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Abstract 

We present in this investigation an advanced phenomenological approach combining the 

computational efficiency of classical phenomenological plasticity models and the accuracy and high 

resolution of multiscale crystal plasticity schemes. Within this advanced approach, a new 

phenomenological constitutive framework has been developed and implemented into 

ABAQUS/Standard finite element (FE) code. Compared to classical approaches, this framework 

allows accounting for initial and induced plastic anisotropy, isotropic nonlinear hardening and the full 

coupling with isotropic ductile damage. Material parameters corresponding to this phenomenological 

constitutive framework are identified based on multiscale polycrystalline simulations, where the self-

consistent scheme is used to ensure the transition between the single crystal and polycrystal scales. 

The single crystal mechanical behavior is assumed to be elastoplastic (rate-independent), and 

microscopic material degradation is well-considered by introducing a scalar damage variable at each 

crystallographic slip system for each individual grain. The evolution of polycrystalline yield surfaces 

induced by the evolution of crystallographic texture, is accurately reproduced by the new constitutive 

modeling, where the anisotropy parameters are assumed to evolve during plastic deformation. Their 

evolution laws are identified based on multiscale simulations. The different identification procedures 

are presented and extensively discussed. The robustness and reliability of this advanced model are 
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analyzed through some relevant numerical predictions obtained by applying a combined tensile/shear 

test. 

Keywords: plasticity, damage, full coupling, induced plastic anisotropy, phenomenological 

models, multiscale schemes. 

1. Introduction 

Finite element (FE) simulations have become a powerful tool in the modeling of metal structures and 

components during sheet metal forming processes. The efficiency and reliability of FE modeling 

depend not only on the numerical strategies and methods used to perform these simulations (size, type, 

and number of finite elements, algorithms to integrate the constitutive equations, numerical techniques 

to solve the balance equations, …), but also on the choice of the constitutive framework able to 

accurately reproduce the real mechanical response. Classically, constitutive models may be broadly 

classified into two main categories: macroscopic phenomenological approaches and micro-macro 

multiscale models. 

Currently, macroscopic phenomenological approaches are the most widely used to numerically 

simulate sheet forming processes. These approaches can be classified into two main classes. The first 

and simplest one includes conventional plasticity models associating an isotropic hardening rule with a 

yield function using an enhanced definition of equivalent stress. Within these models, isotropic 

hardening is described by a scalar function non-linearly dependent on the accumulated plastic strain. 

In this case, attention is focused only on the form of the equivalent stress to describe the initial as well 

as induced plastic anisotropies using quadratic [1] or non-quadratic [2–7] equivalent stress measures, 

while the ‘center’ of the yield function remains fixed in the stress space (i.e. no kinematic hardening is 

considered). As well admitted, this class of models is unable to accurately predict the stress state of the 

material subjected to large plastic strains under complex non-monotonic and non-proportional loading 

paths. To overcome this limitation, many authors have proposed several extensions of this kind of 

models to account for scalar distortional hardening using associated flow rules [8–11] and non-

associated flow rules [11–15]. Yield surface distortion is then described by anisotropic hardening 

leading to a significant change in the shape of the yield locus as the hardening increases. More recent 

investigations tend to describe the yield surface distortion by an internal structure tensor in the yield 

stress, using the so-called Homogeneous Anisotropic Hardening (HAH) concept, which is based on 

homogeneous yield functions/plastic potentials combining a stable, isotropic hardening-type 

component and a fluctuating component [16–18]. 
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The second strategy, which is more advanced than the first one, is based on the framework of the 

thermodynamics of irreversible processes. It consists in defining several pairs of state variables 

associated with the different physical phenomena to be taken into consideration. Various physical 

phenomena characterized by strong interactions (or full coupling) with highly nonlinear evolutions, 

such as mixed isotropic, kinematic, distortional hardening and, different damage kinds (ductile, creep, 

fatigue, …) can be considered. The state and dissipation potentials as well as the yield functions are 

then  taken as a convex functions of  these state variables in order to derive a complete set of fully 

coupled thermodynamically-consistent constitutive equations [19–23]. Advanced metallic materials 

exhibit various strong initial and induced anisotropies (see for example [11]), which cannot be 

described by a simple associated plasticity theory with a single yield function with different sources of 

anisotropies under concern. François [24] has proposed a new yield criterion in which a distortion 

deviatoric stress tensor including kinematic hardening is used instead of the classical deviatoric stress 

tensor defining an egg shaped yield surface. The François’ model has been extended in [25] to take 

into account the effect of orthogonal loading evolution in the framework of non-associated plasticity. 

Some other proposed models have been introduced through variations in fourth-rank anisotropy tensor 

of the yield function [26–28]. Using similar approach, a thermodynamically-consistent framework of 

isotropic, kinematic and distortional hardening under small plastic strains has been developed in [29]. 

Otherwise, for metal forming processes, the material is subjected to large plastic strains inducing flow 

localization in narrow shear bands, where some micro-voids and micro-cracks are expected to appear 

leading to ductile damage initiation and propagation. Accordingly, ductile damage and its full effects 

on the other phenomena (strong coupling) are then necessary to take into account accurately predict 

the stress state and the plastic flow during metal forming. Several theories have been proposed to 

describe this damage occurrence as well as its effect on the material behavior. The most widely used 

approach in metal forming is based on the continuum damage mechanics, which represents the ductile 

damage by scalar or tensor state variables [20, 22, 30–35], and its effect on the material behavior is 

accounted for thanks to the equivalence assumptions (strain equivalence, stress equivalence or energy 

equivalence). 

These phenomenological approaches have the advantage of being simpler to implement in FE 

environment and consume relatively low CPU time, even for complex models, compared to the 

multiscale micro-macro models. However, the development of new high performance materials (like 

High Strength Steels, High Strength Aluminum, Magnesium alloys) induces, due to their complex 

microstructures, more and more complex phenomena that shall be taken into account in models, thus 

leading to an increase of the number of material parameters [21, 23, 36–39]. This leads to increasing 

significantly of the number of material parameters and constitutes the main drawback of this approach, 
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because their identification requires a large number of experimental mechanical tests. Furthermore, 

due to the technical limitations of the current experimental devises, it is always very difficult and 

sometimes unrealizable to characterize all the complex phenomena affecting the material behavior 

(initial and induced anisotropy, distortion of the yield surface, transient and permanent hardening, 

ductile damage, …) in six-dimensional stress or strain spaces by classical mechanical testing on thin 

sheet metals. 

The above-mentioned inherent limitations of macroscopic phenomenological approaches opened the 

way towards the development of polycrystalline multiscale models. Contrarily to the 

phenomenological approaches, multiscale schemes allow explicitly linking the macroscopic behavior 

to microscopic mechanisms and phenomena such as the evolution of crystallographic and morphologic 

textures, the dislocations motion, the slip on the crystallographic slip systems... This feature 

constitutes the main advantage of multiscale approaches compared to phenomenological ones. 

Consequently, these multiscale approaches have been widely coupled with the FEM to simulate sheet 

metal forming processes. From a practical point of view, to perform such simulations, the sheet metal 

is discretized with a large number of finite elements and a polycrystalline aggregate, made of a 

sufficient number of grains to be representative of the studied material, is associated with each 

integration point. In the literature, several multiscale schemes have been developed and used to ensure 

the transition between the grain and polycrystal scales. These schemes can be classified into two main 

families, namely the mean-fields and the full-fields homogenization approaches. Mean-field 

approaches have been initiated by the well-known Taylor model [40–42]. This model assumes that the 

strain field is homogeneous through the polycrystalline aggregate. It has been coupled in several 

contributions [43–45] with the FE method to simulate different forming processes. In reality, the 

assumption of the strain field homogeneity cannot be fulfilled due to the grain boundaries and the 

differences observed in the crystallographic orientation between the different grains or crystals. 

Moreover, the microscopic equilibrium condition across the grain boundaries is not ensured when the 

Taylor model is used. These violations generally lead to some inaccuracies in the FE predictions 

compared to experimental observations. Consequently, more sophisticated and accurate mean-field 

schemes have been developed in the literature to accurately describe the mechanical behavior of 

polycrystalline media. In this area, one can quote the self-consistent scheme [45–47]. This scheme 

considers each grain as an ellipsoidal inclusion surrounded by an infinite homogeneous effective 

medium having the average properties of the real polycrystal. Under this scheme, each grain deforms 

differently from the other grains and intergranular interactions are accurately modeled. Moreover, the 

equilibrium condition across the grain boundaries is satisfied within the self-consistent approach. This 

scheme has been coupled in several recent contributions with the FE method [45, 48–50]. The full-

field homogenization approaches are generally based on solving the multiscale equations by means of 
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the FE method, after spatial discretization of the studied polycrystalline aggregate [51–53]. Albeit 

their undeniable advantages, multiscale approaches present several limitations and issues when they 

are used to model large-scale metal forming processes by the FE method. In fact, such simulations 

have the disadvantage of being more computationally burdensome, as they involve a huge amount of 

CPU time and memory space to store all the microscopic and macroscopic state variables at each time 

increment. Despite the continuous and growing progress in computer science (robust parallel 

computations…), these inherent limitations have drastically restricted the use of polycrystalline 

models in the simulations of sheet metal forming processes. 

Clearly, the two modeling approaches (namely, single-scale phenomenological and multiscale 

approaches) have their own benefits and drawbacks. To combine the strength and the advantages of 

both approaches, virtual strategies have recently been explored by several authors [54–59]. Within 

these strategies, multiscale approaches can be used to predict the material mechanical responses for a 

much larger number of stress or strain loading paths than would be possible by experimental testing. 

These strategies are enough robust and flexible to accurately identify quite complex phenomena, such 

as initial and induced plastic anisotropies, distortional hardening, and non-associativity of the flow 

rules. Combined with appropriate optimization algorithms, the predicted mechanical responses allow 

fitting the mechanical parameters needed for complex macroscopic phenomenological models. Once 

the parameters identified, the associated phenomenological models can be used, instead of the 

multiscale schemes, to robustly simulate metal forming processes. The use of phenomenological 

models, with the parameters identified on the basis of multiscale computations, leads to an advanced 

numerical strategy combining the strengths of both modeling approaches: (i) the efficiency of the 

classical macroscopic phenomenological approaches (as their use involves reduced CPU time), and (ii) 

the accuracy and physical foundation of multiscale approaches. Consequently, an advanced 

phenomenological strategy is proposed and implemented in the present work. Within this strategy, the 

mean-field self-consistent approach is used to model the mechanical behavior of polycrystalline 

aggregates assumed to be representative of the studied media. The single crystal behavior is modeled 

by a finite strain rate-independent model, which is more suitable to model the evolution of the 

mechanical behavior during cold forming processes [60–62]. In this model, the plastic strain is mainly 

due to the slip along the octahedral crystallographic slip systems (CSSs), and the plastic flow is 

modeled based on the classical Schmid criterion [63]. Microscopic damage evolution is accounted for 

in the single crystal modeling by using the framework of continuum damage mechanics approach. The 

coupling between damage evolution and plastic behavior is based on sound thermodynamics 

considerations and follows the contributions presented in [22]. Within the present advanced 

phenomenological strategy, the Barlat yield function [3] is used to describe the initial plastic 

anisotropy. This yield function is selected considering its reliability and efficiency in the description of 
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plastic anisotropy of metal alloys. Ductile damage is well-considered in this phenomenological model 

when the continuum damage mechanics approach is adopted to introduce a scalar damage variable in 

the constitutive equations. An identification strategy is developed to fit the mechanical parameters 

corresponding to this model from the self-consistent computations. To model the plastic anisotropy 

induced by the evolution of crystallographic texture during plastic flow, the identified anisotropy 

parameters are assumed to evolve during plastic deformation as a function of accumulated plastic 

strain and damage. The introduction of the anisotropy parameters evolution into the phenomenological 

model is a pragmatic way to accurately reproduce the mechanical responses predicted by the self-

consistent multiscale scheme. Compared to similar approaches developed and used in the literature 

[54–59], the current modeling presents a new contribution, as the damage evolution is considered in 

both multiscale and phenomenological approaches. Moreover, robust integration schemes are 

developed to integrate the different constitutive models, which are implemented as user defined 

material (UMAT) subroutines into ABAQUS/Standard FE code. The numerical results highlight the 

reliability of the developed identification strategy and the resulting advanced phenomenological 

approach. 

The outline of the paper is as follows: 

 In Section 2, the multiscale and phenomenological constitutive frameworks developed to model 

the mechanical behavior are shortly presented. 

 The identification procedure performed to identify the material parameters corresponding to the 

advanced phenomenological approach is detailed in Section 3. 

 Section 4 presents some numerical results obtained by applying a combined tensile/shear test to 

highlight the robustness and the reliability of the developed phenomenological strategy. 

Conventions, notations and abbreviations 

The following conventions and notations are adopted throughout this paper. Note that the assorted 

notations can be combined, while additional notations will be clarified as needed following related 

equations: 

 Microscale (resp. macroscale) variables are denoted by lowercase (resp. capital) letters. 

 Scalar parameters and variables are designated by thin and italic letters or symbols (e.g. ,a b ). 

 Vectors are indicated by boldface letters or symbols with arrow (e.g. ,a b ). 

 Second-rank tensors are indicated by boldface letters or symbols (e.g. ,a b ). 

 Whenever possible, fourth-rank tensors are written as blackboard-bold capital letters to 

differentiate them from second-order tensors (e.g. , ). 
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 Quantities relating to the grains are systematically indicated by the letter ‘ gr ’, while those to 

the crystallographic slip systems are indicated by letters ‘ α ’ or ‘. υ .’. 

  : time derivative of  . 

  : the effective counterpart of variable (in the framework of damage mechanics). 

 T : transpose of  . 

 1 : inverse of  . 

  
S
: symmetric part of  . 

  
A

: skew-symmetric part of  . 

  det : determinant of  . 

  : absolute value of  . 

  sgn  : sign of   equal to /  . 

  : positive part of   or Macaulay brackets equal to   / 2   . 

 e
: exponential of  . 

  
n

: variable   expressed at instant  n
t  used in the incremental forms of the different variables 

(see Section 2.2.3). 

 n : variable   corresponding to the n th loading in the stress space (see Section 3.1.1). 

 .  : simple contraction or contraction on one index (inner product). 

 :  : double contraction or contraction on two indices (inner product). 

  : tensor product (external product). 

 
2I : second-rank identity tensor. 

 
4
: fourth-rank identity tensor. 

 FE: finite element. 

 CSS: crystallographic slip system. 

  : the set of anisotropy parameters defining the anisotropic yield function  . 

 
hd

: the set of hardening and damage parameters. 

 DCCM: damage coupled constitutive modeling. 

 DUCM: damage uncoupled constitutive modeling. 
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 POLY: the mechanical behavior is modeled by the self-consistent polycrystalline approach. 

 PHEA: the mechanical behavior is modeled by the phenomenological framework with evolving 

plastic anisotropy parameters. The evolution of these parameters is fitted on the basis of the 

polycrystalline simulations. 

 PHIA: the mechanical behavior is modeled by the phenomenological framework with constant 

plastic anisotropy parameters. These parameters are fixed to their initial values identified on the 

basis of the polycrystalline simulations. 

 HYBR: the numerical strategy used to subdivide the specimen in two zones: the weakly loaded 

zone, where the mechanical behavior is modeled by the PHEA model, and the highly loaded 

zone, where the POLY model is assigned. 

2. Constitutive frameworks 

2.1. Multiscale modeling 

Compared to classical single crystal models, the present model enables to take into account the effect 

of microscopic damage on the elastoplastic single crystal behavior. Based on the slip theory, a local 

micro-damage variable representing the transgranular damage is introduced and fully coupled with the 

microscopic elastoplastic behavior. The main lines of this damaged constitutive framework will be 

presented hereafter. 

As a starting point of this modeling, the velocity gradient g  is additively partitioned into its symmetric 

and skew-symmetric parts, denoted as ε  and w , respectively. In addition, tensors ε  and w  can be 

split into their elastic and plastic parts: 

 , , .g ε w ε ε ε w w w
e p e p= + = + = +  (1) 

Plastic strain is assumed to be mainly due to the slip on crystallographic planes. Hence, tensors ε
p
 and 

w
p

 are defined as follows [64]: 

    , ,ε m w m
 

  
s sN N

p α α p α α

S A
α α

γ γ  (2) 

where: 

 αγ  is the slip rate corresponding to slip system α . 

 
sN  is the total number of slip systems (equal to 12 for FCC single crystals). 
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  m
α

S
 (resp.  m

α

A
) is the symmetric part (resp. skew-symmetric part) of the Schmid 

orientation tensor m
α , which is defined as the tensor product of the unit vector in the slip 

direction b
α  and the vector normal to the slip plane n

α : 

 1,..., ,m b n    α α α

sα N  (3) 

where the list of vectors b
α  and n

α  corresponding to FCC crystallographic structure is provided 

in Appendix A. 

To model the plastic flow in damaged elastoplastic single crystals, the Schmid criterion is extended to 

take into account the effect of damage evolution on the plastic flow [64]: 

    1,..., 0, sgn sgn , 0 ,       α α α α α α α

s cα N f τ τ γ τ γ f  (4) 

where the effective resolved shear stress 
ατ  and slip rate αγ  are related to their actual counterparts 

ατ  

and αγ  on the basis of the energy equivalence assumption: 

 1,..., , 1 ,
1

     


α
α α α α

s
α

τ
α N τ γ d γ

d
 (5) 

where 
αd  is a scalar damage variable associated with each CSS α , which is defined by the following 

evolution law equation: 

 

 
01,..., : 0 1, .

1

 
      

 

α α
α α

s m
α

θ
γ y y

 α N d d
sd

 (6) 

This evolution equation depends on the thermodynamical force αy  and on the following material 

parameters: 
0y , s , θ  and m . 

The actual shear stress 
ατ , introduced in Eq. (5), is obtained by the twice-contracted tensor product of 

the microscopic Cauchy stress tensor σ  by the Schmid tensor m
α : 

  1,..., : : .σ m σ m    α α α

s S
α N τ  (7) 

Ductile damage is assumed to affect also the elastic properties. In fact, the Cauchy stress tensor σ  is 

related to the elastic strain tensor ε
e
 (the integral of the elastic strain rate ε

e
 over the loading history) 

by the following damaged hypoelastic model [65]: 

 : ,σ c ε e e  (8) 

where the fourth-rank tensor c
e
 is the operator of elasticity modulus for the damaged material, which 

is related to its counterpart for undamaged materiel c
e
 by the following classical relationship [66]: 
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  1 .c c e e

avd  (9) 

The scalar damage variable 
avd  describes the effect of micro-damage on the elastic properties and is 

expressed as the average of the slip systems damage variables αd : 

 
1

.


 
sN

α

av

αs

d d
N

 (10) 

It should be noted that 
avd  is not a state variable in the thermodynamical sense, but it plays the role of 

an auxiliary variable. 

In the present work, the elasticity of the undamaged material is assumed to be infinitesimal, linear and 

isotropic. Hence, matrix c
e  only depends on the Young modulus E  and the Poisson ratio  . 

The evolution of the critical shear stress is given by the following hardening equation: 

  
1

1,..., ,  
sN

αυ υ

s c

υ=

α = N h γ  (11) 

where h  is the hardening interaction matrix, whose analytical expression is given in details in 

Appendix A. 

A detailed description of the numerical scheme used to integrate the single crystal constitutive 

equations with damage effect has been provided in [45, 67]. Once the constitutive equations are 

integrated at the single crystal scale, the self-consistent scheme is then used to obtain the macroscopic 

response from the microscopic one. The equations defining the self-consistent multiscale scheme are 

briefly recalled in Appendix B. 

2.2. Phenomenological model 

2.2.1. Thermodynamic framework 

The thermodynamics of irreversible processes and the continuum damage mechanics frameworks are 

used to formulate the phenomenological model. A state potential is built considering different pairs of 

state variables describing the different phenomena and using the effective variables concept based on 

the total energy equivalence assumption to introduce the full coupling of the mechanical behavior and 

the ductile damage. Thus, three couples of state variables are considered: 

-  , E Σ
e , with E

e  the macroscopic elastic strain tensor, 

-  , r R  representing the isotropic hardening, 

-  , D Y  describing the isotropic damage. 

The classical forms of the effective state variables are defined as [20, 22]: 
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 , 1 , , 1 .
1 1

Σ
Σ E E     

 

e e

D
R r

R
D D r

D
 (12) 

Note that small elasticity assumption is considered together with large plastic strain. The Helmholtz 

free energy is chosen as state potential, which is a convex and positive function of the considered 

strain type state variable: 

 

       

    2

 , ,

,

    

1 1
1 :

,

: 1
2 2

, ,E E E

E E

  

   e

e e e e h

e e

Ψ r Ψ r D Ψ D Ψ r D

D D Q r

   

 (13) 

with e  the fourth-rank elasticity tensor of the undamaged material, and Q  the isotropic hardening 

modulus. From Eq. (13), one can deduce the thermodynamical forces that derive from the state 

potential: 

 

   

   

2
2

2 2

1  :

,

1

1 1 1 : : 1
:

,

:
2 2 2 21 1

,
e

Σ E
E

Σ Σ
E E


 

  

  



    

  





e e

e e e re

Ψ
D

Ψ
Y Qr Y Y

D D Q

Qr

D

R D

R
 (14) 

with  the fourth-rank compliance tensor equal to 1e . Note that the energy density release rate Y  

is decomposed in the strain space or in the stress space, due to the full coupling based on total energy 

equivalence, into an elastic part 
 

2

1 1 : :
: :

2 2 1

Σ Σ
E E 



e e eeY
D

 and a hardening part 

 

2
2

2

1 1

2 2 1
 



r R
Y Qr

Q D
. 

To ensure the Clausius–Duhem inequality based on general non-associated plasticity theory, we 

separately define the yield criterion f  and the plastic potential F : 

      
 

2

1

0
1

1
0, ,

11
Σ Σ



 
      



 
p

Θ

H EY

M

Y YS
f Σ R F R H e

Θ SD
 (15) 

with: 

 YΣ  the initial yield stress, 

   and   two equivalent stress functions defining the plastic anisotropy of the yield stress and 

the plastic flow, respectively. Their explicit expressions are provided in Section 2.2.2, 

 
1H  and 

2H  scalar parameters describing the isotropic hardening evolution, 

 S , Θ , M  and 
0Y  scalar parameters describing the damage evolution, 
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 p  the accumulated plastic strain measure equal to :E E
p p dt . 

To accurately reproduce the evolution of plastic anisotropy (resulting from the evolution of the 

crystallographic texture), the anisotropy parameters involved in the stress state functions   and   are 

assumed to evolve with the accumulated plastic strain measure p  and the damage variable D , as 

will be detailed in Section 3.2.4. 

The evolution relations of dissipative phenomena are obtained using the normality rule applied to the 

plastic potential F : 

  ,E Σ
Σ Σ


 

 

p F
Λ Λ


 (16) 

 
 

0 ,
1


 

 

Θ

M

Y YF Λ
D Λ

Y SD
 (17) 

 2

1 ,e


 


pHF
r Λ ΛH

R

  (18) 

with Λ  the plastic multiplier, implicitly given by the consistency condition or Kuhn–Tucker 

condition: 

 0, 0, 0, 0.   f Λ Λ f Λ f  (19) 

It shall be noted that the accumulated plastic strain measure p  is different from the equivalent plastic 

strain Λdt . 

In this model, in addition to the anisotropy parameters defined in   and  , there are eight parameters 

to be identified (namely, the hardening and damage parameters). These parameters are stored in the set 

hd
: 

  1 2 0, , , , , , , . Y

hd Q Σ H H S M Θ Y  (20)  

2.2.2. Barlat criterion 

Due to its reliability, the anisotropic yield criterion introduced in [3] is selected to describe the plastic 

anisotropy in the phenomenological model. To present the main lines of this criterion, let us introduce 

the fourth-rank transformation tensor  relating the effective Cauchy stress tensor Σ  to a modified 

effective stress tensor S : 

 : .S Σ   (21) 
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The fourth-rank tensor  allows accurately describing the material plastic anisotropy. Using the Voigt 

matrix notation, tensor  can be written in a 6 6  matrix form: 

 

 

 

 

12 13 12 13

12 12 23 23

13 23 13 23

44

55

66

0 0 0

0 0 0

0 0 0
,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

  
 

  
  

  
 
 
 
 
 

T T T T

T T T T

T T T T

T

T

T

 (22) 

where ijT  are the six anisotropy scalar parameters. Note that some coefficients of the transformation 

tensor  verify the relations 

 
1 2 3 0,1, ,3   i i iT. T Ti= . .  (23) 

arising from invariance of the Barlat criterion upon addition of a mean stress  11 22 33  mΣ Σ Σ Σ . 

The anisotropic equivalent stress  , introduced in Eq. (15), can be expressed as function of the 

eigenvalues 1S , 2S  and 3S  of tensor S  as follows [3]: 

    
1/

1 2 1 3 2 3 ,| | | | | |Σ      
A

A A AS S S S S S  (24) 

with exponent A  a parameter describing the sharpness of the yield function (typically around 6 for 

BCC single crystals, and 8 for FCC single crystals). As shown in Eqs. (21)–(24), the yield function   

is dependent on seven material parameters, which can be stored in the set  : 

  12 13 23 44 55 66, , , , , , . T T T T T T A  (25) 

The same form is used for the flow rule anisotropy function  , with eventually a new different set of 

parameters  : 

   12  13  23  44  55  66, , , , , , . T T T T T T A  (26) 

The main lines of the numerical scheme used to integrate the phenomenological constitutive equations 

are provided in Appendix C. 

3. Identification of the advanced model parameters and their evolution laws 

This section will focus on the presentation of the identification procedures developed to determine the 

macroscopic mechanical parameters (and their eventual evolution laws) from the virtual experiments 

based on the multiscale simulations. 



 

 

 

 

-14- 

 

3.1. Generation of the numerical database 

3.1.1. Virtual numerical loadings 

In order to identify the material parameters (hardening, damage and plastic anisotropy) corresponding 

to the advanced phenomenological model, we have generated a numerical database by applying a set 

of 3D numerical tests on a polycrystalline aggregate (assumed to be representative of the studied 

metallic structure). These numerical tests are linearly applied in the deviatoric stress space, as 

described by the following conditions: 

  , , , 1,2,3: stress ratios / kept constant during the loading and  .Σ   ij kli j k l Σ Σ tr  (27) 

To cover the whole range of stress modes and then to accurately identify the different mechanical 

parameters, a large number of loading paths are generally required. This approach, based on the 

identification of material parameters using virtual experiments, presents several undeniable advantages 

compared to classical identification based on real experimental tests. In fact, it allows considerably 

minimizing the identification cost, as testing machines and specimens are not required in this case. 

Furthermore, this approach enables to reach stress modes not easily reachable due to the limitation of 

real mechanical experimental tests (such as loadings 5
Σ  and 6

Σ  defined in Eq. (29)). 

Practically, the evolution laws of parameters 
12 13 23, , T T T  are identified by applying diagonal 

macroscopic stress states 123
Σ  defined by the following form: 

  

 

 

   

123

cos 0 0

ˆ  0 sin 0 ,

0 0 cos sin

Σ

 
 

  
   

β

β Σ β

β β

 (28) 

where Σ̂  is the magnitude of the loading and β  is the angle defining the stress path direction with 

respect to the rolling direction. To uniformly sweep the space of deviatoric and diagonal stresses, the 

angle β  is varied between 0°  and 359°  with an increment Δ 1°β  giving rise then to 360 loadings. 

On the other hand, to determine the evolution laws of parameters 
44 55 66, , T T T , the following stress 

loadings are respectively applied: 

 
4 5 6

0 1 0 0 0 1 0 0 0

ˆ ˆ ˆ1 0 0 , 0 0 0 , 0 0 1 .

0 0 0 1 0 0 0 1 0

Σ Σ Σ

     
     

  
     
          

Σ Σ Σ  (29) 

Finally, to better represent the deviatoric stress space and to preserve some balance for the weight of 

the different parameters ijT  in the identification procedure, a set of 100 mixed loadings combining the 

stress states  1 123 0Σ Σ ,  2 123 90Σ Σ  , 4
Σ , 5

Σ  or 6
Σ  are randomly selected from the whole set 
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of possible combinations and applied. These combined loadings are defined by the following 

decomposition: 

 321

1 2 3 ,Σ Σ Σ Σ  
ii ikk k  (30) 

with =1,...,3 {0, 0.5, 1}jk  and =1,...,3 {1, 2, 4 ,5, 6}ji . The application of these additional combined 

loading paths enables to significantly enrich the generated database by integrating more complex 

loading modes. In total, 463 virtual loading paths are required in the whole to construct the final 

numerical database. In what follows, those loadings are labeled by an upper index {1,...,463}Σ L . 

For each probing virtual loading 
ΣL  and at each nth time increment, the macroscopic plastic strain rate 

 
Σ E

L p

n
 is deduced from Eq. (B.6): 

 
   

1

( ) .Σ ΣE ε



L

Ngr
p

r

L pgr gr

n n

g

f  (31) 

From Eq. (31), one can define the rate of the accumulated plastic strain  
ΣL p

n
E  as: 

      : .Σ Σ ΣE E
L p p L

n n

L p

n
E  (32) 

The plastic strain  
ΣL p

n
Ε  accumulated at the end of the nth time increment can be determined by a time 

integration of Eq. (32): 

  

 

0

.Σ Σ 
n

L L

t

p p

n
Ε E dt  (33) 

As  
Σ E

L p

i
 is assumed to be constant over the ith time increment, Eq. (33) can be rewritten as follows: 

            
1 1

 Δ :  Δ , Σ Σ Σ ΣE E
 

 
L

n
pL

n
p p p

n i i i

i i

LL

i i
Ε Ε  t t  (34) 

where  Δ
i

t  is the size of the ith time increment equal to    1


i i
t t . The stress state  

Σ Σ
L

n
 is stored in 

the numerical database as the point of the yield locus corresponding to the accumulated plastic strain 

 
ΣL p

n
Ε . The points corresponding to the stress states  

Σ Σ
L

n
 (for 1,...,463Σ L  and 1n ,...,N , where 

N  refers to the total number of time increments required to generate the database) define the contour 

of the yield locus and its evolution, according to the macroscopic accumulated plastic strain obtained 

by the polycrystalline model for proportional loading paths. 

It is worth noting that, as the stress states obtained from the polycrystalline predictions depend in a 

complex way on the evolution of microstructural variables (such as, slip and damage over the different 

CSSs of the individual grains and crystallographic texture), which are in turn dependent on the loading 
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history, the yield loci are strongly dependent on the loading history. Indeed, the evolution of the 

internal variables at a given stress state is mainly dependent on the loading history (proportional, 

complex, cyclic…) followed to reach this state. Hence, the proposed phenomenological model is 

probably limited when it will be used to simulate forming processes with strong and complex loading 

evolutions (such as crash tests). However, for classical forming processes (such as deep drawing or 

rolling), one expects that local loading paths do not exhibit strong deviations from proportional 

loadings, so that the proposed numerical strategy remains relevant in this case. 

3.1.2. Polycrystal material parameters 

The multiscale simulations required to generate the numerical database are performed using a FCC 

polycrystalline aggregate made of five hundred grains. The initial crystallographic texture, typical for 

cold-rolled polycrystals, corresponding to this aggregate is plotted in the form of (100) and inverse 

pole figures in Fig. 1. 

  

 (a)  (b) 

Fig. 1. Initial crystallographic texture for cold-rolled polycrystal generated by the ATEX software [68]: (a) (100) 

pole figure; (b) inverse pole figure with respect to the Y direction. 

The microscopic material parameters used to apply the virtual loadings are provided in  

 

 

 

Table 1. These material parameters correspond to the Waspaloy alloy and are identified in [65] based 

on several experimental tests. 
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Table 1. Microscopic material parameters [65]. 

Hardening parameters (see Appendix A) 

0 (MPa)τ

 
0 (MPa / s)h  b  

1a  
2a  

3a  
4a  

5a  
6a  

320 356 14.9 1.0 0.86 1.01 1.14 1.3 3.13 

Elasticity parameters Damage parameters (see Eq. (6)) 

(GPa)E  ν  (MPa)s  θ  m  
0 (MPa)y  

200 0.3 30 1 0.85 0 

3.2. Identification procedure 

Once the numerical database is built by the method detailed in Section 3.1.1, the optimal parameters of 

the phenomenological model should be identified, in such a way that the phenomenological 

predictions allow closely reproducing the polycrystalline macroscopic mechanical responses for linear 

stress paths. This objective is to be reached assuming that the components of the transformation tensor 

 evolve as functions of the accumulated plastic strain pE  and ductile damage variable D . This 

evolution is integrated in the phenomenological modeling to accurately follow the microstructural 

evolutions exhibited by the polycrystalline model, thus leading to the evolution of the macroscopic 

plastic anisotropy. The resulting model, taking into account the evolution of the anisotropy parameters, 

can be viewed as advanced phenomenological modeling, since it allows combining the strengths of 

both models: the self-consistent modeling to accurately reproduce the evolution of plastic anisotropy, 

and the initial phenomenological modeling to efficiently predict the mechanical behavior. To further 

investigate the effect of damage evolution on the identified results, the cases with and without full 

coupling with damage will be separately considered. These cases will be briefly denoted in what 

follows DCCM and DUCM, respectively. 

3.2.1. Identification steps 

Due to the large number of parameters involved in the phenomenological model, it is extremely 

complicated to simultaneously determine the optimal set of these parameters with the suitable 

evolution laws. To overcome this issue, a sequential identification strategy including the following 
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successive steps is performed: 

1. Using the mechanical response obtained by the application of the loading  1 123 0Σ Σ  (see Eq. 

(28) to recall the explicit expression of this loading), determine the hardening and damage 

parameters belonging to set 
hd

 by applying the identification procedure detailed in Section 

3.2.2. 

2. For each accumulated plastic strain level  
p

n
Ε  (for ..  1  ,, . n N ), compute the set of macroscopic 

stress states  
Σ Σ

L

n
 (with 3...1  , 46,Σ L ) and generate on the basis of this set the numerical 

yield locus. Thereafter, deduce the damage variables  
ΣL

n
D  corresponding to the different stress 

states  
Σ Σ

L

n
. Finally, identify the optimal plastic anisotropy parameters. To simplify the 

running of this identification strategy, associated flow rule is assumed in this step. Hence, only 

the sets     , ΣLp

n n
Ε D  corresponding to the anisotropic function   should be identified, while 

sets     , ΣLp

n n
Ε D  are identically equal to     , ΣLp

n n
Ε D . Further details about the technical 

aspects related to this step will be provided in Section 3.2.3. The identification of the plastic 

anisotropy parameters will be improved in Step 4 by considering the non-associativity of the 

plastic flow. 

3. Using the numerical database generated in Step 2, determine the evolution laws of the 

anisotropy parameters belonging to set   on the basis of the methodology detailed in Section 

3.2.4. 

4. Improve the identification of the plastic anisotropy parameters by considering the non-

associativity of the plastic flow. This step will be detailed in Section 3.2.5. 

The developed identification methodology is schematically illustrated by the flowchart of Fig. 2. For 

the sake of readability of this flowchart, only the first three steps of this identification strategy are 

presented in this figure. It should be recalled that the decomposition of the above-defined steps, 

instead of simultaneous identification of all parameters, allows easily checking, at each step of the 

identification procedure, the reliability and physical consistency of the obtained parameters. In 

particular, this enables to determine the functions describing the evolution of plastic anisotropy 

parameters (Section 3.2.3), so that to comply with the numerical evolution obtained in Step 2. 
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Fig. 2. Flowchart of the identification procedure (only the first three steps are illustrated). 

3.2.2. Identification of the hardening and damage parameters 

The identification of the hardening and damage parameters is performed using the evolution of the 

stress state 1
Σ  corresponding to the first loading path. This stress state, explicitly defined in Section 

3.1.1, can be expressed as a function of the von Mises equivalent stress 
1

vMeqΣ : 

 

1

1

1 0 0

  0 0 0 .
3

0 0 1

Σ

 
 


 
  

vMeqΣ
 (35) 

In order to maintain the consistency of the constitutive modeling and to respect the description of the 

plastic anisotropy by the Barlat criterion, the following equality should be fulfilled at the end of each 

time increment n : 

     
1 11,..., .: Σ 

n nvMeq
n N Σ  (36) 
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For each time increment, the previous equation leads to a nonlinear relation between the six 

components of the transformation matrix  (namely, 
12T , 

13T , 
23T , 

44T , 
55T , and 

66T ). Then, one 

component of matrix  can be expressed as function of the five other components to ensure the 

satisfaction of Eq. (36). From the incremental form of Eq. (C.8), one can deduce that: 

 
         

 

 

 

1 1

1 1

1 1
0,

1 1
Σ

 
       
  
 

vMeq n nY Y

n n n

n n

Σ R
f

D
R

D
    (37) 

where  
1

n
R  and  

1

n
D  are obtained from the incremental forms described by Eqs. (C.6)1 and (C.7)1, 

respectively. Scalars  
1

n
R  and  

1

n
D  are mainly dependent on the damage and hardening parameters. 

Then, one can define the quadratic error function to minimize, with respect to the components of set 

hd
, by the least square method: 

  
      

 

1/2
2

1 1

1
1

E .rr


       
   




Y

N
hdvMeq n n

hd hd

n vMeq n

Σ R

Σ


 (38) 

Optimal parameters are obtained using the Levenberg–Marquardt minimization algorithm 

implemented in MATLAB through the lsqcurvefit function. This algorithm is based on the interior-

reflective Newton method described in [69]. Comparisons between the polycrystalline (POLY) and 

phenomenological (PHEN) predictions, in terms of the evolution of the equivalent stress 
1

vMeqΣ  as a 

function of the accumulated plastic strain pE , are displayed in Fig. 3. The results of this figure reveal 

the perfect agreement between the polycrystalline simulations and the phenomenological predictions, 

thus highlighting the accuracy of the fitted parameters. The complete sets of hardening and damage 

parameters, identified on the basis of polycrystalline simulations, are summarized in Table 2 and Table 

3. 
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 PHENDCCM

 

Fig. 3. Hardening and damage identification results: evolution of the von Mises equivalent stress 1

vMeqΣ  as a 

function of the accumulated plastic strain pE . 

Table 2. Hardening parameters belonging to set hd , identified on the basis of polycrystalline simulations 

without considering microscopic damage (DUCM). 

Hardening 

Y (MPa) Q (MPa) 
1H  2H  

388.3 6.851 102.5 3.075 

Table 3. Hardening and damage parameters belonging to set hd , identified on the basis of polycrystalline 

simulations considering microscopic damage (DCCM). 

Hardening Damage 

Y (MPa) Q (MPa) 
1H  2H  S (MPa) Θ  M Y0 (MPa) 

390.0 9.19 69.87 2.316 7193. 1.02 2.65 0. 

 

To further analyze the predictions obtained by the polycrystalline model and those obtained by the 

phenomenological one when loading is applied, the evolution of the phenomenological damage 

variable 1D  and the polycrystalline damage variable 1 POLYD  are plotted as functions of the 

accumulated plastic strain pE  in Fig. 4. The damage variable 1D  is obtained by the incremental Eq. 

(C.6)1, while the evolution law of variable 1 POLYD  is given by the following two-level averaging 

expression: 
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 

1 1 ( )

1
1 1

,
ca d

1

r 

 
Ngr Ns

POLY gr gr

gr
gr α

αD f d  (39) 

where  1card gr  is the total number of active slip systems activated during the loading history in 

grain gr . 

It should be noted that POLYD  is not a classical state variable in the thermodynamical sense, but an 

auxiliary variable. Indeed, this variable is not derived from a macroscopic thermodynamical force. As 

clearly shown by Eq. (39), this variable characterizes the mean damage over all the microscopic 

constituents of the polycrystalline aggregate (individual grains and slip systems). This polycrystalline 

variable is obviously equal to unity when all the grains of the aggregate are completely damaged (i.e., 

when the microscopic damage variable 
( )α grd  reaches the value of unity for at least one slip system α  

in each individual grain gr ). On the other hand, the phenomenological damage variable D  describes 

the macroscopic stress softening and the degradation of the macroscopic mechanical properties due to 

the micro-cracks and micro-cavities that develop within the material as the applied loading increases. 

This latter variable characterizes the apparent damage at the macroscopic level (softening of the 

macroscopic stress), regardless of what happens at the microscopic scale. This variable reaches unity 

when the macroscopic stress vanishes. By contrast to POLYD , variable D  is a consistent 

thermodynamical variable as it derives from a macroscopic thermodynamical force as shown in Eq. 

(17). 

Trends observed on Fig. 4 reveal that the evolutions of the two damage variables (namely, 1 POLYD  and 

1D ) are quite different. Indeed, when damage increases in the polycrystalline aggregate, the 

deformation tends to localize in most damaged grains, while other grains remain undamaged. As a 

result, there is significant softening of the macroscopic stress inducing an important increase of the 

phenomenological damage variable 1D . On the other hand, at macroscopic failure (characterized by 

1 1D ), several grains in the polycrystalline aggregate remain undamaged or slightly damaged. Then, 

at this moment, variable 1 POLYD  remains low (significantly smaller than unity). The difference 

observed in the evolution of the two damage measures (namely 1D  and 1 POLYD ) implies that POLYD  

cannot be considered as relevant macroscopic damage variable, as classically used in the continuum 

damage mechanics framework. Hence, the evolution of variable POLYD  cannot be used to identify the 

macroscopic damage parameters. 
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Fig. 4. Evolution of phenomenological and polycrystalline damage variables 1D  and 1 POLYD  as functions of the 

accumulated plastic strain pE  predicted by applying loading 1
Σ . 

It should be noted that the choice of the macroscopic loading in the identification procedure ( 1
Σ  in 

this case) has an impact on the values of the identified hardening and damage parameters. Indeed, 

different choices for the applied loading lead to different values of parameters constituting 
hd

. 

Nevertheless, the comparisons between the phenomenological mechanical responses obtained with the 

different sets 
hd

 optimized on the basis of different loadings Σ Σ
L  show very small discrepancies. In 

fact, the successive optimization procedures described in Step 2 and Step 3 of Section 3.2.1 tend to 

reduce the differences induced by the choice of the applied loading made in Step 1. 

3.2.3. Identification of the associated plastic anisotropy parameters 

As explained in Section 3.2.1, the plastic flow rule is firstly assumed to be associated (i.e.,   ), 

and the corresponding anisotropy parameters are identified in the current section. This identification is 

incrementally performed, where the set  n
 corresponding to the accumulated plastic strain level 

 
p

n
E  is used to identify the set  1n

 corresponding to the strain level  1

p

n
E . The developed 

identification procedure is defined by the following steps: 

 Knowing the mechanical variables at the end of the nth increment (namely,  
Σ Σ

L

n
,  

p

n
E ,  

ΣL

n
D , 

and  
ΣL

n
r ) and the set  n

, determine  1
Σ



L

n
D  and  1

Σ



L

n
r  using the explicit incremental form 

of Eqs. (17) and (18): 
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   

  
 

      0

1 1

1

, .
Δ

Δ
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Σ

Σ Σ Σ Σ Σ

Σ

 





    

Θ
LL

nL L L L L p

n n n n nM
L

n

D
Y YΛ

r r HD Λ
SD

 (40) 

 Use the mechanical variables  1
Σ Σ



L

n
 and  1

p

n
E  stored in the database in addition to the fields 

 1
Σ



L

n
D  and  1

Σ



L

n
r  computed by Eq. (40) to identify the parameters belonging to set  1n

 

(namely, the components of the transformation matrix  1n
 and exponent  1n

A ) by 

minimizing the quadratic error function  1
Err

n
 defined as follows: 

           

    
1

1/2
2

1 1

1

1

3

1

6

1

4

E
,

rr
,

Σ Σ

Σ
Σ

Σ

Σ


 








 

        
   


n n n

n
L

n

L Y

L

n

L
R



 



 


. (41) 

The MATLAB function lsqcurvefit, based on the Levenberg–Marquardt minimization algorithm, is 

again used to minimize the error function (41) and then to fit the parameters belonging to set  1n
. 

To evaluate the accuracy of the identification of anisotropy parameters when the DUCM is used, the 

yield loci obtained by the polycrystalline simulations are compared with those predicted by the 

phenomenological model for 0.01pE  and 0.6pE  in Fig. 5a and Fig. 5b, respectively. To plot the 

phenomenological yield loci, two sets of plastic anisotropy parameters have been used: the initial 

parameters identified at the beginning of the plastic deformation (PHIA) and the updated parameters 

(PHEA) identified at 0.01pE  for Fig. 5a and 0.6pE  for Fig. 5b. In view of the results of Fig. 5, 

some conclusions can be drawn: 

 The reliability and efficiency of the identification procedure is clearly confirmed by the good 

agreement between the polycrystalline yield surface and the phenomenological one predicted 

using the evolving anisotropy parameters (parameters identified at the corresponding 

accumulated plastic strain level). 

 The yield loci of Fig. 5b highlight the interest of the incremental identification of the plastic 

anisotropy parameters to accurately reproduce the polycrystalline yield locus. In fact, the 

polycrystalline yield surface perfectly agrees with the phenomenological yield surface predicted 

with the evolving anisotropy parameters; is the latter being quite different from its counterpart 

determined by the initial anisotropy parameters. 
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 (a) (b)  

Fig. 5. Comparison between polycrystalline and phenomenological yield loci plotted at: (a) 0.01pE , and (b) 

0.6pE  (predictions obtained by DUCM). 

For the DCCM, the evolution of the yield loci is quite similar to the ones presented in Fig. 5 until the 

stage when the damage becomes significant. In fact, the DCCM is unable to accurately reproduce the 

evolution of the polycrystalline yield locus in the final damage stage. The yield loci predicted at 

1.05pE  by considering the damage evolution in both models (DCCM ) are plotted in Fig. 6a. 

Comparison with the uncoupled models at the same stage of deformation is provided in Fig. 6b to 

highlight the influence of the damage on the yield loci. As shown in Fig. 6a, the damage effect 

becomes important leading to a decrease of the stress level due to the softening phenomenon and to an 

important interaction between damage and crystallographic texture evolutions. Furthermore, the 

polycrystalline simulations lead to a six-point star-shaped yield locus, revealing a remarkable effect of 

anisotropic damage evolution observed at the macroscopic level [25]. On the other hand, the 

phenomenological yield loci keep their classic convex shape. The nonconvex star-shaped yield locus 

obtained with the polycrystalline model is due to the fact that this surface does not represent a yield 

surface in an exact manner, but rather an iso-accumulated plastic strain contour (defined at pE cte ). 

Noting that for a given loading direction, the polycrystalline model can induce more or less plastic 

strain and damage, depending on the orientation of the loading with respect to the texture evolution of 

the material. The peaks of the star-loci represent the stress directions of low slip systems activation; 

however, the hollows represent the stress directions of high slip systems activation. The difference 

observed between polycrystalline yield locus and its phenomenological counterparts highlights an 

interesting effect of anisotropic damage evolution, which is also not easy to investigate with real 
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experimental tests. The proposed methodology can offer as well an interesting possibility to identify 

and determine more sophisticated phenomenological models, on the basis of polycrystalline 

predictions, including for example anisotropic damage [25]. 
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Fig. 6. Comparison between polycrystalline and phenomenological yield loci plotted at 1.05pE : (a) 

Predictions obtained by DCCM , and (b) Predictions obtained by DUCM. 

3.2.4. Identification of the functions describing the evolving plastic anisotropy (associated flow rule) 

For each loading level, the values of anisotropy parameters ijT  and exponent a  belonging to set   

have been determined using the identification procedure detailed in Section 3.2.3. A first analysis of 

the results given by this identification procedure reveals that exponent a  slowly evolves during the 

loading history and its value is around 9 . Then, this value is used in the remainder of the paper. The 

numerical database generated in Section 3.2.3 is used in the current section to fit analytical evolution 

laws for parameters ijT . Explicit expressions of functions ijT  will be provided in the following 

developments, where the cases without and with consideration of damage evolution will be separately 

studied (as the trends significantly depend on the consideration or not of damage evolution). 

- Identification using DUCM 

The evolution of the components ijT  of the transformation matrix as functions of the accumulated 

plastic strain p  has been firstly analyzed. It turns out from this analysis that the evolution of these 

components shall follow two main stages: 
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 Transient hardening stage, where plastic anisotropy evolves rapidly with respect to the 

accumulated plastic strain. This fast evolution is mainly due to the rapid changes in the activity 

of slip systems observed at the beginning of the plastic loading in the individual grains. 

 Permanent plasticity stage, where the hardening is almost saturated. This stage is characterized 

by a slow evolution of plastic anisotropy. 

On the basis of this analysis, the evolution law 

        
1

1 2 1 2 ,


  ij
pkp p p

ij ij ij ij ijT A A e g g


    (42) 

has been selected, as it matches quite well the sampling points for all the components ijT . This 

evolution law, developed in the same spirit as the laws used in [70], depends on the fitting parameters 

1

ijA , 2

ijA , 1

ijk  and functions 1

ijg  and 2

ijg , which evolve according to the following evolution rules: 

       2
2 2

12 13 2 23
1 11 2 21 12 221 , 1 with 0 and 0,

 
     

p p
ij ij ij ijg g g gp p

ij ij ij ij ij ijg g g g g ge e
 

   (43) 

where 11

ijg , 12

ijg , 13

ijg , 21

ijg , 22

ijg , and 23

ijg  are fitting parameters, while term 
1

1 2 


p
ijk

ij ijA A e


 describes the 

global evolution of the components ijT  with p . One has added the functions 
1

ijg  and 
2

ijg  to describe 

small bumps in the evolution of  p

ijT   (see Fig. 7). Indeed, 
1

ijg  (resp. 
2

ijg ) induces a small 

modification in the evolution of  p

ijT   for p  close to 
13

ijg  (resp. close to 
23

ijg ). The different fitting 

parameters are stored in the set ij


: 

  1 11 12 13 211 2 232 2 ., , , , , , ,, ij ij ij ij iij ij ij ij ij jg g g g g gA A k  (44) 

The numerical values of the different components of set ij


 are identified by minimizing the 

following function: 

  
     

  

1/2
2

1

,Err
,N



       
   


DISC p PHEA p

ij ij ij

ij DISC p
n

ij

n n

n

T T

T




 


 (45) 

where 
DISC

ijT  are the discrete values of ijT  determined from the database constructed on the basis of the 

results of Section 3.2.3, and 
PHEA

ijT  are the values of ijT  determined by the evolution law of Eq. (42). 

The accuracy of the identification procedure is clearly shown in Fig. 7, where the evolutions of the 

discrete values 
DISC

ijT  are favorably compared with the evolutions of 
PHEA

ijT . 
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 (a) (b) 

Fig. 7. Evolution of the anisotropy parameters (identification with DUCM): (a) Components 12T , 23T , and 13T , 

and (b) Components 44T , 55T , and 66T . 

The values of the different fitting parameters, optimized with DUCM, are provided in Table 4. 

Table 4. Identification of the fitting parameters (DUCM). 

 A1 A2 k1 g11 g12 g13 g21 g22 g23 

T12 0.269 0.0099 15.4 2310 2.41 2.27 2960 9.57 0.902 

T13 0.272 0.0547 6.63 -0.763 12.5 0.0236 0.0236 67.6 0.827 

T23 0.274 0.0081 12.2 -1.86 19.3 -165 -165 9.03 0.844 

T44 0.783 1.51 3.52 -0.978 0.938 -0.059 -0.059 1.3 -2.22 

T55 0.904 0.0213 6.58 -71100 2.36 2.32 2.32 48 0.2 

T66 0.864 0.0144 12.4 -0.169 58.8 0.11 0.11 5.64 1.14 

- Identification using DCCM 

After careful analysis, we have observed that the anisotropy parameters identified by DCCM evolve in 

three main stages: transient hardening and permanent plasticity stages (very similar to those observed 

with DUCM), followed by a final damaging stage. In this last stage, damage increase hastens up to 

failure, inducing again rapid plastic anisotropy evolution. On the basis of these observations, we have 

tried several functions to describe the evolutions of ijT  as functions of p  and D , and we have 

selected the following law, which seems to be the most appropriate: 

    
1

5
2

1 2 3 4, . 
1


  




p
ijkp p ijp

ij ij j ii j ij

A
T A A

D
e AD A


    (46) 
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In the evolution law (46), parameters 2

ijA , 3

ijA , 4

ijA  and 1

ijk  (resp. parameter 5

ijA ) reflect the influence of 

the plastic deformation (resp. damage) on the evolution of the anisotropy parameter ijT . The different 

fitting parameters are stored in the set ij

 : 

  3 11 2 4 5, ., , , , ij ij ijj ij iji ijA A A A A k  (47) 

The numerical values of the different components of ij

  are identified by minimizing the following 

function: 

  
         

    
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r
, ,

,
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

       
   





 



DISC p MEAN PHEA p MEAN
N

ij ij ij

ij DISC p MEAN

j

n n n n

n
n

i n

T D T D

T D
 (48) 

with  
N

n

MEAD  the mean value of  
ΣL

n
D  over all the loading paths 

ΣL  at the deformation level  
p

n
 : 

    

463

1

.
46

1

3
Σ

Σ 

 
LMEAN

n
L

n
D D  (49) 

It should be noted that the optimization of the parameters belonging to set ij


, considering the 

fluctuations of the phenomenological damage variable D  for the different loadings, would better 

reflect the complexity of the polycrystalline mechanical behavior. In this case, the error function 

should read: 

  
         

    
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,
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       
   





 



L LDISC p PHEA p
N

ij ij ijn n

ij LDISC p
n

j

n n

n
L

i n

T D T D

T D
 (50) 

However, the numerical predictions have shown very few fluctuations of  
ΣL

n
D  for the different 

loading paths. Indeed, all  
ΣL

n
D  values remain very close to  

N

n

MEAD . Then, the use of the error 

function (50) does not provide a significant improvement of the identification strategy. Hence, for the 

sake of simplicity and in order to reduce the computational effort required by the application of the 

identification procedures, one chooses to use the error function (49). 

By comparing the curves of Fig. 7 and Fig. 8, it clearly appears that the anisotropy parameters 

evolutions are strongly affected by the damage occurrence. This justifies the proposed law of Eq. (46), 

which can fit the evolution of parameters ijT  with convincing accuracy. 
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Fig. 8. Evolution of the anisotropy parameters (identification with DCCM): (a) Components 12T , 23T , and 13T , 

and (b) Components 44T , 55T , and 66T . 

The values of the different fitting parameters, optimized with DCCM, are provided in Table 5. 

Table 5. Identification of the fitting parameters (DCCM). 

 A1 A2 k1 A3 A4 A5 

T12 -84.24 82.03 0.3326 27.23 -4.689 2.502 

T13 -35.26 33.57 0.4191 14.02 -3.052 1.976 

T23 -16.66 15.14 0.5294 7.972 -2.221 1.812 

T44 -1.487 0.1405 4.928 0.3897 -0.8177 2.264 

T55 -147.7 137.7 0.4729 64.90 -15.94 10.96 

T66 -200.6 191.1 0.4175 79.53 -17.15 10.54 

One may again highlight here an undeniable advantage of the sequential identification of the material 

parameters: the identification of the yield loci explained in Section 3.2.3 provides the discrete 

(numerical) values of components ijT  for the different deformation levels. Then, the identification of 

the evolution laws of ijT  is managed separately from the previous identification steps. In particular, 

one can accurately fit the functions ijT  to their numerical evolutions identified in Section 3.2.3, as has 

been shown in Fig. 7 and Fig. 8. Simultaneous identification of all the parameters would have made 

unreadable the influence of the selected evolution functions for ijT . 
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3.2.5. Improvement of the identification of the plastic anisotropy parameters considering non-

associated flow rule aspects 

To check the consistency of the previous identification steps, the evolution of the ‘accumulated’ 

Lankford coefficient 22 33/ p p

βr E E  versus the loading direction β  obtained by the polycrystalline 

model is compared with its counterpart predicted by the phenomenological model (with evolving 

plastic anisotropy). The use of the ‘accumulated’ Lankford coefficient instead of the classical one 

(equal to 
22 33/p pE E ) is motivated by the strong fluctuation observed in the evolution of components 

22

pE  

and 
33

pE  predicted by the polycrystalline model, which is mainly due to the fast changes in the activity 

of the CSSs at the grain level. Hence, the use of 
22

pE  and 
33

pE  instead of their rates allows providing a 

smoother evolution for the Lankford coefficient. In this comparative study, different accumulated 

plastic strain levels are considered: 0.1, 0.2, 0.3p . The trends are almost insensitive to the 

consideration or not of the damage evolution in the constitutive modeling. Hence, only the results 

obtained by DCCM are presented hereafter. As a first guess, the associated plasticity flow rule is used 

(   , with parameters of   and their evolution laws determined by the identification procedures of 

Sections 3.2.3 and 3.2.4). As revealed by Fig. 9, the polycrystalline trends are globally reproduced by 

the associated phenomenological model (with evolving plastic anisotropy). However, the peak of the 

Lankford coefficient, observed for a loading direction β  of about 45 , is largely underestimated by 

the associated phenomenological model. 
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 (c) 

Fig. 9. Evolution of the Lankford coefficient 
βr  versus the loading direction β  using associated flow rule 

(   ) and DCCM for: (a) 0.1p , (b) 0.2p , and (c) 0.3p . 

The results displayed in Fig. 9 reveal that the anisotropy of the yield surface and the plastic flow 

(described by the evolution of the Lankford coefficients) are quite different. Indeed, the associated 

version of the phenomenological model allows correctly fitting the yield surface; however, it shows 

some limitations in accurately fitting the Lankford coefficients. To improve the optimization of the 

anisotropy parameters, the non-associated general model (i.e.   ) is used in the identification 

procedure. Within this non-associated model, the anisotropy parameters   corresponding to the yield 

function   are kept to their values and evolutions identified in Sections 3.2.3 and 3.2.4. Furthermore, 

the components ijT  are assumed to be equal to ijT . This assumption, which allows considerably 

simplifying the identification of the non-associated anisotropy parameters, is relevant as we have 

observed that the Lankford coefficients are almost independent of the components of the 

transformation matrix . On the other hand, we have varied the value of the exponent parameter A  to 

reach the best fit of the non-associated phenomenological parameters from the polycrystalline 

predictions. After a quick parametric study, we have concluded that the exponent A  should be around 

22  to obtain the best fit. The comparisons between the polycrystalline simulations and the non-

associated phenomenological model obtained with 22A  are displayed in Fig. 10. It is clearly shown 

in this figure that the fit of the results is quite enhanced in an average sense. This change in the flow 

rule leads to a slight modification for the evolution of the yield loci (Eqs. (16), (17) and (18)). After 
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checking the phenomenological predictions, we have observed that the exponent parameter A  does 

not significantly impact the yield loci. In the validation section (Section 4), the non-associated flow 

rule is commonly used in all the predictions. The parameters of this non-associated flow rule are 

summarized in the following lines: 

 The hardening and damage parameters are given in Table 2 for DUCM and Table 3 for DCCM. 

 The components of the transformation matrix , which are equal to those of , are given in 

Table 4 for DUCM and Table 5 for DCCM. 

 Independently of the modeling approach, coupled or not with damage (i.e., DUCM or DCCM), 

exponents A  and A  are set to 9 and 22, respectively. 
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 (c) 

Fig. 10. Evolution of the Lankford coefficient 
βr  versus the loading direction β  using non-associated flow rule 

( ,   A A ) and DCCM for: (a) 0.1p , (b) 0.2p , and (c) 0.3p . 

4. Validation of the developed models 

The capability of the developed phenomenological model to accurately reproduce the polycrystalline 

response is assessed through the simulation of a complex loading applied on a thin specimen, where a 

large number of finite elements is involved and the mechanical state is not homogeneous over the 

structure. The plane dimensions of this structure are detailed in Fig. 11a and its initial thickness is set 

to 0.4 mm. This specimen is subjected to a combined tensile/shear loading, as demonstrated in Fig. 

11b. As shown in the same figure, this combined loading is the result of the specific geometry of the 

specimen and the applied boundary conditions: the lower side is fixed and the upper side is subjected 

to a vertical displacement denoted 
2U , while the displacement in direction 1 (transverse direction) is 

fixed (
1 0U ). The force required to induce the displacement 

2U  is noted 
2F , while the reaction force 

required to fix the lower side of the specimen in the horizontal direction is noted 
1F . Direction 1 (resp. 

2) shown in Fig. 11b is parallel to the transverse (resp. rolling) direction. This specimen is discretized 

with 3195 C3D8R finite elements, as illustrated in Fig. 11c. The mesh is refined near the central zone 

of the sheet, where large strain gradients are expected. Whereas, much coarser discretization is used in 

the rest of the specimen, where a rather uniform deformation is expected. To consider the effect of the 

out-of-plane strain, three element layers have been used along the sheet thickness. As well known, 

accounting for the full coupling with ductile damage in the framework of local formulation leads to 
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mesh dependence pathology. Several solutions have been proposed in the literature to overcome this 

pathology, such as the use of nonlocal formulations with gradient plasticity models [71–73], and 

micromorphic formulations [74–75]. The dependency of the numerical predictions on the mesh 

discretization is not analyzed in the current paper, as it will be the subject of a future investigation. To 

reduce the length of the paper, only the DCCM has been used to obtain the predictions of this Section, 

where four types of simulations have been performed: 

 Simulations with the phenomenological model, where the evolution of anisotropy parameters is 

not considered (PHIA). In this case, the anisotropy parameters are fixed to their initial values 

easily determined from Fig. 8: 

 
12 23 13 44 55 660.289, 0.287, 0.283, 0.911, 0.918, 0.912.     T T T T T T  (51) 

 Simulations with the phenomenological model, where the anisotropy parameters are assumed to 

evolve according to the evolution law of Eq. (46) and the curves of Fig. 8 (PHEA). 

 Simulations with the self-consistent polycrystalline model (POLY). 

 Simulation using a hybrid FE approach (HYBR): this hybrid approach consists in the 

combination of phenomenological (with evolving anisotropy) and multiscale approaches within 

the same FE model: the phenomenological model (PHEA) has been assigned to the weakly 

loaded zone of the specimen (called calm zone). However, the multiscale approach (POLY) has 

been assigned to the zone exhibiting a strong evolution of plastic flow (called critical zone). The 

critical zone is colored in red in Fig. 11c. The FE simulation based on the phenomenological 

modeling has been used to identify both zones and the interface between them. The partition of 

the specimen is illustrated in Fig. 11c, where the calm zone is colored in grey and the critical 

zone is colored in red. The same mesh as the one presented in Fig. 11c is used in this hybrid 

simulation, where 300 C3D8R solid elements have been assigned to the critical zone. 

In these simulations, the final displacement 
2U  of the upper boundary of the specimen is fixed to 

0.4 mm , which corresponds approximatively to the macroscopic failure initiation (numerically 

detected at the integration point where the damage variable D  reaches the critical value of 0.9 ). In the 

numerical predictions, particular attention will be paid to the evolution of the mechanical behavior in 

two material points: point N°1 located in the center of the specimen and point N°2 laid in the boundary 

(surface) of the specimen, as demonstrated in Fig. 11c. 
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 (a) (b)  (c) 

Fig. 11. Simulation of the combined tensile/shear test: (a) Geometry and dimensions of the specimen, (b) 

Geometry of the useful zone and applied boundary conditions, and (c) FE mesh and reference to the studied 

points (the zones colored in red refer to the critical zones modeled by the POLY model). 

The CPU time required to run each of the two first simulations (based on PHIA and PHEA models) on 

one core is about 30 minutes. However, the third simulation (with the POLY model) has required 

approximately 120 hours on 32 computational cores. On the other hand, the last simulation based on 

the hybrid strategy (HYBR) has taken 40 hours on 32 computational cores. This comparison confirms 

the large advantage, in terms of computational efficiency, of phenomenological as well as hybrid 

modeling compared to the polycrystalline one. 

The evolutions of forces 
1F  and 

2F  versus the vertical displacement 
2U  obtained by the different 

models are reported in Fig. 12. As clearly shown in Fig. 12a, the curves providing the force 

component 
2F  obtained by the different simulations are almost indistinguishable when the force level 

is less than the maximum value, for which the damage value and its evolution remain low. However, 

when the damage evolution accelerates, the different predictions become quite different. Note that the 

force level obtained by the hybrid model leads to the best fit compared to the polycrystalline one. This 

hybrid model yields predictions that are comprised between those obtained by the polycrystalline and 

phenomenological models. This result is expectable, as the hybrid strategy is a combination of the 

other models. On the other hand, the evolution of the force component 
2F  obtained by the 

phenomenological model with evolving anisotropy is closer to its counterpart predicted by the 

polycrystalline model than the evolution obtained without evolving anisotropy. This comparison 

demonstrates once again the importance of accounting for plastic anisotropy evolution. The evolutions 
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of the force component 
1F  displayed in Fig. 12b globally confirm the trends obtained with the force 

2F . Those results confirm the benefits of the two introduced novelties: the evolving anisotropy and the 

hybrid simulation method, both significantly contributing to more closely approaching the 

polycrystalline model predictions. It is important to mention that the polycrystalline model predicts the 

highest force level, and leads to the lowest damage evolution and softening (as will be confirmed by 

the curves of Fig. 17). By contrast, the use of the PHIA model leads to the lowest force level with the 

highest damage evolution and softening (see Fig. 17). The difference between these trends 

corroborates the idea that accounting for evolving anisotropy tends to promote the material hardening, 

which in turn reduces the softening evolution. This can be explained, for the polycrystalline model, by 

the fact that as the loading increases, the grains rotate leading to an increase in the number of active 

slip systems. Such an increase in CSS activity induces more accumulated plastic strain, which tends to 

promote the material hardening. However, the new activated slip systems will not increase further the 

average damage level in the polycrystalline aggregate. 
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Fig. 12. Evolution of the global forces as functions of the vertical displacement (simulations with DCCM): (a) 

Force 2F , and  (b) Force 1F . 

The distributions of the maximum logarithmic strain, the von Mises equivalent stress, and the damage 

variable ( D  or POLYD , depending on the adopted model) over the specimen, as predicted at 

2 0.4U mm  by the different models, are reported in Fig. 13, Fig. 14, and Fig. 15, respectively. As 

shown from these isovalues, the different models yield close responses on the whole. Careful 

observation of the strain isovalues presented in Fig. 13 reveals slightly more pronounced localization 
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predicted by the polycrystalline model. The hybrid computation better reproduces this phenomenon 

than both phenomenological models, with closer predicted strain values. As can be observed, the 

PHEA model leads to more accurate predictions of the localization zone (closer to the polycrystalline 

predictions), as compared to the more classical PHIA model. This result confirms the better predictive 

capabilities of the PHEA model compared to the PHIA one. 

  

 (a) (b) 

 

 (c) (d) 

Fig. 13. Contour plot of the maximum logarithmic strain predicted at 2 0.4U mm  using: (a) POLY model, (b) 

HYBR model, (c) PHIA model, and (d) PHEA model. 

The stress maps (Fig. 14) also show better accordance between hybrid and polycrystalline 

computations, while both phenomenological computations show early stress weakening in the critical 

zone. This early weakening can be explained by difficulty to reproduce the polycrystalline model 

when damage becomes significant, as already explained in Section 3.2.3. Closer observation of the 

local behavior in the critical zone (point N°2) is provided hereafter to better understand this 

phenomenon. The hybrid computation confirms here its ability to overcome the difficulty to reproduce 

the polycrystalline behavior when damage becomes significant. 
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 (a) (b) 

   

 (c) (d) 

Fig. 14. Contour plot of the von Mises equivalent stress predicted at 2 0.4U mm using: (a) POLY model, (b) 

HYBR model, (c) PHIA model, and (d) PHEA model. 

As shown in Fig. 15, the localization of the damage variables POLYD  and D, as predicted by the 

different models, follows a similar trend on the whole. In particular, the maps of POLYD  obtained by 

the polycrystalline and hybrid computations are relatively close (one recalls that, in Fig. 15b, the 

isovalues correspond to POLYD  in the critical area and D elsewhere, thus the comparison should be 

restricted to the critical area). Also, the discontinuity that appears at the boundary between the critical 

and calm areas is not significant: it corresponds to the incompatibility between POLYD  and D explained 

in Section 3.2.2 (see Fig. 4). For the phenomenological models, one can observe, as explained before, 

that the PHIA model induces faster damage evolution, which affects strongly the mechanical behavior. 

Since we have previously concluded (see Fig. 15) that both phenomenological models predict too fast 

stress weakening in the critical area, a slower damage evolution seems more relevant. In addition, both 

phenomenological models poorly reproduce the polycrystalline model predictions in the damaged 

area, thus pointing out the relevance of the hybrid strategy for the accurate modeling of critical areas 
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exhibiting highly deformed zones with localization of plastic flow and damage. 

 

 (a) (b) 

 

 (c) (d) 

Fig. 15. Contour plot of the macroscopic damage variable predicted at 2 0.4U mm using: (a) POLY model, (b) 

HYBR model, (c) PHIA model, and (d) PHEA model. 

Considering now closer (local) observation at the material points N°1 and N°2 (the positions of these 

points are indicated in Fig. 11c), one observes good agreement between the predictions obtained by 

the four models in terms of stress components 
11Σ  and 

12Σ  versus the displacement 
2U , as long as the 

displacement (and hence damage) remains small (
2 0.2U mm ), as illustrated in Fig. 16. 

For the material point N°1, in which the amount of damage does not reach an important value, as 

shown in Fig. 17a, the gap between the stress components predicted by the different models remains 

small for all the simulations. However, for point N°2, where the damage evolution becomes important 

(Fig. 17b), the difference between the predictions of the three models is much more noticeable. At this 

stage of damage evolution, the predictions of the phenomenological models (with and without 

anisotropy evolution) significantly differ from those of the polycrystalline model. Recall that early 
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weakening of the stress occurred for both phenomenological models. This confirms the difficulty in 

describing the damage behavior of the polycrystalline aggregate with the proposed phenomenological 

model, as already pointed out in Section 3.2.3. On that scope, the hybrid simulations provide better 

results (point N°2, Fig. 17b). The predicted damage variables POLYD  also remain close for both 

polycrystalline and hybrid computations. This confirms the reliability of the hybrid strategy to predict 

the complex behavior of polycrystalline aggregates in critical zones. 
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Fig. 16. Evolution of the stress components 11Σ  and 12Σ  versus the displacement 
2U  (DCCM): (a) point N°1, 

and (b) point N°2. 
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Fig. 17. Evolution of the damage variables POLYD  and D in two points of the sheet. (a) Point N°1 ( POLYD  for 

POLY model; D for the three others), and (b) Point N°2 ( POLYD  for POLY and HYBR models; D for PHIA and 

PHEA models). 

The observed differences between predictions obtained by POLY and HYBR models in the critical 

area (highlighted in red in Fig. 11c), where both simulations use the polycrystalline model, is the result 

of differences in terms of strain localization within the sheet. Indeed, the hybrid simulation uses the 

PHEA model in the calm area, while the polycrystalline simulation uses the polycrystalline model 

everywhere, thus leading to different strain localization within the whole sheet, including the critical 

area. Figure 18 shows the evolution of the strain components 
22E  and 

12E  at point N°2 (in the critical 

area), as predicted by each computation, thus highlighting that the use of the phenomenological model 

within the hybrid simulation influences the strain localization, even in the critical area. In that regard, 

the strain predicted by the hybrid simulation at point N°2 appears to be closer to the strain obtained by 

both phenomenological simulations than to the strain predicted by the polycrystalline model, 

explaining the imperfect accordance in the stress evolution observed in Fig. 16b. However, this 

difference remains reasonable and only concerns the critical area under high damage values, while 

global accordance between polycrystalline and hybrid simulations is satisfactory. 
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Fig. 18. Evolution of the relevant strain components at point N°2: (a) Component 22E , and (b) Component 12E . 

 



 

 

 

 

-43- 

 

5. Conclusions 

In this paper, an advanced phenomenological model has been developed to accurately reproduce the 

mechanical responses predicted by the multiscale crystal plasticity scheme developed in [45]. In both 

models (namely, single-scale and multiscale), the behavior is assumed to be elastoplastic (rate-

independent) and the constitutive equations are formulated under finite strain assumption. Compared 

to recent investigations devoted to the same kind of modeling, the current investigation presents an 

important novelty: the effect of damage evolution on the mechanical behavior is accounted for in both 

constitutive models. The different constitutive equations have been implemented into 

ABAQUS/Standard finite element (FE) code as user material (UMAT) subroutines. To accurately 

reproduce the evolution of plastic anisotropy, induced by the evolution of crystallographic texture, a 

pragmatic methodology has been developed and implemented into the advanced phenomenological 

model. Within this methodology, the anisotropy parameters have been assumed to evolve during the 

plastic loading. The procedures developed to identify the macroscopic material parameters and their 

eventual evolutions have been extensively discussed. Several numerical predictions have been 

presented to assess the reliability of the developed models. It turns out from these predictions that the 

developed advanced model, though with relatively small defects in the modeling of damage evolution, 

may be a promising way to accurately and efficiently model the mechanical behavior during sheet 

metal forming. 

To enhance its accuracy in the prediction of polycrystalline behavior, the advanced model should be 

extended in future investigations to include the following aspects: 

 The anisotropy of the damage evolution in both constitutive models using tensor representation 

of the damage variables, instead of the scalar variables used here. 

 The distortional hardening in the phenomenological model using the homogeneous anisotropic 

hardening (HAH) approach. 

 The use of a micromorphic formulation in order to avoid the mesh dependency pathology. 

The developed numerical tools shall be validated and improved using extensive experimental database 

containing different experimental tests results. 
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Appendix A. Some details about FCC single crystals 

For the different simulations, single crystals with face-centered cubic (FCC) crystallographic structure 

are considered. Nevertheless, the proposed numerical methodology remains quite general to be applied 

to any other crystallographic structure. 

A.1. Crystallographic slip systems 

In FCC single crystals, plastic deformation results from crystallographic slip along four slip planes 

 111  and three slip directions 110 , thus leading to twelve CSSs (i.e., 12sN ). The list of vectors 

b
α  and n

α , measured in the intermediate configuration related to the crystallographic lattice, is 

enumerated in Table A.1. 

Table A.1. The numbering of the CSSs for FCC single crystal. 

α  1 2 3 4 5 6 7 8 9 10 11 12 

3 n
α  

1

1

1

 
 
 
 
 

 

1

1

1

 
 
 
 
 

 

1

1

1

 
 
 
 
 

 

1

1

1

 
 
 
  

 

2 b
α  

1

1

0

 
 
 
 
 

 

1

0

1

 
 
 
  

 

0

1

1

 
 
 
  

 

1

1

0

 
 
 
 
 

 

1

0

1

 
 
 
 
 

 

0

1

1

 
 
 
  

 

1

1

0

 
 
 
 
 

 

1

0

1

 
 
 
  

 

0

1

1

 
 
 
 
 

 

1

1

0

 
 
 
 
 

 

1

0

1

 
 
 
 
 

 

0

1

1

 
 
 
 
 

 

A.2. Hardening model 

The initial critical shear stress is assumed to be identical for all the CSSs and equal to 
0 . The 

evolution of the critical shear stresses is described by a nonlinear hardening model, for which the 

components of the hardening matrix h  are given as follows: 

 
0, 1,..., : e ,


   υγbαυ αυ

sα υ N h h a  (A.1) 

where 
0h  and b  are hardening parameters and 

αυa  are the components of the symmetric interaction 

matrix a . Based on relevant experimental observations for FCC single crystals, Franciosi and Zaoui 

[76] proposed the interaction matrix provided in Table A.2. In this particular case, the interaction 

matrix is symmetric and dependent on six interaction coefficients 
1 6a a . This matrix has been used in 

the current work. 
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Table A.2. Hardening interaction matrix. 

α  1 2 3 4 5 6 7 8 9 10 11 12 

1 
1a  2a  2a  5a  4a  5a  5a  6a  3a  5a  3a  6a  

2  
1a  2a  3a  5a  6a  4a  5a  5a  5a  6a  3a  

3   
1a  6a  5a  3a  5a  3a  6a  4a  5a  5a  

4    
1a  2a  2a  3a  5a  6a  5a  5a  4a  

5     
1a  2a  6a  5a  3a  6a  3a  5a  

6      
1a  5a  4a  5a  3a  6a  5a  

7       
1a  2a  2a  6a  5a  3a  

8        
1a  2a  3a  5a  6a  

9         
1a  5a  4a  5a  

10          
1a  2a  2a  

11           
1a  2a  

12            
1a  
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Appendix B. Description of the mean-field self-consistent approach 

 

Following the finite strain framework of the self-consistent approach developed in [46, 77], the overall 

nominal stress rate N  is linked to the macroscopic velocity gradient G  through the macroscopic 

fourth-rank tangent modulus : 

 : .N G  (B.1) 

The macroscopic nominal stress rate N  is related to the macroscopic Cauchy stress rate Σ  by the 

following relationship: 

   1 . . ,N F Σ G Σ G Σ  
  J tr  (B.2) 

where F  denotes the macroscopic deformation gradient (related to the macroscopic velocity gradient 

G  by the classical relation 
1.G F F
 ) and J  its determinant. By adopting an updated Lagrangian 

approach (i.e., 1J  and 
2F I ), Eq. (B.2) reduces to the following form: 

   . .N Σ G Σ G Σ   tr  (B.3) 

On the other hand, macroscopic variables G  and N  can be expressed in terms of their microscopic 

counterparts g  and n  by the standard Hill averaging theorem [78]: 

    
1 1

d , d  ,G g x N n x  V V
V V

V V
 (B.4) 

where x  is the material point coordinates vector in the polycrystalline aggregate and V  its volume. 

Conversely, the microscopic velocity gradient and nominal stress rate are linked to their macroscopic 

counterparts G  and N  by the fourth-rank concentration tensors  and : 

        : , :  .g x x G n x x N   (B.5) 

Similar to the averaging relations given by Eq. (B.4), the macroscopic plastic strain rate E
p  can be 

defined as the average of its microscopic counterpart ε
p
: 

  
1

d  .E ε x 
p p

V
V

V
 (B.6) 

The complete details relating to the expression of ε
p
 for the single crystal behavior have been given in 

Section 2.1. 

At the single crystal level, a relationship similar to Eq. (B.1) can be derived by combining the 

microscopic constitutive relations detailed in Section 2.1: 
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      : ,n x x g x  (B.7) 

where  is the microscopic fourth-rank tangent modulus. The relation between  and  can be 

obtained by combining Eqs. (B.1), (B.4), (B.5) and (B.7): 

    
1

: d  .x x V V
V

 (B.8) 

By following the formulation of the self-consistent approach adopted in [46, 77], we assume that the 

microscopic mechanical fields are homogeneous over each individual grain. Denoting by g
gr  (resp. 

gr ) the microscopic velocity gradient (resp. tangent modulus) associated with grain gr  (with gr  

ranging from 1 to the total number of grains contained in the RVE Ngr ), and using some Green’s 

tensor properties [77], one can prove that the concentration tensor gr  can be expressed as: 

      
1

1 1

4 4

1

: : :   ,


 



 
     

 

Ngr

gr gr gr I I I

I

f  (B.9) 

where 
I
 is the fourth-order interaction tensor for grain I , related to Eshelby’s tensor for an 

ellipsoidal inhomogeneity, and If  is the volume fraction of grain I , with 1



Ngr

I

I

f . Under the 

assumption of the homogeneity of microscopic mechanical fields, definition (B.8) of the macroscopic 

tangent modulus  can be reduced to the following expression: 

 
1

: .



Ngr

gr gr gr

gr

f  (B.10) 

Equation (B.10) of the macroscopic tangent modulus  reveals an implicit character, because the 

concentration tensor gr  depends on  through the expression of 
gr

 and gr  as shown in Eq. 

(B.9). Therefore, the macroscopic tangent modulus , which is the main unknown variable in the 

self-consistent approach, is computed by using the iterative fixed-point method. Further details about 

the application of this method to solve the self-consistent equations can be found in [45, 49]. 
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Appendix C. Numerical integration of the phenomenological constitutive 

equations 

C.1. Numerical integration scheme 

Due to its nonlinear nature, the phenomenological model presented in Sections 2.2.1 and 2.2.2 is 

solved in an incremental fashion. Over a typical time increment    1
,


 
 n n
t t , the resulting 

constitutive equations are integrated using an implicit backward Euler scheme. This scheme is 

implemented into ABAQUS/Standard FE code through a user defined material subroutine UMAT. To 

respect the incremental objectivity, the constitutive equations are integrated in the material 

corotational frame (for a detailed description of the rotation handling, see [21]). In this frame, the 

problem is reduced to the determination of the updated Cauchy stress  1
Σ

n
 and internal variables 

(namely,  1n
R  and  1n

D ), knowing the total strain increment ΔΕ . In the following appendix, the 

function   is denoted  Σ p D  , where the terms p  and D  after the semicolon refer to the 

parametric dependency of   on p  and D  (see Section 3.2.4 for explicit expression), and Σ  is the 

stress given to the Barlat criterion (Section 2.2.2). The iterative implicit algorithm is based on the 

elastic prediction-plastic correction methodology, where the trial stress tensor Σ
  should be firstly 

computed as follows: 

       1  : Δ .Σ Σ  Ε
  
n n n

eD  (C.1) 

On the basis of this trial stress tensor, the trial yield criterion f  can be determined as follows: 

 
      

 

 

 

.
1 1

Σ



 
   
  







pn n n nY

n n

D R
f Σ

D D


 (C.2) 

If 0 f , the behavior is elastic over the current time increment. Then, the updated variables are 

equal to their trial counterparts. Otherwise, the following developments are used to update the 

different variables. 

The combination of the incremental form of Eq. (14)1 and Eq. (C.1) allows us to determine the stress 

tensor at the end of the time increment  1
Σ

n
: 



 

 

 

 

-55- 

 

  

  

       
1

1 1

1
1 Δ 2 ,

1
Σ Σ Ε

 

 








n p

n n n

n

D
D

D
  (C.3) 

where  2 1 μ E / ν  is the Lamé coefficient. 

The increment of the plastic strain ΔΕ
p  is obtained from the incremental form of the plastic flow rule 

given by Eq. (16): 

       
 

    1)1 1 1 1 1

1

Δ
Δ Δ .

1
Ε Σ Σ

Σ Σ
    



 
   






p

(nn n

n

p n n np

Λ

D
Λ D D





 (C.4) 

The combination of Eqs. (C.4) and (C.3) leads to: 

  

  

           
1

1 1 1 1 1
 

1
.1 ,Δ

1
2Σ Σ Σ

Σ

 

    

 






 




n

n n n n n

n

p
Λ D

D
D

D
 (C.5) 

For the sake of numerical simplicity, let us introduce the function 
    2 1

11
e 





p

n
Hp

n
H H


 . Using this 

function, the incremental forms of the evolution laws of the state variables D  and r  can be deduced 

from Eqs. (17) and (18): 

    

  
 

      01

1 1 1

1

Δ
, .Δ

1



  



 


 




n p

n n n n nM

n

Θ
Y Y

D
Λ

r r Λ H

D

D
S

 (C.6) 

Considering Eqs. (14)2 and (14)3, the thermodynamical forces associated with isotropic hardening and 

damage can be written in the following incremental forms: 

 

      

  

          

 

   

  
     

1

1 1 1 1 1

2
1 1

1 12

1

.

1
1 Δ 1 ,

1

: :1 1
Δ

2 21

Σ Σ



    

 

 




  





 





n p

n n n n n n

n

n n p

n n n

n

D
R D Qr R Λ D Q H

D

Y Q r ΛH

D

 



 (C.7) 

Then, the main unknowns of the incremental form of the phenomenological constitutive equations are 

 1
Σ

n
, ΔΛ  and  1n

D  (eight scalar unknowns). To determine these unknown, Eqs. (15)1, (C.5) and 

(C.6)1 should be solved after their combination with Eqs. (C.4) and (C.7): 

  

      
 

 

 

1 1 1 1

1

1 1

0,
1 1

,Σ
   



 

 
    
  
 


n n n nY

n

n n

p
D R

f Σ
D D


 (C.8) 
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    

  

           
1

1 1 1 1 1 1

1
Δ 1 0,

1
2  ,q Σ Σ Σ

Σ

 

     

 
  


  

n

p

n

n n n n n n

D
Λ D D

D


   (C.9) 

      

  
  01

1 1

1

Δ
0.

1



 









n

n n n M

Θ

n

Y YΛ

SD

g D D  (C.10) 

The nonlinear equation system made of Eqs. (C.8), (C.9), and (C.10) is solved by the Newton–

Raphson scheme, which is implemented into the UMAT. The analytical derivation of the components 

of the Jacobian matrix associated with this scheme is detailed in Section C.2. A Gauss point is 

considered to be fully damaged when the value of  1n
D  exceeds 0.9 (at the convergence of the 

Newton–Raphson scheme). In that case, the time increment of the finite element simulation is divided 

(up to its minimum value). 

C.2. Computation of the tangent matrix required for the Newton–Raphson scheme 

To ensure the quadratic convergence of the Newton–Raphson iterative scheme described in Section 

C.1, the Jacobian matrix corresponding to this method should be accurately computed. To reach this 

objective, the analytical expressions providing the derivatives of functions f , g , and q  with respect 

to the main variables ΔΛ , D , and Σ  should be determined. The determination of these expressions 

will be presented in the following developments where, for sake of simplicity, the anisotropy 

parameters ijT  are assumed to be constant over   and equal to their initial values at  n
t . This 

assumption is reasonable and quite justified considering the fact that these anisotropy parameters 

slowly evolve over the time increment. Consequently, the derivatives of parameters ijT  with respect to 

variables Σ , ΔΛ  and D  are obviously equal to 0. 

C.2.1. Derivatives with respect to ΔΛ  

The derivatives of functions f , g , and q  with respect to ΔΛ  read: 

  
1

1 ,
Δ Δ1

 
    

 
 pf R

D Q H
Λ ΛD

 (C.11) 

 
   

1

0 01
,

Δ

Δ Δ1  1

  
 

  


Θ Θ

M M

Y Y Y Yg Θ Λ

Λ ΛD S SS D

Y
 (C.12) 

 ,2  1
Δ

q

Σ




 


= D

Λ
 (C.13) 

with the derivative Δ Y / Λ  involved in Eq. (C.12) given by the following equation: 
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     Δ .
Δ





  p pY

Q H r H
Λ

 (C.14) 

C.2.2. Derivatives with respect to D  

The derivatives of functions f , g , and q  with respect to D  read: 

 
 

3/2

1
,

11

 

2

  
 

 

f R R

D DDD


 (C.15) 

 
   

1

0 0

1

Δ Δ
1

1
,

1


 



 

  

Θ Θ

M M

Y Y Y Yg M Λ Θ Λ Y

D S D SD S D
 (C.16) 

 
 

1 Δ
,

1 1

q
Σ

Σ

 



  

 Λ

D D D
 (C.17) 

with the derivatives  R / D  and  Y / D , used in Eqs. (C.15) and (C.16), respectively, having the 

following expressions: 

 
 

  ,Δ
1

1

 
 

 
 pR

R Q H
D

EΛ
D

 (C.18) 

 
 

3
.

1

: :Σ Σ


 

Y

D D
 (C.19) 

C.2.3. Derivatives with respect to Σ  

The derivatives of functions f , g , and q  with respect to Σ  read: 

 
1

,
1Σ Σ

 


 

f

D


 (C.20) 

 
 

1

0

1
,

Δ

Σ Σ

 

 





Θ

M

Y Yg Θ Λ Y

SD
=

S
 (C.21) 

 

2

4 2
Δ 1 ,+2  

q

Σ Σ




 


 Λ D=  (C.22) 

with the derivative Σ Y /  implied in Eq. (C.21) defined as follows: 

 
 

2

:

1

Σ

Σ



 

Y
=

D
. (C.23) 
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C.2.4. First and second order derivatives of   with respect to Σ  

The analytical expression of / Σ   is needed in Eq. (C.20). To obtain this expression, we introduce 

tensors  ( 1,...,3)i i , which allow decomposing tensor :S Σ  as follows: 

 
3

1

.:S Σ


  i i

i

S  (C.24) 

Then, one can demonstrate that: 

 
3 3 3

1 1 1

: : ,
S

Σ Σ S Σ  

     
  

      
  

   i i
i

i i ii i i

S S

S S S
 (C.25) 

and 

  
1 1sgn .
 



 
  




 
 





A A

i r i r

iri

S S S S
S

 (C.26) 

Similarly to Eq. (C.25), we can directly determine the expression of the derivative / Σ  : 

 
3 3 3

1 1 1

: .:
S

Σ Σ S Σ  

     
  

      
  

   
i i

i

i i ii i i

S S

S S S
 (C.27) 

As stated in the identification procedure (see Section 3.2.5), the transformation matrix  is assumed 

to be identically equal to . Under this assumption, Eq. (C.27) can be rewritten as follows: 
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where   iS   is given by a relation very similar to Eq. (C.26): 
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The second derivative 
2 2

Σ    involved in Eq. (C.22) is obtained by taking the derivative of Eq. 

(C.27) with respect to Σ : 



 

 

 

 

-59- 

 

 

 

 

3

2
1

23 3

1 1

3 3

1 1

3 3 3

1 1 1

23 3

1 1

   

  + 

:

: :

: : :

: ( ): : :  +  

 

2

Σ Σ

Σ Σ

S

Σ S Σ

S



 

 

  

 

  
  

   

  
 

 





 



 



 

 




 


 


    

 
 

   







 

 

  

 

 



 



 

 

 



i

i i

i
i

i ii i

i
i

i ii i

i
r i

i r ii r i

i r

S

S S

S S

S S S

   
3

1

: : : + :
S

 


   


 


i

r i

ii r iS S S

 (C.30) 

and 
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C.3. Computation of the elastoplastic consistent tangent operator 

At the convergence of the Newton–Raphson scheme used to integrate the constitutive equations, the 

elastoplastic consistent tangent operator ep  should be computed to ensure the quadratic convergence 

of the ABAQUS global Newton–Raphson implicit iterative scheme. This tangent operator is defined 

as: 
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ep  (C.32) 

The combination of Eqs. (C.1), (C.3), and (C.4) gives: 
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Using Eqs. (C.32) and (C.33), and considering the derivatives of all the terms depending on the total 

strain increment ΔE , the expression of the tangent operator becomes: 
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with the fourth-rank tensor  defined as: 
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and 
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Scalars 
λα  and 

Dα  introduced in Eqs. (C.34) and (C.35) are given by the following expressions: 
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