 50 mm min−1.

Morphologies were characterized by scanning electronic 
microscopy (SEM) with ZEISS MERLIN COMPACT VP. The 
samples were prepared from the injected tensile-test pieces 

Figure 1.  A) Reaction between Ceramer 1608 and Jeffamine T-403 oligomers; B) Reaction between Ceramer 1608 and Sorbitol.

Figure 2.  Scheme of the screw configuration used in the study.



(5A). They were then fractured in liquid nitrogen and metal-
lized with 10 µm of a copper coating.

The kinetics of the chemical reaction leading to the forma-
tion of a chemical network was studied from rheological studies 
using an Ares-G2 strain controller rheometer using a geom-
etry of parallel plates of 25  mm diameter and a gap of 1  mm 
spacing. The variation over time of the rheological behavior of 
the premixed reactants were thus measured, under an angular 
frequency of 1  rad s−1 at 140 and 180 °C under nitrogen. The 
Ceramer and the Jeffamine were premixed in an internal mixer 
at T = 110 °C and 50 rpm for 2 min. The Ceramer and the Sorb-
itol were first premixed at T  = 140 °C, N  = 300  rpm, and for 
a w  = 3 kg h−1 flow rate in the extruder previously described. 
They were then mixed in an internal mixer at T = 140 °C and 
N = 60 rpm for 5 min to extract the gases that formed bubbles 
inside the material and may alter the measures.

The viscoelastic behavior of the materials was studied with 
frequency sweep measurements using plate geometry of 8 mm 
diameter and 1 mm gap. A frequency sweep was applied from 
100 to 0.01 rad s−1 under a strain of 2% (linear regime). These 
tests were performed on the resulting samples of the kinetics 
measurements.

3. Modeling and Machine Learning

3.1. Simulation

The LUDOVIC simulation software that we used here has 
been developed to simulate the flow along a screw profile cor-
responding to industrial reality. It was also important to be 
executable on a personal computer without needing exces-
sive computation time or power. To meet these expectations, 
LUDOVIC uses a global model describing the total flow by 
linking local 1D models. Various singular strategies and sim-
plifications have therefore been used to achieve sufficient preci-
sion despite the 1D considerations described below.

It is commonly admitted in these process conditions that the 
material melting occurs rapidly after reaching the first restric-
tive element. Consequently, this phenomenon is by default 
assumed instantaneous in the simulation. Meanwhile, it is pos-
sible for the user to import a specific melting model.

Concerning then the melt conveying section, two main dif-
ferent elements have to be considered and require distinct 
methodologies: the screw elements and the kneading discs (left 
and right-handed). The screw elements are often treated in 1D 
or 2D using a model flattening out the screw channel with a 
sliding barrel moving at the top. Yet, the strategy employed in 
this software uses a different 1D model following cylindrical 
coordinates along an eight-shaped pattern representing the 
screw channel. The channel section is considered to be rectan-
gular and perpendicular to the screw flights with a constant 
width and Stokes equations are solved in this section. The 
kneading discs are also usually simulated using 2D approaches 
but a 1D approach is necessary to ease the calculations. Based 
on previous studies, only the peripheral flow in the θ-direction 
around a disc is thus considered. The representations of both 
these elements are schematized in Figure 3.

In these configurations, the flow is locally calculated as 
Newtonian and isothermal. It is however expressed following 
Newtonian flow equations that include a specific viscosity that 
is a function of the shear rate and the temperature. This vis-
cosity can be then defined apart and follow specific rheological 
models such as power law, Carreau–Yasuda or Casson. The 
mean viscosity in channel direction and the mean tempera-
ture can be then calculated. A 1D approach is used to define 
the temperature. As the screws in a twin-screw extruder are not 
totally filled, the filling ratio is unknown. Consequently, the cal-
culation has to follow an iterative procedure: The die tempera-
ture is randomly defined, and the simulation is run backward 
the flow, from the die until the feeding section. If the final pres-
sure and temperature do not match the expected inlet ones, the 
exit temperature is adjusted, and the calculations are reiterated 
until the match with the inlet conditions. The exact equations 

Table 2.  Formulations and processing conditions for the different reactive blends.

System studied % Dispersed phase φ Exit flow rate w  [kg h−1] Rotation speed N [rpm]

75/25
Ceramer 1608
Jeffamine T-403
+
PPH7060

15%
(12% Ceramer 1608;
3% Jeffamine T-403)

3 200 to 1000

5 200 to 1000

8 300 to 1000

10 600 and 1000

15 600 and 1000

20 1000

30%
(23% Ceramer 1608; 7% Jeffamine T-403)

3 150 to 600

5 600 and 1000

8 600 and 1000

10 600 and 1000

85/15
Ceramer 1608
Sorbitol
+
PPH7060

20%
(17% Ceramer 1608;

3% Sorbitol)

5 300 and 800

10 300 and 800



and methods used in the simulation have been fully detailed by 
Vergnes et al. in their article.[9]

Despite all these drastic simplifications, LUDOVIC software 
has been validated by numerous experiments and compared 
with 3D simulations.[12,8] It has also been widely used since its 
creation in various extrusion domains, such as polymer blends, 
in situ nanocomposites, extrusion cooking of cereal-based prod-
ucts, and more recently, glass and plant fibers break during 
compounding.[13–17]

For this study, the screw profile, extruder and die dimensions 
as well as barrel temperature were defined to correspond to our 
experiments. With respect to the material properties, since the 
software does not consider a dispersed phase, we assumed that 
the rheological behavior of the formulation is only determined 
by the matrix. As PP is the matrix, the simulation has been run 
considering one unique PP phase. The physical properties of 
this phase were defined from the experiments of Fel et al. who 
obtained good results using LUDOVIC to simulate twin-screw 
extrusion of the same PP as the one we used.[18] A Carreau–
Yasuda law was thus applied using the following equation:

10

1

T T
a

m

aη η λ γ( )( )( ) ( )= +
−

(1)

where η0 is the zero shear viscosity, λ is the relaxation time, 
γ  is the shear rate, a and m are specific parameters. The values 
of these parameters and the thermal properties are summa-
rized in Table 3.

Finally, the heat transfer coefficient between the polymer and 
the die have been fixed at 50 W m−2 K−1 and the one between 
the polymer and the barrel was of 350 W m−2 K−1, which corre-
sponds to values used in similar simulations.[9,19]

3.2. Machine Learning Techniques

In the past, science was based on the extraction of models, 
these being simply the causal relation linking causes (inputs) 
and responses (outputs). This (intelligent) extraction or dis-
covery was performed by smart (and trained) human minds 
from the data provided by the direct observation of the reality 

or from engineered experimental tests. Then, with the discov-
ered, derived, or postulated model, predictions were performed, 
leading to the validation or rejection of these models.

Thus, physics-based models, often in the form of partial dif-
ferential equations, were manipulated by using numerical tech-
niques, with the help of powerful computers. However, some-
times models are not available, or they are not accurate enough. 
In that case, the most natural route consists of extracting the 
model from the available data (a number of inputs and their 
associated outputs). When data is abundant and the time of 
response is not a constraint, deep-learning could constitute the 
best alternative. However, some industrial applications are sub-
jected to: i) scarce data and ii) necessity of learning on-the-fly 
under stringent real-time constraints. There is no free lunch: 
to compensate the lack of data some extra-knowledge must be 
incorporated during the model extraction (discovery).

In what follows, we will consider that data and perform effi-
cient regressions for correlating the chosen inputs with the 
selected outputs. To account the just mentioned difficulty asso-
ciated with the necessity of proceeding in the low-data limit, we 
will consider two techniques that the authors proposed recently: 
i) a sparse collocated parametric separated representation,
called sPGD, and ii) a regression based on the construction of
goal-oriented non-Euclidean metrics able to compare data, that
is calculating the distance between data. The last technique was
called Code2Vect.[20,21] Both techniques are revisited and sum-
marized as follows.

3.2.1. Sparse Regression -sPGD

Linear regression is the simplest way of linearly relating input 
parameters with output quantities of interest. For illustrating 
the procedure (for additional details the interested reader can 
refer to Ibanez et  al. (2018)) we consider a given output (u) 
expected depending on the two input parameters p and q, that 
is, u(p,q). The simplest regression, as previously indicated con-
sists in the linear relation presented in Equation (2).

,u p q a b p c q( ) = + × + × (2)

If three data is available, that is, the output u1 related to the 
inputs p1 and q1; the output u2 related to p2 and q2, and finally 
u3 associated with p3 and q3, one could calculate the three coef-
ficients (a, b, and c) in Equation (2).

Figure 3.  Geometries of a screw element (the C-shaped chamber) and a 
bilobal kneading disc.[9]

Table 3.  PP thermal properties and Carreau–Yasuda parameters used in 
the simulation.

Thermal properties Solid state Liquid state Carreau–Yasuda  
parameters

Heat capacity [J kg−1 K−1] 2500 2500 η0 [Pa s] 1 000

Density [kg m−3] 900 750 λ [s] 0.4

Thermal conductivity  
[W mK−1]

0.33 0.33 a 0.21

Melting temperature [°C] 165 m 0.6

Melting enthalpy [kJ kg−1] 209 Tref [°C] 200

Ea [J mol−1] 40 000



However, very probably the parametric dependence u(p,q) is 
nonlinear, and with no more data, calculating richer regressions 
seems out of reach. Here a solution exists, the sPGD instead of 
considering the simple approximation given by (2), considers

,U p q P p Q p( ) ( ) ( )= × (3)

that being both functions P(p) and Q(q) unknown defines a 
nonlinear problem, to be calculated in the solution procedure. 
In that case one proceeds by linearizing, that is, by assuming 
Q(q) given and looks for P(p). Thus, for computing P(p) the 
three available data enables an approximation richer that the 
linear previously considered. Then, from the just computed 
P(p) one looks to update Q(q) again with three available data.

Thus, P(p) and Q(q) could be approximated using a quadratic 
approximation, leading to richer nonlinear approximations. 
The solution compactness is enforced by maximizing sparsity.

As soon as functions P(p) and Q(q) are calculated, the output 
U in Equation  (3) can be easily and quickly calculated for any 
value of the inputs p and q.

3.2.2. Code2Vect

Classification and regression could be facilitated if the outputs 
difference, for example, |u1 − u2 |, scales with the data distance, 
for example, ,1 2 1 2p p q q − − . If the difference of the output 
scales with the distance between the data-points, as soon as a 
new data comes, its associated output could be calculated by 
interpolating the ones at the neighbor data-points.

However, sometimes two data points can be very close while 
the associated outputs differ considerably. In that case, in 
Argerich et  al. (2019) it was proposed mapping the data point 
into a reduced space, for example, (pi,qi) into zi, such that the 
distance |zi − zj| scales with |ui  − uj|.[21] Thus, classification and 
regression become almost trivial in the z-space. The mapping 
that transform (p,q) into z can be viewed as the construction of a 
non-Euclidian metric, and was detailed in Argerich et al. (2019).

3.2.3. Model-Data Hybridization

Sometimes one measures data, for example, uexp(p,q), that dif-
fers from a model prediction based on existing knowledge or 

physics, that provides umod(p,q). When both differ significantly 
the model prediction cannot be employed anymore without 
incurring risks. Two valuable gateways consist in:

• Elaborating more accurate models. However, this route im-
plies time and effort.

• Elaborate a model of the measured data, that is a regression
for expressing the dependence between uexp and the param-
eters, in our example, p and q. This pragmatic alternative is
confronted to the necessity of having enough data for con-
structing the regression by using for example one of the tech-
niques previously described (sPGD and Code2Vect).

An appealing alternative route consists in assuming that the 
measures are expressed from the model and its intrinsic devia-
tion, that is, uexp(p,q) = umod(p,q) + C(p,q), where C refers to the 
correction. By assuming that if the model is a reasonably good 
approximation of the real system, the correction is much less 
rich that the data itself, the construction of C(p,q) will require 
much less data for the same degree of accuracy. Thus, the avail-
able data, even if not so big, suffices for creating the regression 
as discussed before. This is the rationale behind the co-called 
Hybrid-Twin paradigm, as described in ref. [22].

4. Results and Discussion

4.1. Kinetics Study

A study of the reactions kinetics of the two reactive systems has 
been performed according to the rheological method described 
in the experimental part. As shown in Figure  4, the reaction 
between Ceramer and Jeffamine is clearly faster than the reaction 
with the Sorbitol at any temperature, even if the Ceramer has 
been premixed longer with the Sorbitol than with the Jeffamine.

The final shear storage moduli of these systems are both 
above 3.106  Pa, with higher values for the Ceramer/Jeffamine 
system. The viscoelasticity studies are present in Figure 5, they 
reveal that these reactive systems behave like solids at these 
temperatures (G′  ≫ G″, tan(δ) ≈ 10−2) so that we can assume
that they form a high-density crosslinked network.

With such systems with a fast kinetics, it is difficult to obtain 
a relevant kinetic model, and the mixing conditions in the 
extruder are not well known for these systems. At higher tem-
peratures such as our processing conditions, the reactions are 

Figure 4.  Variation of the absolute complex viscosity versus time for the two reactive systems at the temperature T = 140 and 180 °C; ω = 1 rad s−1.



even faster, and for the Ceramer/Jeffamine system, the reaction 
occurs before the dispersion in the matrix. The viscosity ratio 
between the reactive system and the PP matrix is then advan-
tageous for a dispersion in the PP, but as showed later, this 
results in a coarse morphology. However, the Ceramer/Sorbitol 
has a slower kinetics that allows a lubrication phenomenon 
leading paradoxically to a better morphology.

4.2. Morphologies

The high reactivity of the dispersed Ceramer/Jeffamine system 
can be an advantage in reactive extrusion process because of 
the short residence times (between 15 and 90 s in the present 
study), however it can also affect the quality of the dispersion. 
Actually, the SEM analysis reveals large and deformed nodules 
(about 10  µm). This phenomenon can be explained by a fast 
reaction occurring before the system reaches a good dispersion 
in the matrix. Consequently, solid networks are created and 
avoid better dispersion afterward.

No real difference in the morphologies can be clearly noticed 
with the variations of process conditions. The SEM analysis 
also pointed out a lack of affinity between the matrix and the 

nodules as we could observe their detachment from the matrix. 
This lack of affinity can also be a notable factor explaining the 
shape of the nodules.

The Figure 6 presents images obtained with the samples that 
have been processed at 

w  = 10 kg h−1 and N = 600 rpm for 15% 
and 30% of dispersed phase.

The SEM observation performed on the Ceramer/Sorbitol 
system highlight the same lack of affinity between the different 
phases. However as expected, the nodules obtained are more 
spherical with a better dispersion with a characteristic size of 1 µm. 
No significant differences in morphologies can be linked to process 
variations. Therefore, the slower reaction seems to have improved 
the shape and size of the nodules. But it is worth noting that the 
dispersion of nodule sizes is quite large, maybe due to not opti-
mized process conditions (screw profile with insufficient shear rate 
for instance). Figure 7 presents images obtained with the samples 
that have been processed at w  = 10 and 5 kg h−1 with N = 300 rpm.

4.3. Mechanical Tests

To measure the impact of the oligomer network dispersion in the 
PP matrix, tensile tests have been performed on samples differing 

Figure 5.  Variation of storage modulus G′ and loss modulus G″ versus frequency of the two systems at T = 200 °C.

Figure 6.  SEM images obtained from the observation of Ceramer/Jeffamine system dispersed in PP; processed at 
w  = 10 kg h−1 and N = 600 rpm for 

A) 30% and B) 15% of dispersed phase. Magnitude: x500; Power: 5 kV.



by their amount of dispersed phase (φ) and the processing condi-
tions (flow rate (

w) and screw rotation speed (N)). For comparison, 
these tests have also been performed on the raw PP used in the 
formulation processed in the same conditions than the other for-
mulations. Young modulus (E), yield stress (σy), and strain at break 
(εb) obtained are reported in Table 4.

First, it appears that the addition of a dispersed phase seems to 
alter the mechanical properties. This could be explained by the poor 
compatibility between the PP phase and the PE-based dispersions. 
Actually, this kind of blends generally requires a compatibilization 
between both phases to obtain improved mechanical properties.

Then, by studying the influence of process parameters, it 
seems that a high flow rate of 10  kg h−1 results in a lower 

Young's modulus and a higher elongation at break than lower 
flow rates. Such conditions induce a high shear rate which 
could induce a degradation of the PP matrix explaining these 
results. Regarding the screw speed, this parameter seems 
to have much more influence on the Ceramer 1608/Sorbitol 
system than on the Ceramer 1608/Jeffamine T-403 system. 
The main parameter influenced by the rotation speed is the 
residence time, and although this parameter has an influ-
ence on the final reaction speed of the Ceramer 1608/Sorb-
itol system, it has no influence on that of the Ceramer 1608/
Jeffamine T-403 system because the reaction time is shorter 
than the residence time and the material therefore stops 
changing.

Figure 7.  SEM images of Ceramer/Sorbitol system dispersed in PP. Processing conditions w  = 10 kg h−1 for C) and at w  = 5 kg h−1 for D) with N = 
300 rpm. Magnitude: x5000; Power: 5 kV.

Table 4.  Mechanical properties of blends processed at different screw rotation speeds (N), different exit flow rates ( w ) and for different amounts of dispersed phase (φ).

Material φ [%]
w [kg h−1] N [rpm] E [MPa] σy [MPa] εb [%]

Raw extruded PP 0% 3 600 1500 ± 100 34 ± 1 170 ± 20

PPH7060
+ Ceramer 1608
+ Jeffamine T403

15% 3 200 1300 ± 100 28 ± 1 10 ± 10

600 1300 ± 100 29 ± 1 15 ± 10

1000 1200 ± 100 29 ± 1 20 ± 10

5 300 1400 ± 100 30 ± 1 15 ± 10

600 1500 ± 100 30 ± 1 15 ± 10

1000 1400 ± 100 28 ± 1 15 ± 10

10 600 1100 ± 100 29 ± 1 30 ± 20

1000 1000 ± 200 27 ± 1 30 ± 20

30% 3 200 1200 ± 100 26 ± 1 10 ± 10

600 1100 ± 100 26 ± 1 5 ± 10

10 600 1000 ± 100 24 ± 1 10 ± 10

1000 1000 ± 100 24 ± 1 10 ± 10

PPH7060
+ Ceramer 1608
+ Sorbitol

20% 5 300 1500 ± 100 32 ± 1 32 ± 10

800 1500 ± 100 32 ± 1 10 ± 10

10 300 1400 ± 100 32 ± 1 78 ± 10

800 1400 ± 100 32 ± 1 16 ± 10



4.4. Results: LUDOVIC versus Experiments

Remember that we used the hypothesis that the rheological 
behavior of the compound material depends only on the proper-
ties of the matrix. The simulation has thus been run considering 
only one single PP phase in the extruder, implying no differences 
between the different formulations studied. Figure 8 shows, for 
the system Ceramer/Jeffamine, the comparison between simula-
tion outputs and experimental data. It is worth noting that the 
1D global model of Ludovic software model fits well the experi-
ments (around 20% of maximum error) despite the numerous 
simplifications and hypothesis implied in this simulation. How-
ever, some inaccuracies can be noticed, particularly at high flow 
rates. The previously mentioned problem of the extruder ther-
mocouple appears clearly in the plot of the temperatures. The 
temperatures measured manually are more relevant, but they do 
not perfectly match between the experiments and the model. It 
can however be explained by the inaccuracy of the experimental 
data that have been performed with a manual thermocouple at 
the exit of the extruder, and it is particularly tricky to obtain the 
exact core temperature of the material this way. Finally, even if 
the results of the simulation can be enough for most engineering 
studies, they also can be improved, and machine learning can be 
a solution to bring this additional accuracy.

Similar comparison between LUDOVIC's results and 
experimental data for the system Ceramer/Sorbitol is shown 

in Figure 9. As said earlier, the simulation considers a single 
PP phase. The same simulation values have thus been used 
for this comparison. For this system, the simulation seems to 
fit less the experiments and to over predict the results. There-
fore, it appears that the dispersed phase has finally a significant 
influence on the behavior of the material. Actually, as it can be 
seen in Figure 3, this reaction is slower and as the viscosities 
of the reactants are significantly lower than the viscosity of the 
PP (viscosity ratio of 7.10−4 between the Ceramer and the PP), 
we can assume that the reactive system has a lubricant effect 
on processing condition before creating a dispersed phase of 
sufficiently high viscosity to be dispersed in the PP matrix. 
This phenomenon has been described by Cassagnau et  al. for 
various reactive systems.[23] Consequently, we cannot approxi-
mate the viscosity of the material as the viscosity of the matrix 
anymore, but as a lower apparent viscosity (lubricant effect), at 
least at the early stage of mixing. Finally, it appears that clas-
sical modeling simulations are not perfectly adapted to describe 
polymer blends, especially low viscosity ratio blends.

4.5. Machine Learning

In this section, the numerical results associated to the pre-
vious section are presented and discussed. The section is struc-
tured as follows: the first part addresses the data sets and the 

Figure 8.  Plots of temperature, engine power, pressure, and torque obtained by the simulation versus these parameters obtained experimentally 
under different processing conditions. The dotted lines show the correlations between experimental and simulation datas. Reactive system: Ceramer/
Jeffamine phase dispersed in PP. * T extruder: Temperature measured from extruder thermocouple, T manual: Temperature measured in the bulk 
polymer at the die exit.



employed numerical algorithms. Then, the results associated 
with a full data-driven regression and a hybrid-twin solution 
will be exposed. Finally, some conclusions will be drawn.

4.5.1. Problem Statement

Data is coming from two different sources. From one hand, data 
coming from the Ludovic simulation software, that will be called 
simulation data. On the other hand, data coming from experi-
mental measures will be referred as experimental data. Both data 
sets have the same four outputs to be predicted namely, torque, 
pressure, engine power, and exit temperature. Simulation data has 
two inputs: flow rate and rotation speed, whereas experimental 
data, other than the two previous inputs, includes an extra input 
parameter, the dispersed phase. This last parameter was not con-
sidered in the model because of the Ludovic model limitations.

In the following, each of the four outputs will have a ground 
truth and an approximate model. The basic truth for torque, 
pressure, and engine power are the experimental measure-
ments, while the approximate model consists of the simulation 
data. On the contrary, Ludovic software is able to give a more 
accurate exit temperature measurement since it can extract the 
temperature at the middle of the die section. Contrarily, the 
temperature sensor is located on the die wall where the tem-
perature significantly differs from the actual temperature. For 
that reason, we will consider that the simulation temperature 

dataset contains the ground truth whereas the experimental 
measures define the approximate model.

The experimental dataset contains 47 samples (or measure-
ments). The same 47 samples were replicated from simulation 
(Ludovic). The main goal is to have a regression model which is 
able to infer the outputs for any point in the parametric space. 
For that purpose, the initial data set is split into 38 points to 
construct the regression (training) and 9 points to check the 
prediction accuracy (test).

As previously reported, we have used two different regres-
sion techniques, the sPGD and the Code2Vect – C2V.

Finally, we will compare two different approaches:

•  The first, which will be called full data-driven, creates a regres-
sion directly on the ground truth.

• The second, which will be called hybrid-twin, involves a re-
gression of the difference between the ground truth and the
approximate model. By doing that, a certain amount of the
correlations already present in the approximate model were
described and therefore, the regression of the deviation is ex-
pected to be more linear.

4.5.2. Full Data-Driven Regression

As mentioned above, the first approach considers a direct 
regression on the ground truth without considering the effect 
of the approximate model.

Figure 9.  Plots of engine power, pressure, and torque obtained by the simulation versus these parameters obtained experimentally at different flow 
rates and screw rotation speeds. The dotted lines show the correlations between experimental and simulation datas. Reactive system: Ceramer/Sorbitol 
system dispersed in PP.



Figure 10 shows the sPGD regression results for the 4 outputs 
using a full data-driven modeling. The accuracy of the regres-
sion is quite acceptable, as the real quantity of interest follows 

the same tendency than the estimated one. The exit temperature 
presents less deviation than the other three quantities, due to the 
fact that the ground truth for the temperature is the simulation 

Figure 10.  sPGD full data-driven results for engine power (top left), exit pressure (top right), exit temperature (bottom left), and torque (bottom right).

Figure 11.  C2V full data-driven results for engine power (top left), exit pressure (top right), exit temperature (bottom left), and torque (bottom right).



dataset, where the use of a deterministic model avoids dispersion. 
In what follows the computed predictions obtained by the regres-
sion for the data used in the regression construction (referred in 
Figure 9—and the next Figures—as “Inside Training”) and those 
that were not considered in the training (referred in Figure 9 as 
“Outside Training”) are compared with the collected data.
Figure 11 shows the Code2Vect regression results in the full 

data-driven case. As it can be seen, the results are again accept-
able. It can be noticed that C2V generates a model that predicts 
very well in the training points (blue points), however, in some 
cases the errors in the test dataset (black points) are higher 
compared with the sPGD results.
Table  5 reports the relative errors for the full data-driven 

case. The relative error has been normalized with respect to the 
mean value of each quantity of interest, respectively. As it can 
be clearly seen, the C2V presents less error in the training-set 
in comparison with the sPGD technique. However, when con-
sidering the test-set, the sPGD seems globally more accurate.

4.5.3. Hybrid-Twin Regression

The second approach consists of subtracting the approximate 
model to the ground truth. A regression is applied to that 

deviation. By doing so, we expect that certain correlations will 
be already explained by the approximate model facilitating the 
regression construction and its performances. Thus, the model 
of the deviation is expected to be easier to capture than the full 
data-driven route.
Figure 12 shows the estimation of the four outputs when 

using the hybrid-twin procedure using the sPGD regression to 
model the deviation. As it can be appreciated, the hybrid-twin 
methodology behaves slightly better in the training-set. When 
considering the test-set, the hybrid-twin methodology is on the 
same level of accuracy than the full data-driven approach.
Figure  13 reports similar results when using the C2V for 

modeling the deviation. As it can be appreciated, C2V model 
predicts very accurately within the training set. When consid-
ering the test set, C2V behaves better than sPGD for the engine 
power and torque.
Table  6 reports a relative error for both C2V and sPGD 

techniques. As it can be seen, C2V for the torque and sPGD 
for engine power, perform better than the full data-driven 
approach. It is also important to highlight that the exit temper-
ature is harder to predict than the full data-driven case. This 
issue can be explained by the fact that the measured and the 
computed temperatures do not correspond, one is the bulk 
material and the other is measured near the die wall.

5. Conclusion

The aim of this work was to use machine learning tools com-
bined with a simulation software, based on physical models, to 
obtain accurate predictions of a complex system with few exper-
imental data. The framework of the present study is the reac-
tive extrusion process for the in situ synthesis of a crosslinked 

Table 5.  Relative error for the full data-driven modeling.

Error DD % Engine power Exit pressure Torque Exit temperature

sPGD train 12.6 7.2 14.0 0.4

C2V train 2.4 1.6 1.3 0.0

sPGD test 14.9 6.5 8.8 0.6

C2V test 8.0 12.7 13.7 0.9

Figure 12.  sPGD hybrid-twin results for engine power (top left), exit pressure (top right), exit temperature (bottom left), and torque (bottom right).



dispersed phase. This dispersed phase is based on the reaction 
between a maleic anhydride functionalized PE oligomer 
phase with either a triamine or a diol. Viscoelasticity measure-
ments proved that these reactive systems lead to high-density 
crosslinked networks (Ge ≈ 3 × 106 Pa). Kinetics studies showed 
that the reactivity of the first system (Amine based reactions) 
is really fast (<10  s at these processing temperatures) which 
prevents a good dispersion (coarse morphology) in PP during 
the extrusion process. The kinetics of the second system (sorb-
itol-based reaction) being slower, the resulting morphology is 
finer but a lubricant effect was observed. Finally, in both cases 
morphologies revealed a lack of affinity between the phases, 
causing poor properties of the final materials. The twin-screw 
extrusion 1D software Ludovic was used to model the experi-
ments and it appeared that classical modeling simulations are 
in some cases not perfectly adapted to describe polymer blends, 
especially low viscosity ratio blends.

Machine learning methods were then applied to these 
results in order to improve the predictions. The amount of data 
being limited (47 samples here), two different regression tech-
niques dealing with low data were experimented: sPGD and 
Code2Vect (C2V), following two different strategies. The first 
one, called “full data-driven,” creates a regression directly on 
the ground truth (basically experimental data), and the second 
one, called “hybrid-twin”, involves a regression of the differ-
ence between the ground truth and the approximate model 
(Ludovic software data) that can be seen as a correction of the 
model. As a result, both strategies and both techniques suc-
ceed to bring acceptable predictions of the experiments despite 
few data. Differences between the two regression techniques 
are however noticeable depending on the predicted parameter. 
The hybrid-twin strategy seems also to give slightly better 
results than the full data-driven one. Moreover, the hybrid-twin 
strategy has the advantage to predict precisely a complex pro-
cess whether considering physical phenomenon and theories 

from the model. It thus combines the logic of physical models 
with the accuracy of machine learning techniques in low data 
conditions.
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