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Abstract. A family of prismatic and hexahedral solid‒shell (SHB) elements with their linear and quadratic versions is 

presented in this paper to model thin 3D structures. Based on reduced integration and special treatments to eliminate 

locking effects and to control spurious zero-energy modes, the SHB solid‒shell elements are capable of modeling 

most thin 3D structural problems with only a single element layer, while describing accurately the various through-

thickness phenomena. In this paper, the SHB elements are combined with fully 3D behavior models, including 

orthotropic elastic behavior for composite materials and anisotropic plastic behavior for metallic materials, which 

allows describing the strain/stress state in the thickness direction, in contrast to traditional shell elements. All SHB 

elements are implemented into ABAQUS using both standard/quasi-static and explicit/dynamic solvers. Several 

benchmark tests have been conducted, in order to first assess the performance of the SHB elements in quasi-static and 

dynamic analyses. Then, deep drawing of a hemispherical cup is performed to demonstrate the capabilities of the 

SHB elements in handling various types of nonlinearities (large displacements and rotations, anisotropic plasticity, 

and contact). Compared to classical ABAQUS solid and shell elements, the results given by the SHB elements show 

good agreement with the reference solutions. 

1 Introduction  

Nowadays, thin structures are increasingly used in 

engineering applications, and especially in automotive 

industries. For the design of new products while 

optimizing their forming processes with reasonable cost, 

the finite element simulation has become an 

indispensable practice. However, due to the large aspect 

ratio (length to thickness) of thin structures, the 

conventional solid and shell elements suffer from various 

locking phenomena both in linear and nonlinear analyses. 

In order to obtain accurate and reliable numerical results, 

much effort has been dedicated in recent decades to the 

development of efficient locking-free finite elements. 

The recent concept of solid‒shell elements attracted 

much attention due to their outstanding advantages 

compared to traditional solid and shell elements. They are 

based on a fully three-dimensional (3D) formulation with 

only displacements as degrees of freedom. Combined 

with the reduced-integration technique, various methods 

have been proposed in the literature to eliminate most 

locking phenomena [1‒9], among which the assumed-

strain method (ASM), the enhanced assumed strain 

(EAS) formulation, and the assumed natural strain (ANS) 

approach.  

In this contribution, a family of assumed-strain based 

solid‒shell elements (SHB elements) is briefly presented 

within a unified formulation. It consists of a linear eight-

node hexahedral element (SHB8PS) and a linear six-node 

prismatic element (SHB6), and their quadratic 

counterparts (SHB20) and (SHB15), respectively. The 

SHB elements are combined with various types of 

constitutive equations, including classical isotropic elastic 

behavior, orthotropic elastic behavior for composite 

materials, and anisotropic plastic behavior for metallic 

materials. All SHB elements have been implemented into 

ABAQUS static/implicit and dynamic/explicit software 

packages in order to extend their applications to nonlinear 

quasi-static and dynamic analyses. A variety of nonlinear 

benchmark tests and a complex sheet metal forming 

process have been simulated to assess the performance of 

the proposed SHB elements. 

2 SHB solid‒shell elements  

The proposed SHB elements are based on a fully three-

dimensional formulation using an in-plane reduced-

integration scheme and the assumed-strain method. This 

SHB family is composed of a linear six-node prismatic 

element (SHB6) and an eight-node hexahedral element 

(SHB8PS), along with their quadratic counterparts 

(SHB15) and (SHB20), respectively [3, 5, 10‒12]. Figure 

1 shows the reference geometry of the four SHB solid–

shell elements as well as the location of their integration 

points. The latter are distributed along the local direction 



 

ζ, which is designated as the thickness direction (see 

Figure 1). Note that the number of through-thickness 

integration points is chosen freely, depending on the 

problem complexity, which avoids using several element 

layers for an accurate description of the various through-

thickness phenomena. 

       

 

(a) SHB8PS                                        (b) SHB6 

         

(c) SHB20                                       (d) SHB15 

Figure 1. Reference geometry and location of integration points 

for the SHB elements. 

2.1 Finite element formulation 

The assumed-strain formulation of the SHB solid‒shell 

elements is derived from the simplified form of the Hu–

Washizu variational principle [13]. In terms of assumed-

strain rate εɺ , interpolated stress σ , nodal velocities dɺ , 

and external nodal forces extf , this principle writes 

0=⋅−Ω⋅= Ω
extTT

e

d fdσεε ɺɺɺ δδπ )( .              (1) 

By introducing the discretized gradient operator B , 

which contains the derivatives of the shape functions, the 

strain field ε  can be related to the nodal displacement 

field d  by the following expression: 

= ⋅B dε .                                  (2) 

In the case of linear SHB elements (i.e., SHB6 and 

SHB8PS), a B  matrix is introduced, which is obtained 

by projection of the original operator B  onto an 

appropriate sub-space in order to eliminate most locking 

phenomena. Accordingly, the assumed-strain rate εɺ  can 

be expressed in terms of the B  matrix as 

= ⋅ε B dɺɺ .                                (3) 

Replacing the above assumed-strain rate in the 

expression of the variational principle (Eq. 1), the 

element stiffness matrix eK  and internal forces int
f  are 

derived as 

GEOM
epT

e
e

d KBCBK +Ω⋅⋅= Ω                  (4) 

Ω Ω⋅=
e

dT
σBf int ,                                (5) 

where GEOMK  is the geometric stiffness matrix, which 

originates from the nonlinear part of the strain tensor [5]. 

As to matrix epC , it corresponds to the elastic‒plastic 

tangent modulus. 

In addition to the above formulation of SHB elements, 

a standard mass matrix is added to the dynamic version of 

each SHB element. 

2.2 Constitutive modeling 

The finite element implementation of the above SHB 

formulation requires introducing several local frames for 

the calculation of the stiffness matrix and internal forces 

associated with the constitutive law considered (see 

Figure 2). The “element frame” is used to define the 

thickness direction with respect to the global frame, while 

the “material frame” is specifically introduced to 

integrate the constitutive equations. 
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Figure 2. Illustration of the local frames used in the formulation 

of the SHB solid‒shell elements. 

2.2.1 Elastic material behavior 

In this work, two typical 3D elastic behavior models are 

considered: an isotropic elastic behavior model for 

standard isotropic materials and an orthotropic elastic 

behavior model for laminated composites. The rate form 

of the stress‒strain relationship can be expressed using 

the hypoelastic law defined in the local material frame by 

: e=σ C Dɺ ,                                (6) 

where 
eD  is the elastic strain rate tensor. Matrix C  is 

the fourth-order elasticity tensor, which is defined in the 



 

element local frame. In the case of isotropic elastic 

behavior, a degenerated elasticity tensor C  is used in 

the SHB formulation in order to approach plane-
stress-type behavior. Its expression is given by  
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where E  is the Young modulus and ν  is the Poisson 

ratio. 

For laminated composite materials, a classical 

orthotropic elasticity law is adopted in the formulation of 

the SHB elements. Similar to the isotropic elasticity 

tensor, the orthotropic elasticity tensor C  is defined in 

the element local frame within the orthotropic axes as 
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with ijijij EE νν =  for , 1, 2,3i j = ,                           (8) 

where 
i

E  represents the Young modulus in the i th-

direction, 
ij

ν  is the Poisson ratio associated with the i th 

and j th-directions, and 12G , 13G  and 23G  are the shear 

moduli. 

Considering an initial rotation angle θ  of the 

orthotropic axes with respect to the global frame, the 

projected elasticity tensor can be obtained using the 

following expressions: 

( ) ( )Tθθ TCTC ⋅⋅=ˆ ,                           (9) 

where the rotation matrix ( )θT  has the following form: 
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with ( )cosc θ=  and ( )sins θ= . 

2.2.2 Anisotropic elastic‒plastic behavior 

When plastic behavior is considered for the material, the 

strain rate tensor D  is partitioned into an elastic part e
D  

and a plastic part p
D . The latter is defined using the 

classical plastic flow rule 

p λ
f∂=

∂
D

σ

ɺ ,                             (11) 

where f  represents the plastic yield surface, and λɺ  is 

the plastic multiplier whose expression is determined 

using the consistency condition. 

In this work, anisotropic plastic behavior is taken into 

account using the Hill’48 quadratic yield surface. The 

yield condition is written in the following form: 

0eq ≤−= Yf σ ,                               (12) 

where ( ) ( )ασHασ −′−′= ::eqσ  is the equivalent 

stress, in which σ′  represents the deviatoric part of the 

Cauchy stress, and H  is the fourth-order tensor that 

contains the six anisotropy coefficients of Hill’48 

criterion. Isotropic and kinematic hardening is taken into 

account using the internal variables Y  and α , 

respectively. 

3 Numerical examples and results  

In this section, several popular benchmark problems and 

a complex sheet metal forming process are simulated to 

evaluate the performance of the SHB elements in 

situations involving large rotations, large strain, material 

nonlinearity, and double-sided contact. In the case of 

elastic benchmark problems, only two integration points 

through the thickness are used in the simulations, while 

five integration points are considered in the case of 

elasto-plastic problems. The results obtained with the 

SHB elements are consistently compared with reference 

solutions as well as with the numerical results yielded by 

ABAQUS solid and shell elements. 

In the following benchmark tests, the nomenclature 

used for the mesh is: (N1×N2)×N3 for hexahedral 

elements, where N1 is the number of elements along the 

length, N2 is the number of elements along the width and 

N3 is the number of elements along the thickness 

direction. For the prismatic elements, however, the 

nomenclature used is (N1×N2×2)×N3, due to the in-plane 

sub-division of a rectangular element into two triangles. 

Similarly, the nomenclature used for triangular ABAQUS 



 

shell elements is N1×N2×2, while the nomenclature for 

quadrilateral ABAQUS shell elements is N1×N2. 

3.1 Quasi-static benchmark problems  

3.1.1 Simply supported elastic square plate 
Figure 3 illustrates a simply supported isotropic elastic 

square plate subjected to a central concentrated force. The 

detailed information about the geometric dimensions and 

the elastic material parameters is given in Figure 3. The 

maximum of the concentrated load F is equal to 300. Due 

to symmetry, only one quarter of the plate is analyzed. 

F 

E = 2×105

v = 0.3 

 
Figure 3. Geometry and elastic material parameters for the 

simply supported square plate subjected to a concentrated force. 

The load‒displacement results at the central point of 

the plate given by the SHB elements are compared in 

Figure 4 with the ABAQUS elements and also with the 

reference solutions taken from [14, 15]. 
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Figure 4. Load‒displacement curves for the simply supported 

square plate. 

In the case of triangular-based linear elements (Figure 

4a), the results given by the SHB6 solid–shell element are 

closer to the reference solutions than those given by the 

ABAQUS prismatic solid element (C3D6), while the 

results yielded by the ABAQUS triangular shell element 

(S3) are in agreement with one of the reference solutions 

(i.e., that taken from [14]). For the quadrangular-based 

linear elements, the load‒displacement results given by 

the SHB8PS element are very close to those obtained 

with the ABAQUS quadrilateral shell element (S4R) as 

well as to the reference solution taken from [14]. Note 

that, using the same in-plane mesh as SHB8PS and S4R 

elements, the load‒displacement curve given by the 

ABAQUS hexahedral solid element (C3D8R) lies far 

from the reference solution, which suggest resorting to 

much finer meshes for this element. In the case of 

quadratic elements (Figure 4b), the results given by the 

solid–shell elements SHB15 and SHB20 agree very well 

with the reference solution taken from [14], as well as 

with the results obtained with the ABAQUS quadratic 

elements (namely, the prismatic solid element C3D15, 

the triangular shell element STRI65, and the quadrilateral 

shell element S8R), while the hexahedral solid element 

C3D20 is slightly stiffer. 

3.1.2 Pinched elastic‒plastic hemispherical shell 

A pinched hemispherical shell is considered here, which 

is loaded by alternating radial forces as shown in Figure 

5. This test is very popular since it involves both 

geometric and material nonlinearities. Owing to the 

problem symmetry, only one quarter of the structure is 

modeled. In addition to the nomenclature defined 

previously, three partitions for the quarter of the 

hemispherical shell are created in order to achieve a 

relatively regular mesh (see Figure 5). This leads to the 

following nomenclature for this test: (3×(N1×N2))×N3 for 

hexahedral elements, (3×(N1×N2×2))×N3 for prismatic 

elements, 3×(N1×N2) for quadrilateral shell elements, and 

3×(N1×N2×2) for triangular shell elements. 

z

x
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E = 10

v = 0.2

σ0 = 0.2

Hiso = 9

R = 10

t = 0.5

free  

Figure 5. Geometry and material parameters for the pinched 

hemispherical shell. 

In Figure 6, the displacements at the loading points in 

the x and y directions (namely, U and V, respectively) 

obtained with the SHB elements are compared with those 



 

given by ABAQUS elements as well as with the 

reference solution taken from [16]. Overall, all SHB and 

ABAQUS elements provide accurate results with respect 

to the reference solution, except for the SHB6 and C3D6 

elements, which exhibit some locking and which require 

finer meshes for this test problem. Note also that the 

proposed solid–shell elements are more efficient than 

their counterparts Abaqus solid elements, since the latter 

require several layers of elements to provide comparable 

accuracy (see Figure 6). 
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Figure 6. Load‒displacement curves for the pinched 

hemispherical shell. 

3.1.3 Clamped composite plate 

A laminated composite plate with orthotropic elastic 

behavior (see Subsection 2.2.1) is considered here. The 

plate is fully clamped at one end and subjected to a 

bending force at the free end. All geometric dimensions 

as well as orthotropic elastic parameters are given in 

Figure 7. For comparison purposes, two configurations of 

laminated composites, which correspond to two different 

stacking sequences (0º/90º/0º and 90º/0º/90º), are 

considered. The load‒deflection curves obtained with the 

SHB elements are compared in Figure 8 with those given 

by the ABAQUS elements as well as with the reference 

solutions taken from [17]. Note that the laminated 

composites are modeled with three layers in the case of 

prismatic and hexahedral elements due to the different 

stacking sequences through the thickness. The obtained 

results clearly show the excellent accuracy of the SHB 

elements when compared to ABAQUS elements and the 

reference solutions. This reveals the good performance of 

the proposed solid–shell elements when orthotropic 

behavior for laminated composites is considered. 

F = 5 

E1 = 1×106, E2 = E3 = 0.3×106

v23 = 0.25,   v12 = v13 = 0.25

G23 = 0.12×106, G12 = G13 = 0.15×106

 

Figure 7. Orthotropic elastic parameters and geometric 

dimensions for the laminated composite cantilever plate. 
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Figure 8. Load‒displacement curves for the laminated 

composite cantilever plate. 

3.2 Dynamic benchmark tests  

3.2.1 Clamped elastic spherical cap 

The performance of the SHB elements is evaluated here 

within the framework of explicit dynamic analysis. The 

first explicit/dynamic problem is illustrated in Figure 9, 

which consists of a fully clamped spherical cap loaded by 



 

a constant concentrated force at its apex. Owing to the 

symmetry, only one quarter of the cap is discretized. The 

dynamic response in terms of central vertical 

displacement is analyzed in Figure 10 using the dynamic 

versions of the proposed SHB elements as well as 

ABAQUS explicit elements, which are compared to the 

reference solution taken from [18]. Note that, since no 

quadratic elements are available in ABAQUS/Explicit 

software package, the results given by the quadratic SHB 

elements are compared only with the reference solution 

(see Figure 10b). The results reveal that both the peak 

and the period of the response are well predicted using 

the proposed SHB elements as well as ABAQUS linear 

shell elements, while the solution yielded by the 

ABAQUS linear solid elements is found far from the 

reference solution during the second half-period. 

F=100

H=0.0859

E=107

v=0.3

ρ=0.000245

 

Figure 9. Elastic material parameters and geometric dimensions 

for the clamped spherical cap. 
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Figure 10. Normalized displacement history for the point 

located at the apex of the clamped spherical cap. 

3.2.2 Simply supported composite plate 

The second dynamic benchmark test considered in this 

paper is a simply supported laminated plate, as shown in 

Figure 11, which is composed of two layers (0°/90°). A 

concentrated force is applied at the middle of the plate. 

Figure 12 presents the dynamic responses in terms of 

central deflection of the plate obtained using the SHB 

elements and ABAQUS linear elements. Once again, 

excellent agreement with the reference solution taken 

from [19] is observed with the dynamic versions of the 

proposed SHB elements. The ABAQUS linear elements 

show good performance as well, except for the prismatic 

element C3D6, which requires finer meshes to provide 

accurate solution. 
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Figure 11. Geometry and material parameters for the simply 

supported laminated plate. 
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Figure 12. Dynamic response curves for the simply supported 

laminated plate. 



 

3.3 Sheet metal forming process 

This subsection is devoted to the simulation of deep 

drawing of a hemispherical cup in order to evaluate the 

capabilities of the SHB elements in modeling sheet metal 

forming processes. The forming setup and the dimensions 

of the tools are presented in Figure 13. A circular steel 

sheet with initial blank radius R=126.4 mm and thickness 

t=0.7 mm is considered in the simulations. The elastic 

material properties of the sheet are given by Young’s 

modulus E=210 GPa and Poisson’s ratio v=0.3. The 

stress‒strain curve is described by the following Swift 

isotropic hardening law ( ) 2090p
0030545

.
. εσ += , while 

kinematic hardening is not taken into account (see [20]). 

The Hillʼ48 plastic yield surface is considered here to 

model the plastic anisotropy of the studied material (see 

subsection 2.2.2). The associated coefficients are 

F=0.287, G=0.357, H=0.643, L=M=1.5, and N=1.306. 

Since no blank-holder is used in this test, the blank is 

clamped all around its circumferential surface during the 

forming process. The friction coefficient between the 

tools and the blank is set to 0.15. Owing to the axial 

symmetry, only one quarter of the circular sheet is 

modeled. The final deformed shape of the hemispherical 

cup using the SHB elements is shown in Figure 14. 

R23mm

R103.4mm

R100mm

 

Figure 13. Hemispherical deep drawing setup. 
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Figure 14. Final deformed shape for the hemispherical cup. 

The profile of the thickness strain of the blank along 

the rolling direction and the reaction force of the punch 

are investigated in Figures 15 and 16, respectively, using 

the SHB solid–shell elements and only ABAQUS solid 

elements, and compared to the experimental results 

provided by Laurent [20]. Indeed, traditional shell 

elements do not allow outputting thickness strain 

variations due to their two-dimensional formulation.  

From the predictions of the thickness strain profile in 

Figure 15, the SHB elements provide the closest results to 

the experimental one in terms of overall evolution and 

order of magnitude, while the results obtained with the 

ABAQUS solid elements are inaccurate, especially in the 

zone located about 40 mm from the centre of the blank. 

These contrasted results reveal that ABAQUS solid 

elements are not able to correctly handle the severe 

contact conditions between the blank and the punch in 

this zone, which lead to highly distorted meshes, as 

illustrated in Figure 16 with the ABAQUS quadratic 

element C3D20. 
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Figure 15. Simulation results for the thickness strain. 

Figure 17 shows the punch force, as predicted by all 

solid and solid–shell elements, together with the 

experimental results. Compared to ABAQUS elements, 

the results obtained with the SHB elements are in much 

better agreement with the experiments, which confirms 

once again the ability of the proposed solid–shell 

elements to model complex sheet metal forming 

processes using only a single layer of elements. 
 



 

 

Figure 16. Final deformed cup using C3D20 element. 
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Figure 17. Punch force evolution during the deep drawing of 

the hemispherical cup. 

4 Conclusions 

In this paper, the formulation of a family of assumed-

strain-based solid‒shell elements has been described, 

which has been then evaluated through quasi-static and 

dynamic analyses as well as simulation of challenging 

sheet metal forming processes. 

In the formulation of the SHB elements, several local 

frames have been defined and used in their numerical 

implementation. Taking advantage of such modularity, 

various constitutive models have been coupled with these 

SHB elements, including isotropic behavior, orthotropic 

elastic behavior for laminated composite materials, and 

anisotropic plastic behavior for metallic materials. 

A series of selective and representative benchmark 

tests, involving different types of materials, loading and 

boundary conditions, has been conducted to assess the 

performance of the SHB elements in quasi-static and 

dynamics analyses. Also, complex deep drawing of a 

hemispherical cup has been considered to evaluate the 

capabilities of the proposed SHB elements in handling 

various types of nonlinearities (geometric, material, and 

due to contact). Adopting equivalent in-plane meshes and 

numbers of integration points in the thickness direction, 

the SHB elements performed much better than their 

ABAQUS counterparts, in both types of analyses (quasi-

static and dynamic). Moreover, the variety of numerical 

results presented in this paper reveal the good capabilities 

of the SHB elements and their wide prospective 

applications in the simulation of thin 3D structures. 
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