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Abstract

We present an algorithm to learn the relevant latent variables of a large-scale discretized physical system and predict its time
evolution using thermodynamically-consistent deep neural networks. Our method relies on sparse autoencoders, which reduce
the dimensionality of the full order model to a set of sparse latent variables with no prior knowledge of the coded space
dimensionality. Then, a second neural network is trained to learn the metriplectic structure of those reduced physical variables
and predict its time evolution with a so-called structure-preserving neural network. This data-based integrator is guaranteed to
conserve the total energy of the system and the entropy inequality, and can be applied to both conservative and dissipative
systems.

The integrated paths can then be decoded to the original full-dimensional manifold and be compared to the ground truth
solution. This method is tested with two examples applied to fluid and solid mechanics.
c⃝ 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Physical simulation has become an indispensable tool for engineers to recreate the operative conditions of a
mechanical system and make decisions about its optimal design, ranging from composite building structures to
complex fluid–solid interaction CFD simulations. These phenomena are often discretized in fine meshes resulting
in millions of degrees of freedom, which are computationally expensive to handle, but their solutions are contained
in lower-dimensional spaces. This is the so-called manifold hypothesis [1].
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Thus, several methods try to overcome this inconvenience by reducing the dimensionality of the problem,
computing a suitable reduced basis and projecting the full order model on it. The very first projection-based
model order reduction (MOR) methods relied on linear transformations with some additional constraints, such as
Proper Orthogonal Decomposition (POD) [2,3], Reduced-Basis technique [4] or Galerkin projection [5,6]. However,
these linear mappings are only locally accurate, so they fail in modeling more complex nonlinear phenomena and
sometimes require prior information about the governing equations of the problem physics.

In order to overcome these limitations, several techniques have been developed in the machine learning
framework that provide nonlinear mappings, such as Locally Linear Embedding [7], Topological Data Analysis [8],
kernel Principal Component Analysis [9] or Neural Networks, by means of Autoencoders [10]. In the present work
we focus on this last method, which has proven to learn highly nonlinear manifolds in a wide variety of fields
such as physics [11], chemistry [12], mechanics [13] or computational imaging [14]. Autoencoders used as a model
reduction tool, project the original data (assumed to form a high-order manifold) to a reduced manifold. However,
most of the current works rely on prior knowledge, or parametric search, of the optimal latent dimensionality of
the problem. Here lies one of the key concepts of our method, which is able to learn a sparse representation of the
latent space within a given reconstruction error bound.

These same machine learning tools can be used to learn the underlying physics of the problem. Very often, neural
networks have been criticized for constituting a sort of black box, whose results – besides needing a big amount of
data – are unpredictable. Therefore, adding previous knowledge on the physics of the problem helps to ensure the
physical meaning of the results, while keeping to a minimum the amount of data needed for successful predictions.
Several authors have developed frameworks for solving nonlinear PDEs with accurate results [15,16]. However, they
require information about the system nature and governing equations, which are usually unknown. Some methods
bypass this problem by learning energetic invariants of the system [17–19] or exploiting the symplectic structure
of the problem [20–22], reporting promising and interpretable results for Hamiltonian dynamics. Nonetheless, few
methods are valid for dissipative effects such as friction, heat dissipation or plasticity, which are usually found in
real life engineering problems.

The authors already presented a methodology to learn the time evolution of general physical systems by enforcing
the GENERIC (an acronym of General Equation for the Non-Equilibrium Reversible–Irreversible Coupling)
structure of the problem [23,24], with the so-called Structure-Preserving Neural Networks [25]. This networks
result in a thermodynamically-consistent integrator that is valid for both conservative (Hamiltonian) and dissipative
systems. However, these networks operate only on full-order descriptions of the system, resulting in a costly
procedure with limited engineering applicability for systems of tens of thousands to millions of degrees of freedom.
The aim of this work is to apply this algorithm to more complex dynamical systems, combined with the nonlinear
model order reduction power of autoencoders. The proposed methodology is a completely general method that is
able to unveil the true effective dimensionality of the sampled data with no user intervention, and to construct from
it a reduced-order integrator of the dynamics of the system with no previous knowledge on the nature of the system
at hand. The resulting full-order reconstructions of the dynamics are guaranteed to conserve energy and dissipate
entropy, as dictated by the laws of thermodynamics.

The outline of the paper is as follows. A brief description of the problem setup is presented in Section 2. Next,
in Section 3, the methodology is presented of both the autoencoder model order reduction and the GENERIC
formalism used to solve the stated problem. Two validation examples are reported: a Couette flow in a viscolastic
fluid (Section 4) and a rolling hyperelastic tire (Section 5). The paper is then completed with a discussion in
Section 6.

2. Problem statement

In this work we exploit the so-called “dynamical systems equivalence” of machine learning [26]. Consider a
system whose governing variables will be hereafter denoted by z ∈ M ⊆ R

D , with M the state space of these
variables, which is assumed to have the structure of a differentiable manifold in R

D . The full-order model of a
given physical phenomenon can be expressed as a system of differential equations encoding the time evolution of
a set of governing variables z,

ż = d z

dt
= F(z, t), t ∈ I = (0, T ], z(0) = z0, (1)
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Fig. 1. Block diagram of the proposed algorithm. Snapshots of the rolling tire problem, see Section 5, have been included for illustration
purposes. Step 1: A sparse autoencoder (SAE) is trained with time snapshots of a ground truth physical simulation, in order to learn an
encoded representation of the full-order space. Step 2: A structure-preserving neural network (SPNN) is trained to integrate the full time
evolution of the latent variables, consistently with the GENERIC structure of the underlying physics of the problem.

where q and t refer to the space and time coordinates within a domain with n = 2, 3 dimensions t refers to the
time coordinate. The objective of the learning procedure is, therefore, to find F(z, t), the function that gives, after
a prescribed time horizon T , the flow map z0 → z(z0, T ).

The dimensionality reduction technique, in addition, seeks a simplified representation of the full-order state vector
z through a set of latent, reduced variables x ∈ N ⊆ R

d contained in a trial manifold with reduced dimensionality,
lower than the original space M. The mapping between both spaces can be denoted by φ :M ⊆ R

D → R
d with

d ≪ D. Similarly, the inverse mapping φ−1 allows to undo the transformation, returning to the original full-order
space.

The goal of this paper is to find the convenient mapping φ for a dynamical system governed by Eq. (1) in order
to efficiently learn the underlying physics in the reduced space N and then predict its time evolution. The solution
is forced to fulfill the basic thermodynamic requirements of energy conservation and entropy inequality restrictions
via the GENERIC formalism.

3. Methodology

The proposed algorithm divides the problem in two main steps, sketched in Fig. 1. First, the full order model
is encoded to a reduced manifold with a nonlinear mapping via an autoencoder [13]. This autoencoder learns a
latent representation of a state vector of a physical system, in order to handle a wide amount of simulation data in a
compact form. The full order simulation data presented in this work is generated in silico, but the same procedure
could be applied to measured data in a real physical system.

Secondly, a structure-preserving neural network [25] is trained with several snapshots of the physical simulation.
This net works as an integrator which predicts the time evolution of the system within the GENERIC formal-
ism [23,24]. This integration scheme preserves the thermodynamic structure of the latent variables in the reduced
manifold [27] ensuring, as we said, the basic laws of thermodynamics of energy conservation and entropy inequality.
These integrated variables are then projected back to the original manifold of the full order model with the decoder.

3.1. Model reduction with sparse-autoencoders

An autoencoder is a type of artificial neural network which reduces the dimensionality of an input into a coded
version, which ideally contains the same information, by learning the identity function. It is composed by an encoder
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qφ , which maps high-dimensional data z ∈ R
D onto a low-dimensional code x ∈ R

d with d ≪ D, and a decoder
pθ , which applies the inverse mapping back to the original full-order manifold,

qφ : RD → R
d , x = qφ(z), (2)

pθ : Rd → R
D, ẑ = pθ (x). (3)

The vector z is often referred as the full order vector, whereas its coded vector x is referred as code or
latent variable. In this work, we use a bottleneck architecture composed by several stacked fully-connected hidden
layers Nh in both the encoder and decoder. Each layer is modeled as a multilayer perceptron (MLP), which is
mathematically defined as

x[l] = σ (w[l]x[l−1] + b[l]), (4)

where l is the index of the current layer, x[l−1] and x[l] are the layer input and output vector respectively, w
[l] is the

weight matrix, b[l] is the bias vector and σ is the activation function. The activation functions are usually nonlinear,
allowing the encoding and decoding of complex nonlinear phenomena by stacking several layers together.

The latent vector dimensionality d in Eq. (2) is, a priori, unknown. Thus, we add a sparsity condition to
the bottleneck to force the autoencoder to learn the number of latent variables needed to encode the necessary
information of the full order model. Even if the latent layer has a fixed number of units Nd , the sparsity penalizer
is able to find (at least a good approximation to) the intrinsic dimensionality of the low-dimensional data x. Here,
no prior on the reduced dimension is needed. Thus, further in this text, the autoencoder with sparsity regularization
is referred as sparse autoencoder (SAE).

The loss function for our neural network is composed of two different terms:

• Reconstruction loss: This term minimizes the difference between the ground truth vector zGT
n and the

autoencoder reconstruction zSAE
n in the snapshot n. This enforces the network to learn the identity function,

L
rec
n =

(

zGT
n − zSAE

n

)⊤ (

zGT − zSAE
n

)

. (5)

• Regularization: In order to impose the sparsity of the latent vector, several regularizers can be used [28]. Due
to the continuous nature of the physical data, it is found more convenient to use L1-norm penalizer, which
enforces hard zeros in the latent variables that are not relevant,

L
reg
n =

Nd
∑

i=1

|xSAE
i |. (6)

The temporal snapshots of the physical simulations are split in a partition of train snapshots (Ntrain = 80% of
the database snapshots) and test snapshots (Ntest = 20% of the database snapshots) so that NT = Ntrain+ Ntest. The
total loss function is computed as the mean squared error (MSE) of the data reconstruction loss and the sparsity
regularization term for the train snapshots (Ntrain). The sparsity loss is multiplied by a regularization hyperparameter
λSAE

r , which is responsible for the trade-off between the reconstruction fidelity of the autoencoder and the sparsity
of the latent vector x,

L
SAE = 1

Ntrain

Ntrain
∑

n=0

(Lrec
n + λSAE

r L
reg
n ). (7)

The backpropagation algorithm [29] is then used to calculate the gradient of the loss function for each encoder
and decoder parameters φ and θ (weight and bias vectors of both blocks), which are updated with the gradient
descent technique [30]. An overview of the training algorithm of the SAE is sketched in Algorithm 1.

The SAE performance is then evaluated with the mean squared error (MSE) of the test snapshots (Ntest) for each
state variable (z),

MSESAE (z) = 1

Ntest

Ntest
∑

n=0

ε2
n =

1

Ntest

Ntest
∑

n=0

(

zGT
n − zSAE

n

)2
, (8)

tested with two different databases of nonlinear systems. A pseudocode of the testing process of the SAE is shown
in Algorithm 2.
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Algorithm 1 Pseudocode for the training algorithm of the Sparse-Autoencoder.

Load database: zGT (train partition);
Define network architecture: N SAE

in = N SAE
out = D, N SAE

h , N SAE
d , σ SAE

j ;

Define hyperparameters: lSAE
r , λSAE

r ;
Initialize wSAE

i, j , bSAE
j ;

for each epoch do

Initialize loss function: C = 0;
for each train snapshot do

Encoder: xSAE
n = qφ(zGT

n ); ▷ Eq. (2)
Decoder: zSAE

n = pθ (xSAE
n ); ▷ Eq. (3)

Loss function: C ← C + Lrec
n + λSAE

r L
reg
n ; ▷ Eqs. (5), (6)

end for

MSE loss function: LSAE ← C
Ntrain

▷ Eq. (7)
Backward propagation;
Optimizer step;

end for

Algorithm 2 Pseudocode for the test algorithm of the Sparse-Autoencoder.

Load database: zGT (test partition);
Load network parameters;
for each test snapshot do

Encoder: xSAE
n = qφ(zGT

n ); ▷ Eq. (2)
Decoder: zSAE

n = pθ (xSAE
n ); ▷ Eq. (3)

Compute Squared Error: ε2
n =

(

zGT
n − zSAE

n

)2
; ▷ Eq. (8)

end for

Compute MSESAE (z); ▷ Eq. (8)

Once the problem is reduced to a lower-dimensional manifold, a second neural network can be trained to learn
the underlying physics of the problem, being able to integrate the whole simulation trajectory with thermodynamic
consistency. This is achieved by using a structure-preserving neural network [25], and is explained in the next
section.

3.2. The GENERIC formalism

There are different forms of enforcing physical meaning to the results of a particular neural network. One could
be the enforcement of the structure of a particular partial differential equation, as in [15]. This is known as adding
an inductive bias [31]. An inductive bias is a way to enforce an algorithm to prioritize one solution to another. In
our case, we try to guarantee as much as possible the physical meaning of the solution, but without enforcing any
particular physical law, which may be even unknown. We do this by adding a regularization term to our neural
network. This regularization will enforce the fulfillment of the first and second laws of thermodynamics.

A Structure-Preserving Neural Network [25] (from now on, SPNN) is a type of artificial neural network
that learns the metriplectic structure of a general dynamical system [32], with both conservative and dissipative
phenomena, by imposing a GENERIC structure [23,24].

In this approach, the reversible or conservative contribution is assumed to be of Hamiltonian form, requiring an
energy function E(x) and a Poisson bracket {x, E} acting on an arbitrary state vector x. Similarly, the remaining
irreversible contribution to the energetic balance of the system is generated by the nonequilibrium entropy S(x)
with an irreversible or friction bracket [x, S].

5
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The GENERIC formulation of time evolution for nonequilibrium systems, described by a set of x state variables
required for its complete description, is given by

dx

dt
= {x, E} + [x, S]. (9)

For practical use, it is convenient to reformulate the brackets in two algebraic or differential operators

L : T ∗M→ TM, M : T ∗M→ TM,

where T ∗M and TM represent, respectively, the cotangent and tangent bundles of M. These operators inherit
the mathematical properties of the original bracket formulation. The operator L(x) represents the Poisson bracket
and is required to be skew-symmetric (a cosympletic matrix). Similarly, the friction matrix M(x) accounts for the
irreversible part of the system and is symmetric and positive semi-definite. Then, the brackets of Eq. (9) can be
replaced by their homologous matrix operators

{A, B} = ∂ A

∂x
L

∂ B

∂x
, [A, B] = ∂ A

∂x
M

∂ B

∂x
,

resulting in the time-evolution equation for the state variables x,

dx

dt
= L

∂ E

∂x
+ M

∂S

∂x
. (10)

This equation is completed with two degeneracy conditions

{S, x} = 0, [E, x] = 0.

The first one states that the entropy is a degenerate functional of the Poisson bracket, showing the reversible nature
of the Hamiltonian contribution to the dynamics. The second expression states the conservation of the total energy
of the system with a degenerate condition of the energy with respect to the friction bracket. These restrictions can be
reformulated in a matrix form in terms of the L and M operators, resulting in the following degeneracy restrictions:

L
∂S

∂x
= M

∂ E

∂x
= 0. (11)

The degeneracy conditions, in addition to the non-negativeness of the irreversible bracket, guarantees the first
(energy conservation) and second (entropy inequality) laws of thermodynamics,

d E

dt
= {E, E} = 0,

d S

dt
= [S, S] ≥ 0. (12)

3.3. Structure-preserving neural networks

Based on this theoretical formalism, a structure-preserving neural network imposes the GENERIC
thermodynamically-sound structure in discretized approach,

xn+1 − xn

∆t
= Ln ·

DEn

Dxn

+Mn ·
DSn

Dxn

, (13)

where the time derivative is substituted by a forward Euler scheme in time increments ∆t , where xn+1 = xt+∆t .
Ln and Mn are the discretized version of the Poisson and friction operators. DEn

Dxn
and DSn

Dxn
represent the discrete

gradients of the energy and the entropy.
Manipulating algebraically Eq. (13) and including the degeneracy conditions of Eq. (11), the proposed integration

scheme for predicting the dynamics of a physical system is the following

xn+1 = xn +∆t

(

Ln ·
DEn

Dxn

+Mn ·
DSn

Dxn

)

(14)

subject to:

Ln ·
DSn

Dxn

= 0, Mn ·
DEn

Dxn

= 0, (15)

6
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ensuring the thermodynamical consistency of the resulting model. From now on, the energy and entropy gradients
will be shortened as DEn

Dxn
≡ DEn and DSn

Dxn
≡ DSn .

Unlike previous work [25], the GENERIC structure is imposed to the reduced order model learnt by the
sparse autoencoder, so there is no prior information about the L and M matrices. Instead, the SPNN is forced
to automatically learn them on each learning set time step, Ln and Mn , with their respective skew-symmetric and
symmetric conditions. Similarly, the energy and entropy gradient, DEn and DSn , are computed on each time step
and no finite-difference approach is needed.

The structure-preserving neural network uses a feed-forward scheme [33], consisting of several fully-connected
layers with no cyclic connections. The input of the neural net is the encoded vector state of a given time step
xSAE

n = qφ(xGT
n ), and the outputs are the concatenated GENERIC matrices (Ln , Mn) and energy and entropy gradient

matrices (DEn , DSn). Then, using the GENERIC forward integration scheme in Eq. (13), the reduced state vector
at the next time step xSPNN

n+1 is obtained.
Following Eq. (14), the input dimension of the SPNN is the same as the dimension of the sparsified latent

variables xSAE
n (N SPNN

in = d). Consequently, the GENERIC matrices Ln and Mn are squared with dimension d2

each, which can be reduced to d · (d − 1)/2 and d · (d + 1)/2 taking into account the skew-symmetric and
symmetric elements respectively. Additionally, the matrix Mn is assembled by taking the absolute value of the
diagonal elements of the resulting lower triangular matrix and multiplying it by its transpose. By the Cholesky
factorization, this ensures that Mn is positive semidefinite. The energy and entropy gradient matrices DEn and
DSn have the same dimension d as the state vector. The final output dimension of the integrator network is then
N SPNN

out = d · (d + 1)/2+ d · (d − 1)/2+ 2 · d = d · (d + 2).
The loss function for the SPNN is composed of three different terms:

• Data loss: The main loss condition is the agreement between the network output and the real data. It is
computed as the squared error sum, computed between the predicted state vector xSPNN

n+1 and the ground truth
solution based on the SAE output xSAE

n+1 for each time step,

L
data
n = ∥xSAE

n+1 − xSPNN
n+1 ∥2

2. (16)

• Fulfillment of the degeneracy conditions: The loss function will also account for the degeneracy conditions,
Eq. (15) in order to ensure the thermodynamic consistency of the solution, implemented as the sum of the
squared elements of the degeneracy vectors for each time step,

L
degen
n = ∥Ln · DSn∥2

2 + ∥Mn · DEn∥2
2. (17)

This term acts as a regularization of the loss function and, at the same time, is the responsible of ensuring
thermodynamic consistency of the integration scheme. This is, in other words, our inductive bias.
• Regularization: In order to avoid overfitting, an extra L2 regularization term Lreg is added to the loss function,

L
reg =

L
∑

l

n[l]
∑

i

n[l+1]
∑

j

(w[l],SPNN
i, j )2. (18)

The same database split procedure is followed as in the SAE, dividing the complete dataset of NT snapshots in a
partition of train snapshots (Ntrain = 80% of the database snapshots) and test snapshots (Ntest = 20% of the database
snapshots) so that NT = Ntrain + Ntest. The total loss function is computed as the mean squared error (MSE) of
the data loss and degeneracy residual, in addition to the regularization term, for all the training snapshots (Ntrain)
of the simulation time T . Both the data loss error and the regularization terms are weighted with two additional
hyperparameters λSPNN

d and λSPNN
r respectively, which account for their relative influence in the total loss function

with respect to the degeneracy constraint,

L
SPNN = 1

Ntrain

Ntrain
∑

n=0

(λSPNN
d L

data
n + L

degen
n )+ λSPNN

r L
reg. (19)

The usual backpropagation algorithm [29] is then used to calculate the gradient of the loss function for each
net parameter (weight and bias vectors), which are updated with the gradient descent technique [30]. The training
algorithm is sketched below in Algorithm 3.
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Algorithm 3 Pseudocode for the train algorithm of the SPNN.

Load train database: zSAE (train partition), ∆t ;
Define network architecture: N SPNN

in = d , N SPNN
out = d · (d + 3), N SPNN

h , σ SPNN
j ;

Define hyperparameters: lSPNN
r , λSPNN

d , λSPNN
r ;

Initialize wSPNN
i, j , bSPNN

j ;
for each epoch do

Initialize loss function: C = 0;
for each train snapshot do

Encoder: xSAE
n = qφ(zGT

n ); ▷ Eq. (3)
Forward propagation: [Ln , Mn , DEn , DSn]← SPNN(xSAE

n ); ▷ Eq. (4)
Time step integration: xSPNN

n+1 ← xSAE
n +∆t (Ln · DEn +Mn · DEn); ▷ Eq. (13)

Update loss function: C ← C + λSPNN
d Ldata

n + L
degen
n ; ▷ Eqs. (16), (17)

end for

MSE loss function: LSPNN ← C
Ntrain
+ λSPNN

r Lreg ▷ Eqs. (18), (19)
Backward propagation;
Optimizer step;

end for

The testing consists of the full time integration of the initial state vector z0 at t = 0 along the complete simulation

time interval I = (0, T ], reproducing the problem statement established in Eq. (1). Thus, the net performance is

evaluated with the mean squared error (MSE) of the SPNN state variable predictions and the ground truth solution

for the complete set of snapshots NT ,

MSESPNN (z) = 1

NT

NT
∑

n=0

ε2
n =

1

NT

NT
∑

n=0

(

xGT
n − zSPNN

n

)2
, (20)

tested for the same nonlinear systems trained in the SAE training phase. A pseudocode of the testing process of

the SPNN is shown in Algorithm 4.

Algorithm 4 Pseudocode for the test algorithm of the complete integration scheme of the SPNN.

Load database: zGT, ∆t ;
Load network parameters;
Initialize state vector: zSAE

0 = zSPNN
0 = zGT

0 ;
Initialize encoded state vector: xSAE

0 = xSPNN
0 = qφ(zGT

0 ); ▷ Eq. (2)
for each snapshot do

Forward propagation: [Ln , Mn , DEn , DSn]← SPNN(xSPNN
n ); ▷ Eq. (4)

Time step integration: xSPNN
n+1 ← xSPNN

n +∆t (Ln · DEn +Mn · DEn); ▷ Eq. (13)
Update state vector: xSPNN

n ← xSPNN
n+1 ;

Update snapshot: n← n + 1;
Decoder: zSPNN

n+1 = pθ (xSPNN
n+1 ); ▷ Eq. (3)

Compute Squared Error: ε2
n+1 =

(

zGT
n+1 − zSPNN

n+1

)2
; ▷ Eq. (20)

end for

Compute MSESPNN (z); ▷ Eq. (20)

The SPNN is compared on each example with a baseline unconstrained neural network which directly predicts

the time evolution of the latent vector xt+1 from the current snapshot xt , with a similar training and integration

scheme as depicted in Algorithms 3 and 4.
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Q. Hernandez, A. Badı́as, D. González et al. Computer Methods in Applied Mechanics and Engineering 379 (2021) 113763

Fig. 2. Couette flow in an Olroyd-B fluid. Horizontal position, velocity, internal energy and conformation tensor shear component are tracked
for the total of 100 nodes (excluded the y = H node).

4. Validation examples: Couette flow of an Oldroyd-B fluid

4.1. Description

The first example is a shear (Couette) flow of an Oldroyd-B fluid model. This is a constitutive model for
viscoelastic fluids. It arises from the consideration of linear elastic dumbbells as a proxy representation of polymeric
chains immersed in a solvent.

The problem is solved by the CONNFFESSIT technique [34], based on the Fokker–Planck equation [35]. This
equation is solved by converting it in its corresponding Itô stochastic differential equation,

drx =
(

∂u

∂y
ry −

1

2We
rx

)

dt + 1√
We

dVt ,

dry = −
1

2We
rydt + 1√

We
dWt , (21)

where r = [rx , ry]⊤, rx = rx (y, t) and assuming a Couette flow so that ry = ry(t) depends only on time, “We” stands
for the Weissenberg number and Vt , Wt are two independent one-dimensional Brownian motions. This equation is
solved via Monte Carlo techniques, by replacing the mathematical expectation by the empirical mean.

The model relies on the microscopic description of the state of the dumbbells. Thus, it is particularly useful to
base the microscopic description on the evolution of the conformation tensor c = ⟨r r⟩, this is, the second moment
of the dumbbell end-to-end distance distribution function. This tensor is in general not experimentally measurable
and plays the role of an internal variable. The expected xy stress component tensor will be given by

τ = ϵ

We

1

K

K
∑

k=1

rxry,

where K is the number of simulated dumbbells and ϵ = νp

νp
is the ratio of the polymer to solvent viscosities.

The state variables chosen for the full order model are the position of the fluid on each node of the mesh q, see
Fig. 2, its velocity v in the x direction, internal energy e and the conformation tensor shear component τ for all the
nodes of the mesh,

S = {z = (qi , vi , ei , τi , i = 1, 2, . . . , N ) ∈ (R× R× R× R)N }, (22)

resulting in a full-order model of D = 4 · N dimensions.

4.2. Database and hyperparameters

The training database for this Olroyd-B model is generated in MATLAB with a multiscale approach [35] in
dimensionless form. The fluid is discretized in the vertical direction with N = 100 elements (101 nodes) in a total
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Table 1

Left: Mean squared error of the SAE reconstruction (MSESAE) for the 4 state
variables of the Olroyd-B Couette flow example, reported only for the test snapshots.
Right: Mean squared error of the same reduction using a Proper Orthogonal
Decomposition algorithm (MSEPOD).

State variable (zi ) MSESAE MSEPOD

q [-] 2.52 · 10−6 7.87 · 10−6

v [-] 7.27 · 10−5 4.31 · 10−5

e [-] 1.89 · 10−6 7.33 · 10−6

τ [-] 7.22 · 10−6 2.07 · 10−5

height of H = 1. A total of 10,000 dumbbells were considered at each nodal location in the model. The lid velocity
is set to V = 1, the viscolastic Weissenberg number We = 1 and Reynolds number of Re = 0.1. The simulation
time of the movement is T = 1 in time increments of ∆t = 0.0067 (NT = 150 snapshots).

The database consists of the state vector, Eq. (22), of the 100 nodal trajectories (excluding the node at y = H ,
for which a no-slip condition v = 0 has been imposed) for each snapshot of the simulation. This database is split
in 120 train snapshots and 30 test snapshots.

The SAE input and output sizes are N SAE
in = N SAE

out = D = 4 · N = 400. The number of hidden layers in both
the encoder and decoder is N SAE

h = 2 with 160 neurons each, ReLU activation functions and linear in the first
and last layer. The number of bottleneck variables is set to Nd = 10. It is initialized according to the Kaiming
method [36], with normal distribution and the optimizer used is Adam [37], with a learning rate of lSAE

r = 10−4.
The sparsity parameter is set to λSAE

r = 10−4. The training process (Algorithm 1) is able to sparsify the bottleneck
variables of the Olroyd-B model with only d = 4 latent variables, which are the input variables used in the structure
preserving-neural network.

Thus, the SPNN input and output size are N SPNN
in = d = 4 and N SPNN

out = d · (d + 2) = 24. The number of
hidden layers is N SPNN

h = 5 with 24 neurons each, ReLU activation functions and linear in the last layer. The same
initialization method and optimizer are used as in the SAE network, with a learning rate of lSPNN

r = 10−5. The
weight decay and the data weight are set to λSPNN

r = 10−5 and λSPNN
d = 103 respectively.

The unconstrained network training parameters are analogous to the structure-preserving network, except for the
output size NUC

out = NUC
in = 4. Several network architectures were tested, and the lowest error is achieved with

Nh = 5 hidden layers and 25 neurons each layer.

4.3. Results

Fig. 3 shows the time evolution of the SAE bottleneck variables after the complete training process. The sparsity
constraint forces the unnecessary latent variables to vanish, remaining a learnt latent dimensionality of d = 4 relevant
variables from a starting bottleneck dimension of Nd = 10 (Fig. 3, Top Left). This compares advantageously with
the obtained dimensionality d = 6 of our previous work [38]. Table 1 shows the mean squared error of the SAE
reconstruction, computed with Algorithm 2, and an equal reduction using Proper Orthogonal Decomposition. Then,
the SPNN is able to integrate the whole trajectory of the relevant latent variables in the reduced manifold in good
agreement with the original SAE reduction (Fig. 3, Top Right). The integration scheme also ensures that the time
derivative of the energy (d E/dt) and entropy (d S/dt) of the system remain equal to zero or greater than zero
respectively, in fulfillment with the first and second law of thermodynamics (Fig. 3, Bottom Left), computed with
Eq. (12).

Fig. 4 presents the time evolution of the decoded state variables of the Olroyd-B Couette flow for 4 different nodes
computed with the presented integration scheme and the ground truth. The results show a good agreement in the
transient response of the Couette flow, even for the high nonlinearities of the internal energy and the conformation
tensor shear component. The mean squared error of the total integration scheme, computed with Algorithm 4, for the
4 state variables is reported in Table 2 using the Structure-preserving neural network (SPNN) and the unconstrained
approach (UC). Our neural network achieves less error than the unconstrained one, showing the importance of adding
the physical constrains to the learning process, and this difference becomes greater in the second example.
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Fig. 3. Top Left: Time evolution of the latent variables encoded with the sparse autoencoder (SAE) in the Olroyd-B fluid problem. The
bottleneck has Nd = 10 neurons and the learning algorithm automatically sparsifies them to a dimensionality of d = 4 relevant latent
variables. Top Right: Time evolution of the relevant latent variables integrated in time by the structure-preserving neural network (SPNN).
Bottom: Evolution of the time derivative of the energy (d E/dt) and entropy (d S/dt) of the latent variables.

Table 2

Mean squared error of the SPNN integration scheme and the unconstrained (UC)
approach for the 4 state variables of the Olroyd-B Couette flow example, reported
for the complete trajectory.

State variable (zi ) MSESPNN MSEUC

q [-] 1.78 · 10−5 7.96 · 10−5

v [-] 3.34 · 10−5 3.48 · 10−5

e [-] 5.60 · 10−6 5.67 · 10−5

τ [-] 2.19 · 10−5 1.22 · 10−4

5. Rolling hyperelastic tire

5.1. Description

The second example is a simulation of the transient response of a 175 SR14 rolling tire (Dtire = 0.66 m) impacting

with a curb (hcurb = 0.025 m). The tire is initially preloaded with an inflation load of 200 kPa, simulating the internal

air pressure, and a footprint load of 3300 N in the vertical axis, simulating the weight of the vehicle distributed

equally in the tires. The free rolling conditions are determined in a separated analysis, corresponding to ω = 8.98

rad/s for a translational horizontal velocity of v0 = 10 km/h (see Fig. 5).
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Fig. 4. Results of the complete integration scheme (SPNN) with respect to the ground truth simulation (GT) for 4 different nodes of the
Olroyd-B fluid database.

Fig. 5. Hyperelastic tire rolling towards a curb. 3D position, 3D velocity and Cauchy stress tensor components are tracked for the total of
4140 selected nodes.
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The tread and sidewalls of the tire are made of rubber, modeled as an incompressible hyperelastic material with
a viscolastic component described by a one-term Prony series of the dimensionless shear relaxation modulus,

gR(t) = 1− ḡ1(1− e
−t
τ1 ),

with relaxation coefficient of ḡ1 = 0.3 and relaxation time of τ1 = 0.1 s. The belts and carcass of the tire are
constructed from fiber-reinforced rubber composites, modeled as a linear elastic material, with a 20◦ orientation of
the reinforcing belt.

The state variables chosen for the full order model are the 3D position qi , velocity vi and the 6 different
components of the Cauchy stress tensor σ i for each i node of the studied mesh subset N ,

S = {z = (qi , vi , σ i , i = 1, 2, . . . , N ) ∈ (R3 × R
3 × R

6)N }, (23)

resulting in a full-order model of D = 12 · N dimensions.

5.2. Database and hyperparameters

The training database for this rolling tire simulation is generated by finite element simulation. The full-order
model is discretized with 5283 elements in a total of 6962 nodes. The simulation time of the movement is T = 0.5
s in time increments of ∆t = 0.0025 s (NT = 200 snapshots). The database consists of the normalized state vector
(Eq. (23)) of a subset of N = 4140 relevant nodes in every time step snapshot. The total state vector snapshots are
randomly split in 160 train snapshots and 40 test snapshots.

The SAE architecture for this second example is slightly modified in order to handle the high dimensionality
of the problem. The three physical variables (q, v, and σ ) are encoded and decoded independently, due to their
very different nature. In this way, three bottleneck latent vectors are obtained. The input and output sizes of the
three SAEs are N SAE

in,q = N SAE
out,q = 3 · N = 12420 for the position variable, N SAE

in,v = N SAE
out,v = 3 · N = 12420 and

N SAE
in,σ = N SAE

out,σ = 6 · N = 24840 for the stress tensor.
The number of hidden layers in both the encoder and decoder is N SAE

h = 2 in the three variables with 40
neurons each in position and velocity, and 80 neurons in the stress tensor, with ReLU activation functions and
linear in the first and last layers. The number of bottleneck variables is set to Nd,q = 10 for the position, Nd,v = 10
for velocity and Nd,σ = 20 for the stress tensor. Thus, the total dimensionality of the bottleneck latent vector is
Nd = Nd,q + Nd,v + Nd,σ = 40.

In the same way as we do in the first example, the nets are initialized according to the Kaiming method [36],
with normal distribution and the optimizer used is Adam [37], with a learning rate of lSAE

r = 10−4. The sparsity
parameter, in this case, is set to λSAE

r = 10−2. The training process (Algorithm 1) is able to sparsify the bottleneck
variables of the rolling tire model with only dq = 4 position, dq = 3 velocity and dσ = 2 stress tensor latent
variables. So, the learnt dimensionality of the reduced model is d = dq+dv+dσ = 9, which are the input variables
used in the structure preserving-neural network.

Thus, the SPNN input and output sizes are N SPNN
in = d = 9 and N SPNN

out = d · (d + 2) = 99. The number of
hidden layers is N SPNN

h = 5 with 198 neurons each, with ReLU activation functions and linear in the last layer. The
same initialization method and optimizer are used as in the SAE network, with a learning rate of lSPNN

r = 10−5.
The weight decay and the data weight are set to λSPNN

r = 10−4 and λSPNN
d = 103 respectively.

The unconstrained network training parameters are analogous to the structure-preserving network, except for the
output size NUC

out = NUC
in = 9. Several network architectures were tested, and the lowest error is achieved with

Nh = 5 hidden layers and 45 neurons each layer.

5.3. Results

Fig. 6 shows the time evolution of the SAE bottleneck variables (xq , xv and xσ ) after the complete training
process. The sparsity constraint forces the unnecessary latent variables to vanish, remaining a learnt latent
dimensionality of dq = 4, dv = 3 and dσ = 2 relevant variables from a starting bottleneck dimension of Nd,q = 10,
Nd,v = 10 and Nd,σ = 20 respectively (Fig. 6). The mean squared error of the SAE reconstruction, computed with
Algorithm 2, and a equal reduction with a Proper Orthogonal Decomposition is shown in Table 3. Then, the SPNN
is able to integrate the whole trajectory of the relevant latent variables in the reduced manifold in good agreement
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Fig. 6. Time evolution of the latent variables encoded with the sparse autoencoder (SAE) in the hyperelastic rolling tire problem. The
bottleneck has Nd = 40 neurons and the learning algorithm sparsifies them to a dimensionality of d = 9 relevant latent variables. Bottom
Middle Right: Time evolution of the relevant latent variables integrated in time by the structure-preserving neural network (SPNN). Bottom:
Evolution of the time derivative of the energy (d E/dt) and entropy (d S/dt) of the latent variables.

with the original SAE reduction (Fig. 6, Bottom Middle Right). Also, the integration scheme fulfills the first and
second laws of thermodynamics (Fig. 6, Bottom) computed with Eq. (12)

Fig. 7 presents the time evolution of the decoded state variables q3, v3, σ33 and σ23 of the rolling hyperelastic
tire for 4 different nodes computed with the presented integration scheme and the ground truth. The mean squared
error of the total integration scheme, computed with Algorithm 4, for the 12 state variables is reported in Table 4
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Table 3

Left: Mean squared error of the SAE reconstruction (MSESAE) for the 12 state
variables of the rolling tire example, reported only for the test snapshots. Right:
Mean squared error of the same reduction using a Proper Orthogonal Decomposition
algorithm (MSEPOD).

State variable (zi ) MSESAE MSEPOD

q1 [m] 2.37 · 10−5 1.30 · 10−3

q2 [m] 3.69 · 10−7 6.27 · 10−7

q3 [m] 3.06 · 10−5 6.55 · 10−5

v1 [m/s] 1.00 · 10−3 3.32 · 10−2

v2 [m/s] 4.54 · 10−5 2.37 · 10−2

v3 [m/s] 3.70 · 10−3 6.91 · 10−2

σ11 [MPa] 2.41 · 10−4 3.74 · 10−4

σ22 [MPa] 2.10 · 10−4 4.34 · 10−4

σ33 [MPa] 3.35 · 10−4 6.40 · 10−4

σ12 [MPa] 6.73 · 10−5 1.17 · 10−4

σ13 [MPa] 1.80 · 10−4 3.24 · 10−4

σ23 [MPa] 2.95 · 10−5 5.86 · 10−5

Table 4

Mean squared error of the SPNN integration scheme and the unconstrained (UC)
approach for the 12 state variables of the rolling tire example, reported for the
complete trajectory.

State variable (zi ) MSESPNN MSEUC

q1 [m] 2.07 · 10−4 2.76 · 10−1

q2 [m] 8.09 · 10−7 1.57 · 10−5

q3 [m] 6.25 · 10−5 5.75 · 10−2

v1 [m/s] 7.95 · 10−3 4.26
v2 [m/s] 3.79 · 10−5 7.00 · 10−4

v3 [m/s] 1.78 · 10−2 4.39

σ11 [MPa] 2.04 · 10−4 4.71 · 10−3

σ22 [MPa] 1.76 · 10−4 4.07 · 10−3

σ33 [MPa] 2.70 · 10−4 5.35 · 10−3

σ12 [MPa] 6.05 · 10−5 1.50 · 10−3

σ13 [MPa] 1.48 · 10−4 3.03 · 10−3

σ23 [MPa] 2.73 · 10−5 6.67 · 10−4

using the Structure-preserving neural network (SPNN) and the unconstrained approach (UC). In this example, the
error achieved by our method is several orders of magnitude less than the naive approach.

6. Conclusions

In this work, we develop a technique to learn the latent dimensionality of a physical system from data and
obtain a thermodynamics-aware time integrator, which guarantees the fulfillment of the laws of thermodynamics.
This technique is applied to two different physical systems. The Couette flow in a viscoelastic fluid is reduced from
D = 400 dimensions to d = 4 dimensions, whereas the rolling tire is reduced from D = 49680 dimensions to
d = 9 dimensions. The physically informed integrator is then able to predict the full time evolution of the set of
state variables with similar precision reported in previous work [25,39].

If compared to previous works of the authors in the field, the use of autoencoders to unveil the dimensionality
of the embedding manifold clearly outperforms the results obtained by classical (linear) model order reduction
techniques, specially in highly nonlinear state variables such as the rolling tire velocity. In addition, it is worth
highlighting the fact that the method is able to detect the true dimensionality of the data, with no need to call
to different codes rely on additional methods, such as k-PCA or topological data analysis, for instance for this
purpose. The right thermodynamic setting also ensures the consistency and stability of the full-order dynamics,
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Fig. 7. Results of the complete integration scheme (SPNN) with respect to the ground truth simulation (GT) for 4 different nodes and 4
different variables (q3, v3, σ33 and σ23) of the hyperelastic rolling tire database.

after projecting back the reduced-order results to the physical space, achieving better results than an unconstrained
approach with no physical restrictions.

Some of the future work, including several improvements to the proposed algorithm, are listed below.

• Database: A limitation of the present work is the use of synthetic instead of experimental data. A research
field is opened to test the limits of the presented methodology applied to real captured data, and to study the
influence of noise in the measurements.
• Autoencoder latent space: The latent space of the reduction step can not only be sparsified, but also regular-

ized using variational inference via Variational Autoencoders [40]. This Bayesian approach is convenient in
cases where the latent variables are sampled or interpolated, and lead to smoother transitions between them.
A future line of this work is to explore VAEs applied to physical systems and study its influence in the latent
space topology and extrapolability.
• Nets Architecture: The solution of many physical systems has highly spatio-temporal correlations. Thus,

convolutional [41] and graph-based [42] neural networks could be a more optimized approach, reducing the
network complexity and speeding up the learning process.
• Energy and Entropy gradients: A modification can be performed in the structure-preserving neural network

in order to output directly the energy and entropy functions. Then, the energy and entropy gradients of the
GENERIC formulation can be computed via automatic differentiation with respect to the network input, the
state vector. This way, the energy and entropy gradients are forced to be integrable [43].
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Q. Hernandez, A. Badı́as, D. González et al. Computer Methods in Applied Mechanics and Engineering 379 (2021) 113763

[31] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea
Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al., Relational inductive biases, deep learning, and graph networks, 2018,
arXiv preprint arXiv:1806.01261.

[32] Philip J. Morrison, A paradigm for joined hamiltonian and dissipative systems, Physica D 18 (1–3) (1986) 410–419.
[33] Jürgen Schmidhuber, Deep learning in neural networks: An overview, Neural networks 61 (2015) 85–117.
[34] Manuel Laso, Hans Christian Öttinger, Calculation of viscoelastic flow using molecular models: the connffessit approach, J. Non-Newton.

Fluid Mech. 47 (1993) 1–20.
[35] Claude Le Bris, Tony Lelievre, Multiscale modelling of complex fluids: a mathematical initiation, in: Multiscale Modeling and

Simulation in Science, Springer, 2009, pp. 49–137.
[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet

classification, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2015, pp. 1026–1034.
[37] Diederik P. Kingma, Jimmy Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint arXiv:1412.6980.
[38] David González, Francisco Chinesta, Elías Cueto, Thermodynamically consistent data-driven computational mechanics, Contin. Mech.

Thermodyn. 31 (1) (2019) 239–253.
[39] D. González, F. Chinesta, E. Cueto, Consistent data-driven computational mechanics, AIP Conf. Proc. 1960 (1) (2018) 090005.
[40] Diederik P. Kingma, Max Welling, Auto-encoding variational bayes, 2013, arXiv preprint arXiv:1312.6114.
[41] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, Ken Perlin, Accelerating eulerian fluid simulation with convolutional

networks, 2016, arXiv preprint arXiv:1607.03597.
[42] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, Maosong Sun, Graph neural networks:

A review of methods and applications, 2018, arXiv preprint arXiv:1812.08434.
[43] Gregory H. Teichert, A.R. Natarajan, A. Ven Van der, Krishna Garikipati, Machine learning materials physics: Integrable deep neural

networks enable scale bridging by learning free energy functions, Comput. Methods Appl. Mech. Engrg. 353 (2019) 201–216.

18

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

