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ABSTRACT

In materials science, the microstructures of materials are generally charac-
terized by 2D observation (e.g. electron microscopy). For polycrystalline
materials, such as crystalline rocks or ceramics, those observations can be
used to measure the grain size distribution. However, the fact that grain sizes
are measured in planar cuts introduces a statistical bias, since the real (3D)
grain sizes cannot be directly measured. For almost spherical grains, this
bias can be computed thanks to the so-called Wicksell’s equation. This pa-
per proposes a method, based on Maximum Likelihood Estimation (MLE)
for unfolding the apparent 2D distribution. The efficiency of this method is
extensively investigated in the special case of lognormal distribution. In this
case, 10% uncertainty on the distribution parameters can be reached with only
580 empirical values.

Notations

D, KS goodness-of-fit test againt €2, .

E Expectation of R.
f Parametric PDF.
F~! Quantile function.

f Wicksell transform of f.

F CDF of the Wicksell transform of f.

F, Empirical CDF, computed from n values of .

L, Likelihood function, computed on €2,.

n Sample size.
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Grain size in polycrystals: solving the corpuscle problem using MLE
€, Sample, consisting in values (r, 75, ..., 7).
r Equivalent radius in 2D.
R Equivalent radius in 3D.
R, Cut-off value for histogram decomposition.
o Shape parameter for lognormal distribution.
0 Vector containing the parameters for a given parametric distribution.

0 Estimator, given by MLE.

1. Introduction

1.1. The corpuscle problem

The physical behaviour of polycrystalline materials (such as rocks, metals or ceramics) is largely
related to the grain size distribution. For rocks, grain size affects the creep behaviour (Schmalholz
and Duretz, 2017; Bose et al., 2018) and strain localization (Czapliriska et al., 2015). Thus, the
characterization of those materials usually involves the measurement of such distribution in terms
of mean value and spread as well. In some cases, this statistical description can be used to generate
synthetic grain size distributions that replicate those of the material, in order to perform numerical
simulations of the behaviour of polycrystalline aggregates. For instance, the Neper software (Quey
et al., 2011) can be used to perform Finite Element Analysis (FEA) on polycrystalline aggregates,
starting from grain size distributions on representative aggregates. The evaluation of 3D grain
size distribution is also necessary when comparing samples (Cashman and Marsh, 1988, e.g.) or
when studying the time-evolution of grain sizes, for instance during grain growth (Zollner and
Streitenberger, 2006). 3D imaging techniques, such as X-ray tomography or serial sectioning,
allow to image the 3D geometry of grains, providing valuable information about the grain size
distribution. Such techniques have become more and more popular for the last decades; however,
it is still more common to characterize the microstructures from 2D observations, such as Optical
Microscopy (OM), Scanning Electron Microscopy (SEM) or Electron Backscattered Diffraction

(EBSD). Indeed, the latter are easier to use and are a fortiori cheaper than 3D imaging.
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Grain size in polycrystals: solving the corpuscle problem using MLE
When the grains are polyhedrons (assuming convex geometry with planar grain boundaries),

the apparent grains in 2D sections are convex polygons. The equivalent radius R of each grain is

L3y
R = P (1

whereas the equivalent radius r of an apparent grain is estimated from its area .S

then estimated from its volume V so that:

2)

e
/2
The relationship between the distribution of r and R is usually referred to as the corpuscle problem.
This issue falls in the general field of stereology. Sahagian and Proussevitch (1998) have numer-
ically generated cross-sections of elementary shapes (spheres, ellipsoids and parallelepipeds) in
order to build tabular relationships between the histogram of apparent sizes and the original size
of the particle. The corpuscle problem can also be solved by spatial tessellation methods. For
instance, Chiu et al. (2013, Chap. 10) established links between planar section and spatial tes-
sellations. Using Laguerre—Voronoi tesselation, a method has been proposed in a previous work
(Depriester and Kubler, 2019a) to evaluate the 3D grain size distribution from the size distribu-
tion of apparent polygons. However, this method only works when assuming that the underlying
distribution is lognormal.

To solve the corpuscle problem in more general cases, it is usually assumed that grains can be
considered as non overlapping spheres. This assumption seems reasonable for fully recrystallized
materials since the average number of faces per grain are typically larger than 12 in metals and
ceramics (Depriester and Kubler, 2019a, and references therein); this assumption is also valid for
spherical inclusions embedded in a matrix, like quartz grains in mylonite (Lopez-Sanchez and
Llana-Fanez, 2016) or in permafrost (King et al., 1988), garnets in schist (Kretz, 1993), olivine in

plagioclase/augite matrix (Farr et al., 2017), pores in basalt (Al-Harthi et al., 1999) or vesicular
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Grain size in polycrystals: solving the corpuscle problem using MLE

basalts in volcanic rocks (Sahagian and Proussevitch, 1998). It is worth pointing that this approach
also assumes that the grains are randomly distributed in space, hence it neglects the neighbouring
or clustering effect which can occur under certain circumstances (e.g. Czapliriska et al., 2015).
Sahagian and Proussevitch (1998) have shown that the spherical approximation leads to little bias
when the grains have elliptic or parallelipedic shapes, as long as the aspect ratio is small (< 1.5) ;
Farr et al. (2017) came to the same conclusion when using the method of moments on sections of
cubes.

If a sphere of radius R is cut at random latitude, the radius of such a disk is » < R, as illustrated

in Figure 1. From this figure, it comes that the probability of finding a disk whose radius r is

z

NSRS

\/Rz—r

Figure 1: Representation of a sphere of radius R cut at random latitudes z;, z, € [-R, R].

between r, and r, is (Sahagian and Proussevitch, 1998):

P(r1<r<r2)=%<\/R2_r%—\/Rl_r§>. 3)

The most widely used technique to unfold the apparent 2D grain size distribution into the real

(3D) one is the Saltykov method (Saltykov, 1967). It is an iterative method working with the finite
histogram. Starting from the upper class (larger value for r), Eq. (3) is recursively used to evaluate

the histogram for R. This method is simple to implement and provides accurate results, but it is
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Grain size in polycrystals: solving the corpuscle problem using MLE
dependent on the number of bins used for describing the distribution. There is no “golden rule” for
choosing such a number, but it usually ranges between 10 to 20 (Lopez-Sanchez and Llana-Funez,
2016; Depriester and Kubler, 2019b). A criterion for choosing it has been proposed in the latter
reference.

In some cases, one may prefer working on a continuous distribution instead of a finite histogram.
Lopez-Sanchez and Llana-Fanez (2016) have proposed the so-called two-step method, which con-
sists in fitting an underlying parametric distribution on the histogram given by the Saltykov method.
In practice, they assumed that the underlying distribution was lognormal. In order to increase the
accuracy, the present authors have recently proposed a set of “correction equations” for the two-step
method (hence the three-step method) in the special case of lognormal distribution (Depriester and
Kubler, 2019a).

Consider a medium composed of an infinite number of spheres whose radii R follow a distri-
bution with Probability Density Function (PDF) f(R); Wicksell (1925) has demonstrated that if a
series of planar cuts of this medium are made at random latitudes, the PDF related to the apparent

radii r of such cuts is:
r [ f(R)

f(")=E ; —\/m

dRr “4)

where E denotes the expectation for R:
E=/000Rf(R)dR. 5)
Obviously, the related Cumulative Density Function (CDF) for apparent radius is:
F(r)=/0rf(l//)dl//- (6)

f can be considered as the Wicksell transform of f. As a result, the corpuscle problem can be

reduced to the following question: how to invert the Wicksell’s equation (4)? In his original paper,
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Grain size in polycrystals: solving the corpuscle problem using MLE

Wicksell has proposed the following solution for his equation:

—2ER [ d [ f{ dr
R) = — . 7
FR=— A<ﬂ<r>ﬁfﬁ 7

In practice, one usually wants to find f based on a finite sample Q, = (rl, Poyeeir B ) measured

ey

experimentally. In this case, the empirical CDF is defined as follows:

- Number of elements in Q, < r
F,(r) = . (8)

" n

Since I:“n is not continuous, it is not differentiable. As a result, / in Eq. (7) cannot be evaluated
without regularization (e.g kernel density estimation).

One way to avoid it is to assume that f comes from a given parametric distribution (e.g. normal
or lognormal). In a previous work, Depriester and Kubler (2019b) have used the Minimum Distance
Estimation (MDE), based on the transformed CDF F, to unfold the distribution. The results were
similar to those obtained through the two-step method (Lopez-Sanchez and Llana-Funez, 2016).

Usually, parametric distributions are fitted on empirical data using Maximum Likelihood Esti-
mation (MLE) rather than MDE. Let @ = (6,,6,, ..., 8,) be the vector containing the p parameters
for the considered distribution. Given a finite sample €2, and a parametric distribution whose PDF
is f, MLE consists in finding the value for  which maximises the likelihood function, defined as

follows:

c,®=[]s(~]0)- ©)
i=1

Such value of 6, denoted & below, is usually referred as the estimator. However, it appears that
MLE is only sparsely used in the literature for solving the corpuscle problem (Keiding and Jensen,
1972; Kong et al., 2005; Chan and Qin, 2016, e.g.).

Some authors use the moments of the distribution rather than the full empirical PDF or CDF
(Kong et al., 2005; Farr et al., 2017) to solve the Wicksell’s equation. Indeed, this method is easier

to implement than MLE because the moments of the transformed distribution can be analytically
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Grain size in polycrystals: solving the corpuscle problem using MLE
computed in some cases (see for instance appendix in Farr et al., 2017). Nevertheless, Kong et al.
(2005) have concluded that MLE resulted in better accuracy (in terms of goodness-of-fit) than the
method of moments.

When unfolding the 2D distribution, the confidence interval on the results is of great impor-
tance, regardless of the unfolding method. Still, only few authors investigate this issue. Obviously,
this interval depends on the sample size (n): the higher, the better. It is usually assumed that at
least 1000 unique values are required for performing the Saltykov method (Lopez-Sanchez and
Llana-Fanez, 2016). Depriester and Kubler (2019b) have concluded about the same requirement
concerning MDE. For the specific case of a lognormal distribution, Farr et al. (2017) have shown
that the method of moments has a decreasing accuracy with increasing distribution spread (¢ here-
after, see Eq. (16)). For instance, they reported that the required number of values for reaching
10% uncertainty on the volume-weighted mean diameter ranged from 19 (when ¢ = 0.22) to 980
(when ¢ = 0.58). Farr et al. have also shown that the standard error when evaluating o with the

moment method was proportional to n73.

1.2. Wicksell transform of a finite histogram

Consider a discrete distribution whose PDF is given by a the finite histogram:

N
fhist (R | bins) = Z Freqkfuni (R | Rr];in’ anax) (10)
k=1

(R| R, R*

min max

where f

uni

) denotes the PDF associated to the uniform distribution between an o
and an . and Freq" is the relative frequency of the k-th bin. In a previous work, Depriester and

Kubler (2019b) have shown that the Wicksell’s equation (4) becomes:

N
. . 1 =
fhist (}’ | blnS) = E ; Frequkfuni (I’ | anin’ anax) (1 1)
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where EF is the mean value of class k (i.e. k-th mid-point) and f . is the Wicksell transform of

uni

114 the uniform distribution:

. ( - \/_V: ) ifr <R
max mm mln Rmm
Juni ( | Rogins maX) = = log ( Bnartf R~ ) it R, <r <R, (12)
0 if R, <r

InEq. (12), R,,;, and R, ,, denote the lower and upper bounds for uniform distribution, respectively.

ue Likewise, the transformed CDF of a finite histogram is:

- . k k
Fhist (I" | blIlS) Z Freq E°F uni ( | Rmm’ max) (13)
k 1
with:
y(r)+r2 log (Rmm+ anin—r2> —Rpin\/ R%, —12
1- o) ifr <R,
R_., = y()+r* log(r) . 14
un1 ( | min rnax) 1 — RZWT if Rmin <r< Rmax ( )
1 if Rmdx —=
1s and

y (r) = ,/Rgnax 2 —r?log <Rmax+ ,/Rgm—ﬂ> ) (15)

1.3. The lognormal distribution

120 The lognormal distribution is defined such that its PDF is:

2
(InR — u) > (16)

1
Siosn (R| u,0) = ———=exp <—
¢ Ro\/2x 20°
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Grain size in polycrystals: solving the corpuscle problem using MLE
where ¢ and pu are the shape and scale parameters of the lognormal distribution, respectively. Let

E be the expectation; it comes:

E =exp (,u+%2> . 17

In various science domains, the particle size approximately follows a lognormal distribution.
Indeed, Table 1 provides a couple of such examples reported in the literature. It is worth men-
tioning that, based on the original work by Rhines and Patterson (1982), this hypothesis is now
usually assumed for grain sizes in recrystallized materials (Heilbronner and Bruhn, 1998; Berger
et al., 2011; Lopez-Sanchez and Llana-Funez, 2015; Lopez-Sanchez and Llana-Futnez, 2016, e.g).

Table 1 also shows some typical values for the scale parameter . It appears that, except for bubble

Table 1

Examples of lognormal size distribution and typical values for the shape parameter o.
Material c Reference

Bacillus subtilis bacteria 0.24 (Yamamoto and Wakita, 2016)
Grains in 99.998% aluminum 0.29 to 0.44 (Rhines and Patterson, 1982)
Quartz grains in mylonite 0.46 to 0.53 (Lopez-Sanchez and Llana-Finez, 2016)
Grains in Alpha titanium 0.45 to 0.57 (Conrad et al., 1985)

Olivine grains in basalt 0.59 (Farr et al., 2017)

Grains in IN100 superalloy 0.64 (Tucker et al., 2012)

Pores in soils 0.52 to 1.15 (Kosugi and Hopmans, 1998)
Pores in cement paste 0.90 to 0.95 (Holly et al., 1993)

Bubbles in wheat flour dough 1.62 to 1.79 (Bellido et al., 2006)

sizes in wheat dough, [0.2, 1] can be considered as a satisfactory range for o.

1.4. Aims of this work

It appears that MLE is rarely used in the literature for solving the corpuscle problem, despite
its popularity in statistical applications and its robustness, compared to the methods based on his-
tograms (like Saltykov). This is probably because the Wicksell transform (4) is not straightforward
to evaluate. Therefore, the aim of this work is first to propose an efficient way to numerically
compute the Wicksell transform of a given distribution, circumventing the improper integral. This

allows for evaluating the efficiency of MLE in terms of robustness and confidence interval for the

D. Depriester et al.: Preprint submitted to Elsevier Page 9 of 32
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Grain size in polycrystals: solving the corpuscle problem using MLE
resulting estimator. Since a lognormal distribution is often met in corpuscle problems, this special
case is investigated. Thus, this paper aims to investigate the accuracy of MLE in this case.

This paper first proposes an efficient method for computing the Wicksell transforms (CDF and
PDF) of a continuous distribution, based on histogram decomposition of the underlying distribu-
tion. Then, an algorithm is proposed to rapidly generate synthetic data representing the process
of random sectioning of spheres whose radii follow a given distribution. The robustness of this
algorithm, with respect to asymptotic theory, is shown. Those synthetic data are used to evaluate
the accuracy of MLE in the special case of a lognormal distribution. This analysis allows to es-
timate the required number of empirical values (n) for performing MLE; this also provides a tool
for estimating the uncertainty on the estimators given by MLE. The efficiency of MLE applied on
polyhedrons (instead of spheres) is also investigated.

The methods introduced in this paper are finally applied to two real-world datasets, taken from
the literature. Thus, the 3D grain size distributions of two materials (namely uranium dioxide
and mylonite) are estimated by MLE. The results are compared to those from other stereology

techniques (two-step method and MDE).

2. Numerical methods

This section describes the numerical methods used for computing the Wicksell transforms of
parametric distributions, circumventing the improper integral in Eq. (4). It also introduces a method
for numerically generating datasets corresponding to the corpuscle problem, that is emulating the
cross-sectioning principle of spheres whose radii follow a given parametric distribution. The frame-

work in which all the methods have been implemented is also described.

2.1. Convert the continuous distribution into finite histogram
Let f be a continuous PDF. It can be discretized into an histogram consisting in a series of N

bins such that:

f(R) = fi; (R|bins) (18)

D. Depriester et al.: Preprint submitted to Elsevier Page 10 of 32



Grain size in polycrystals: solving the corpuscle problem using MLE
where f,,, denotes the PDF of the finite histogram, as introduced in Eq. (10). The histogram
approximation (18) is made here by constant-quantile decomposition, neglecting the last quantile,

such that the bounds of the k-th bin are:

RE = ! (;111) : (19)
Rop=F (557) (19b)

In Egs. (19), F~! denotes the inverse of CDF (also known as the quantile function) for the under-

lying distribution. Figure 2 illustrates such decomposition. For the sake of clarity, only 19 bins

1
gfg 0.05
0.8
. 0.04 §
s
%2 0o 0.03 §
£ 05
: 0.02 %
0.3 T
0.2 0.01
0.1
0 0.00
Ry Rin R Riin RoinRoio R R Ry Rigiy Reo

Figure 2: Schematic representation of the histogram approximation of a positive nor-
mal distribution: only 19 bins are used here, thus each quantile of the binned domain is
1/20. Rﬁlin denotes the lower bound for the k-th bin, as defined in Eq. (192a) whereas
R, is the cut-off value at g., = 19/20. The PDF associated to histogram approxima-
tion (10) is also shown (dash-dotted curve).

162

are used in this figure. Neglecting the last quantile is the same as assuming that F(R) ~ 1 and

D. Depriester et al.: Preprint submitted to Elsevier Page 11 of 32
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f(R) = 0if R > R_,, where R_, is the cut-off value, so that:

co?

R, = F! (qco) with g, = Nal

The normalized frequencies of the approximated histogram are:

AF*

Freq* = ———
N
D AFK

with:

AF*=F (Rt )-F (Rt )

max min

Egs. (19), (21) and (22) lead to:

Freq* = %

(20)

21

(22)

(23)

Figure 2 also shows the resulting histogram, whose upper limits are given by the values associated

to each quantile (denoted Rl’;  fere). The constant quantile decomposition results in bins with

constant frequencies and variable widths. This avoids round-off errors near the upper-tail of the

underlying distribution.

Under the approximation (18), the Wicksell transforms of the underlying distribution are de-

fined so that:

_ f hise (7| bins) if r < R
QR ,

0 otherwise

N Fi. (r|bins) ifr < R,
F(r) ~ < .

1 otherwise

(24a)

(24b)

D. Depriester et al.: Preprint submitted to Elsevier
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Grain size in polycrystals: solving the corpuscle problem using MLE

2.2. Efficient sampling of a test distribution

For numerical generation of Random Variables (RVs) following a given distribution, the in-
verse transform sampling method is usually used (Devroye, 2006, e.g.). This method requires to
compute the quantile function of the distribution. Here, computing the CDF is computationally
slow because Eq. (13) cannot be analytically inverted; thus, computing the quantile function of the
folded distribution (F~') requires a numerical solver. As a result, the inverse transform sampling
method would be highly time consuming. Instead, the generation of RVs can be made in a more
physical way. The method proposed here is to numerically emulate cross-sectioning of aligned

spheres whose radii follow the underlying distribution, as illustrated in Figure 3. The aim of such

R, R, R,

1

L=2YR,

Figure 3: Schematic representation of the proposed algorithm for the generation of
random variables for the corpuscle problem: a series of spheres whose radii follow the
underlying distribution are packed. Then, virtual sections (red) are made at random
positions, thus passing through random spheres.

an algorithm is to take into account the fact that, in a real aggregate, the larger the sphere, the more
likely it can be randomly cut. Thus, the proposed algorithm for generating n RVs, assuming a given

underlying distribution, can be summed up as follows:

1. generate a set of m spheres whose radii follow the underlying distribution,

2. “pack” them along a single axis, then compute the cumulative length of such axis (denoted
L below),

3. pick n random values from uniform distribution between 0 and L,

4. make virtual sections of those coordinates,

5. locate which spheres are cut,

D. Depriester et al.: Preprint submitted to Elsevier Page 13 of 32
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190 6. compute the length of each cut using the Pythagorean theorem:

r= \/Rl2 - (c,. - x,.)2 (25)

where x; denotes the coordinate of the i-th virtual section and R, and c; denote the radius and

192 the center coordinate of the sphere at this location.

Trial and error has shown that best accuracy (see section 2.5) is achieved if the two following

inequalities are true:

m > 10000 (26a)

m > 10n (26b)

where 7 is the size of the generated sample.

104 2.3. Python code
A Python class, named Wicksell_transform, has been developed as a subclass of rv_continuous,
196 Whichis part of the scipy.stats module (Virtanen et al., 2020). The associated code is accessible

along with the Wicksell-py project’.

108 2.4. Maximum Likelihood
MLE was performed using the built-in rv_continuous.fit method on the transformed PDF
20 (f). Inscipy.stats, MLE actually consists in minimizing the log-likelihood, that is finding the
estimator @ so that:

6 = Argmin (- log £,(0)) 27)
0

202 where log £ is the natural logarithm of the likelihood function, as defined in Eq. (9). It becomes:

—log £, =— Y log [f (r;|0)] (28)
i=1

Thttps://github.com/DorianDepriester/Wicksell-py

D. Depriester et al.: Preprint submitted to Elsevier Page 14 of 32
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Grain size in polycrystals: solving the corpuscle problem using MLE
This allows the use of standard minimizing techniques and avoids floating point underflow (mul-
tiplication of near-zero floating-point numbers quickly results in 0). Here, the default optimizer
for the fit method in scipy.stats has been used. It is actually the fmin function, as part of the
optimizer module. fmin uses the well-known downhill simplex algorithm (Nelder and Mead,
1965).
Based on the definition for log-likelihood (28), it is clear that null value for the transformed

PDF should be avoided. As a consequence, the cut-off value R_ , as previously defined in Eq. (20),

co?

becomes:

R, =max {F™" (qe) » Promux | (29)

where r,, denotes the maximum value in empirical sample Q, and f is a coefficient slightly larger

than 1. Eq. (29) ensures that f (r;) # O forall r, in Q,, according to Eq. (24a). In this work, we use

f = 1.001. Figure 4 schematically illustrates the algorithm used in this paper to perform MLE on
a sample Q. In this figure, 0, denotes the so-called initial guess for the estimator. In this work,
it was equal to the initial guess for the underlying distribution /. This may be a poor idea from a
computational point a view (the estimator may be far from the initial guess), but this ensures that
0, lies in the validity domain for the parameters (e.g. ¢ > 0 and E > 0 for lognormal). Depriester
and Kubler (2019b) have shown that the value for the initial guess has almost no influence on

the estimator given by MDE. In order to speed-up convergence, one could also use a method of

moments to evaluate the initial guess, as Kong et al. (2005) did.

2.5. Assessments of the proposed methods

In order to assess the consistency between the RVs generator (proposed in section 2.2) and the
continuous CDF (computed as detailed in section 2.1), the underlying lognormal distribution has
been investigated. Let n be the size of the generated sample. For a given value of n, 100 samples
have been generated using random values for ¢ (ranging in [0.1, 1]) and such that the expectation
(E) equals 1, that is 4 = —c% /2, according to Eq. (17).

In each case, the corresponding PDF has been compared against the generated sample using the

D. Depriester et al.: Preprint submitted to Elsevier Page 15 of 32
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Sample Parametric distribution Initial guess
(@) ) (™)
< y 0 « 90
—

*[ ﬂrmax ] [F_l(qco)]Eq (20)
—
Eq. 29) [Reg = max|—{ fuu |Eq 10

Estimator

Figure 4: Schematic representation of MLE: assuming a parametric PDF f, MLE aims to find the
estimator © which minimizes the log-likelihood function. The red dashed block indicates the part of the
algorithm which runs through the rv_continuous.fit method, provided by the SciPy's stats module
(Virtanen et al., 2020); the way 0 is updated relies on the optimizer.fmin function. The shape of 6
depends on the choice made for the parametric function (See Table 4 in appendix for examples).

Kolmogorov—Smirnov (KS) goodness-of-fit test (Gibbons and Chakraborti, 2014, Chap. 4). This
statistic is defined as follows:

D, = max |F(r)—F,| (30)

" rel0,00)

where F, denotes the empirical CDF, as defined in Eq. (8). For each value of n, the mean and
standard deviation for D, have been computed. The results are illustrated in Figure 5. It is clear
that the mean value for D, converges toward 0 when » increases, starting from 0.25 (at » = 10) to

0.0114 (at n = 5000). The range of D, decreases as well (see error bars). Theoretically, the null
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Figure 5: Evolution of the KS statistics as a function of n: the curve shows the mean values whereas
the error bars indicate the extremal values.

hypothesis is rejected at significance level « if (Gibbons and Chakraborti, 2014, Chap. 4):

D,> — (31)

where d, i1s a factor depending on the significance level and taken from tabular data (Smirnov,
1948). For instance, we have d,; = 1.224 and d,, = 1.073.

Let D, , be the empirical value for which the significance level is reached (that is the value
such that a fraction a of the population of D, is greater than this value). Figure 6 illustrates the

evolution of D, ,, to be compared with the theoretical critical values given by Eq. (31) for a = 0.1.

It appears that the computed values are consistent with the asymptotic theory. This indicates that
the algorithm for RVs is unbiased.

In order to investigate the accuracy of MLE, depending on the sample size, MLEs have been
performed on each sample defined above. In each case, the results from MLE (in terms of estima-

tors) have been compared with those used for RV generation. For each fit, the corresponding value

for the expectation has been computed. Hereafter, 6 and E denote the expectation and the shape
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® Empirical data
= Asymptotic theory

107!

1072
10! 102 10°

Figure 6: Critical values for D, at significance level @ = 0.1, as function of n: comparison between
empirical data and asymptotic theory (31).

parameter returned by MLE, respectively. The values of E are partially illustrated in Figure 7. It
appears that the resulting expectation tends toward unity when # is large or when ¢ is small. Con-
versely, it is clear that the larger o, the larger the dispersion (that is the weaker certainty). In order
to estimate the uncertainty when fitting, the envelope of scatter data has been estimated in each

case (see red lines in Figure 7). Those envelopes bound 95% of the experimental values such that:
1-é, <E<1+4¢, (32)

with:
_ 3.003¢
€E = .
\/n

The square root of n in the denominator of €, resembles the expression of standard error when

(33)

computing a sample mean (Altman and Bland, 2005) although it is a completely different approach
here (we try to estimate the error on the expectation of the underlying distribution from a folded
sample); still, the expression proposed in Eq. (33) for €, appears to be a good approximation,

according to Figure 7, and this square root relationship is similar to that reported by Farr et al.
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Figure 7: Results from fitting, depending on the sample size (n) and the shape pa-
rameter (o): expectation for the lognormal distribution (E). The envelopes (red lines)
are approximations, with respect to Eq. (33).

(2017). As areminder, £ = 1 here; thus, a scale factor can be used to generalize Eq. (32) for any

258 value of E, leading to:

| 3.0030 < E <14 3.003¢ (34)
vn o E \n
We now define the relative error related to shape parameter as follows:
€, = —— (35)
(o

260 Figure 8 illustrates the evolution of € as functions of n and o. It appears that, except for n = 10, the

dispersion is independent of ¢. Thus, the envelopes (red lines in Figure 8) are defined as function
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Figure 8: Results from fitting, depending on the sample size (n) and the shape pa-
rameter (o): relative errors on the evaluation of o (¢,). The envelopes (red curves)
are approximations, with respect to Eq. (37).

262 of n only, that is:

with:

26¢  Again, the latter envelopes are defined such that they bound 95% of experimental points.

(36)

(37)

Figure 9 illustrates the evolutions of €, and €_, depending on the sample size and the shape

266 parameter for lognormal distribution (contour plots). If one wants to ensure that both E and o

are estimated within a given confidence interval, the maximum value between é, and €_ should be

26 considered. Thus, Figure 9 also illustrates such value (see coloured regions). It appears that 5% un-
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Figure 9: Values of relative errors on estimators, depending on the sample size (n) and shape parameter
(o) for lognormal distribution. Contour plots illustrate the values of é; and é,, whereas the background
colour indicates the maximum value between é; and €, .

certainty is hard to ensure, for it requires at least » = 2310. But the 10% uncertainty can be achieved
with only n» = 580 if ¢ < 0.8. Indeed, it is clear that the required number of values increases with
o if ¢ > 0.8. For the 15% uncertainty, only 260 values are required if ¢ < 0.8; 400 otherwise.
Furthermore, according to the literature, it appears that ¢ is usually smaller than 0.8 in realistic
applications (see e.g. Table 1). As a result, 580 values are enough to reach the 10% uncertainty in
most cases. This number is far smaller than that usually reported for other stereology techniques
like the Saltykov method or MDE, which both require at least 1000 values (Lopez-Sanchez and
Llana-Fuinez, 2016; Depriester and Kubler, 2019b). The accuracy from method of moments ap-
pears to be same order of magnitude (Farr et al., 2017), but they cannot be extensively compared
with the present results, for Farr et al. (2017) mainly focus on the moments of the distribution, not
on its parameters. However, those authors have also reported an increasing error with increasing
value for o.

In practice, when using the MLE, one wants to estimate the bounds on the real value of o,

based on the estimated one (denoted 6 above). Thus, the definition of €, in Eq. (35), combined
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with Egs. (36) and (37) leads to:

0 min S o S 0 max (38)
with
6
v
o = ﬁ . (39b)
\/Z
28« Eqgs. (34) and (38) lead to:
Emin S E S Emax (40)
with
E . = £ , (41a)
1+ 3.0030 pax
NG
E
Emax = 1 3'003”max ‘ (41b)

Finally, the uncertainty on x4 can be estimated as follows:

o o2,
log (Emin) - I;dx <u< log (Emax> - ;m : (42)

286 2.6. Validation on synthetic polycrystals
This section investigates the effect of applying MLE on grains which are convex polyhedrons,
2gs instead of spheres. The idea is to apply the MLE on a microstructure where both 2D and 3D
distributions are known a priori. To do so, synthetic polycrystalline aggregates were generated
200 using the Neper software (Quey et al., 2011), as illustrated in Figure 10a. Those aggregates were

generated so that the equivalent grain radii, as defined in Eq. (1), followed a lognormal distribution
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(a) 3D tessellation. The black lines illustrate how the
volume is sliced. (b) 2D slice.

Figure 10: Example of synthetic material generated with Neper: a volume is first populated with
polyhedrons with equivalent radii following lognormal distribution with E =1 and ¢ = 0.3 (a); then this
geometry is sliced (b). Each grain is randomly coloured.

with E = 1 and o ranging from 0.1 to 0.9. The populated volume was of size 40 x 40 x 20%. In each
case, the polycrystal was sliced 7 times at different vertical positions, as schematically illustrated
in Figure 10a. An example of such a slice is given in Figure 10b. Then, the equivalent size of
apparent grains were computed with respect to Eq. (2). In order to avoid artefacts due to truncated
grains at the domain boundaries, all apparent grains at the border of each slice were removed from
the dataset. As a result, for a given value of ¢, from 2579 to 5356 unique values of apparent radii
were recorded.

For a given sample size n and a given value for o, n values were randomly picked from the
corresponding dataset; then MLE was performed on this sub-sample. This operation was repeated
50 times in order to estimate the variance in each case. The results are illustrated in Figure 11. It
is clear that the mean value for the expectation (solid blue lines) is always underestimated whereas
that for o (dashed blue lines) is always overestimated. Details about the evolutions of those mean

values, depending on o, are given in Figure 12. From those scatter plots, polynomial regressions

For ¢ = 0.7 and 0.9, the domain was of size 60 x 60 x 30 in order to ensure that the number of grains was large
enough (> 3000).
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can be made (see continuous lines in Figure 12), giving:

0.4026% — 0.5895+1.019

Q

oy |

6 ~—0.4306% + 1.3616—0.014 .

(43a)

(43b)

Those equations can be used to correct the bias introduced by assuming grains as spheres instead

of polyhedrons in a polycrystalline aggregate.

Figure 11 also shows the standard deviations (std), made for each sample size n, as error bars.

Each bar represents +2std (so that it approximately covers 95% of the whole results). It appears

that the standard deviations decrease when » increases, and tend toward O when n — oco0. As a

comparison, the envelopes given by Egs. (34) and (36) are also illustrated (shaded regions); it is

worth remembering that those envelopes were defined so that they also bound 95% of the popula-

tions (see section 2.5). Hence, it appears that, for » > 100, those envelopes are in good agreement

with the actual spreads given by MLE on polycrystalline aggregates; thus the confidence inter-

vals given in Egs. (34) and (36) appear to be still valid, even if the grains are not perfect spheres.

Conversely, Figure 11 illustrates large discrepancies between the envelopes and the actual spreads

when n < 100.

3. Applications

MLE was performed on two datasets introduced in previous works:

1. Grains of uranium dioxide (UO,), manufactured by sintering, and imaged by EBSD by

Soulacroix (2014);

2. Quartz grains in mylonite (Lopez-Sanchez and Llana-Funez, 2016), imaged by OM then

manually segmented’.

Because of the finite resolution in imaging techniques, grains with size smaller than 1 pixel cannot

be taken into account, resulting in truncated empirical distribution. One usually neglects grains

3The dataset corresponds to map E in (Lopez-Sanchez and Llana-Ftinez, 2016); see Suppl. materials in ref.
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Table 2
Results from MLE on UO, and quartz, assuming lognormal distributions. Brackets give the confidence
interval (for 95% confidence level) for the estimators.

uo, Quartz in mylonite
Sample n 4264 3582
¥ min 1.128 um 0.615 um
Estimator & 0.400 [0.386,0.415] 0.506 [0.486,0.527]
E 5.038 [4.943,5.136] 17.77 [17.31,18.25]
i 1.537 [1.512,1.562] 2.750 [2.713,2.786]
KS test D, 0.0344 0.0236
D, o, 0.0187 0.0204
D, o, 0.0164 0.0179

smaller than 6 to 10 pixels since they can induce artefact effects in the apparent distribution, as
pointed out by Lopez-Sanchez (2020). Still, a threshold value of 1 pixel has been used here in
order to ensure consistency with the procedure used in (Depriester and Kubler, 2019b). Let r;, be

the left-truncating value. The truncated PDF and CDF are respectively:

Ve f(r)
=" 44
r 0= (442)
F(r)—F (r..
F*(r) = © NF(FH‘“‘). (44b)
1= F (ryn)

The values for 7, and the sample sizes (n) are given in Table 2.

At first, a lognormal has been assumed as the underlying distribution for both datasets. The
results from MLE and the corresponding confidence intervals are given in Table 2. Thanks to the
large number of grains, the confidence intervals are very small here.

Based on the estimators given in Table 2, the KS tests have been performed against the experi-
mental data, as presented in this table. Critical values for KS statistics at significance level « (D, ,),
estimated from Eq. (31), are given as well. Thus, the null hypothesis should be rejected at signif-
icance level @ = 0.1 for both datasets. Nevertheless, considering the low value for D, for quartz

grains, assuming a lognormal distribution in this case appears to be a reasonable approximation.
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Table 3
Results from MLEs performed on the example dataset, and corresponding KS statistics. The values in
parentheses give the results from MDE (Depriester and Kubler, 2019b), for comparison.

Underlying distribution Parameters D,

Positive normal Mode (u): 3.547 (3.876) 0.0158
Shape (c): 3.006 (2.816)

Weibull Scale  (k): 2.017 (2.106) 0.0176
Shape (4): 5.103 (5.203)

Rayleigh Mode (o): 3.587 (3.612) 0.0176

Gamma Scale (6): 1.001 (1.026) 0.0225
Shape (k): 4.822 (4.724)

Lognormal Scale  (u): 1.537 (1.519) 0.0344
Shape (c): 0.400 (0.428)

As a comparison, Lopez-Sanchez and Llana-Funez (2016) found ¢ = 0.57, E = 20.9 and u = 2.87
on quartz grains using the two-step method with 12 classes. Thus, it seems that both methods lead
to similar estimators, although MLE results in a slightly sharper distribution (lower value for ¢) and
slightly lower value for the expectation. Applying the correction rules for polyhedrons, as defined
in Eqgs. (43), we get 0 = 0.341, E = 5.823 and u = 1.704 for UO,, and ¢ = 0.444, E = 21.24 and
u = 2.957 for quartz grains.

In (Depriester and Kubler, 2019b), other distributions were investigated on UO,, namely: pos-
itive normal, Weibull, Rayleigh and Gamma (see Table 4 in appendix for details). Thus, MLE
was performed assuming the aforementioned distributions. In each case, the KS goodness-of-fit
test was computed against the empirical data. The results, in terms of estimators and KS statistics,
are given in Table 3. According to the values of D,, it appears that a positive normal distribu-
tion is the best candidate for the underlying distribution, whereas lognormal is the worst. This is
consistent with the results from MDE (Depriester and Kubler, 2019b). Considering the values of

D,, the null hypothesis related to lognormal and Gamma should be rejected at significance level

n’

a = 0.1, whereas those related to positive normal, Weibull and Rayleigh should not. At signifi-

cance level @« = 0.2, all the null hypotheses should be rejected, except that related to the positive
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normal distribution (see the critical values in Table 2).

As a comparison, the results obtained by MDE on the same distributions are given in paren-
theses in Table 3. Thus, it is clear that both MLLE and MDE lead to very similar estimators. As a
conclusion, MLE and MDE are consistent with each other.

In order to assess the estimators given in Table 3, one can plot the transformed PDFs on-top of
the empirical histogram, as illustrated in Figure 13. It appears that the positive normal distribution
fits well with these empirical data, specially at » > 5 um, but it slightly underestimates the modal
value (location of the maximum frequency). In contrast, the lognormal distribution fails to fit the
empirical data, specially for » < 5 um.

For comparative purposes, the corresponding PDFs are plotted in Figure 14. It is clear that they
are quite different from each other, specially for lower radii (less than 6 um), except the Weibull
and Rayleigh distributions, which appear superimposed in Figure 14. This is because the Weibull’s
scale parameter (denoted k in Table 3) is very close to 2 (the Rayleigh distribution is a special case
of the Weibull distribution with £ = 2). Conversely, all the PDFs are barely distinguishable on
the right tails (radii larger than 7 um). It is worth mentioning that the same applies in the results
presented in Depriester and Kubler (2019b) (e.g. see Fig. 5 in reference). Those tails correspond
to 15% of the population. Thus, it seems that, regardless of the underlying parametric distribution
being used, both MDE and MLE actually mainly use the larger values to unfold the distribution,
rather than on the whole population. In other words, more “weight” is given to larger radii. This
is because changing the proportion of large grains would change the whole transformed (apparent)
distribution, whereas changing the proportion of small grains would only affect the left tail. As
a conclusion, it is not possible to determine which method is superior based on these analyses.
Nevertheless, it appears that both MDE and MLE are equally good techniques, except MLE seems
to require fewer data for a given accuracy. In addition, it seems that the unfolded distributions from
both the methods are more accurate with respect to larger radii than to the smaller ones.

In Figure 13, the positive normal distribution evidences somehow large frequencies at lower

radii, especially at O value (f ,+(0) = 0.075). This result does not seem realistic considering the
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material. As a reminder, the latter (UO,) was made by sintering, thus the grain size distribution
is mainly inherited from that of the powder used for compaction. Hence, one should expect a null
frequency for R = 0. As a result, the Weibull distribution seems to be the best candidate as a
compromise between realisticity (i.e. it ensures that fy(0) = 0) and goodness-of-fit (D, = 0.0176

for the Weibull distribution).

4. Conclusion

The equations presented in a former work (Depriester and Kubler, 2019b) have been used to
evaluate the efficiency of MLE for solving the corpuscle problem. The special case of a lognormal
distribution for the underlying distribution has been studied in detail in this work and interval errors
(for 95% confidence level) have been evaluated. Thus, this paper provides a way to estimate the
interval errors when unfolding a distribution, assuming a 3D lognormal distribution. The ability
of the proposed method to unfold the grain size distribution, when grains are polyhedrons instead

of perfect spheres is also investigated. The following conclusions have been reached:

e if the underlying distribution is lognormal, 10% uncertainty on the estimators can be achieved
with only 580 unique values as empirical data; this number is almost half that usually required

for the Saltykov method or MDE;

e both MLE and MDE applied on real-world data (grain size distributions in UO, and mylonite)
lead to very similar results for estimators; hence, considering that larger samples are required

for MDE, it appears that MLE is more efficient than MDE for solving the corpuscle problem;

e if the grains are polyhedrons with sizes following a lognormal distribution, a set of correction

laws for the distribution parameters estimated by MLE has been established;

If the underlying distribution is not known a priori, MLE can be used to test which distribution,
among several ones, leads to the highest goodness-of-fit. Since this paper mainly focuses on the
3D lognormal distribution only, the efficiency of MLE on other distributions (e.g. positive normal,

Weibull, Rayleigh etc.) may be studied in a future work.
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Table 4
Parametric density functions used in this paper: related parameters and expression of the PDFs.

Name Parameter(s) PDF

Positive normal 0 = (i, 0) fa+ (R p,0) = @4’ < R_”)

and @, = % [1 + erf <_—”>]

a\2
Gamma 0=(0,k) f, (R1k,6) = miwk R exp <_§>
with: I' (k) = /0°° x*Texp (—x) dx
k-1 k
Weibull 0 = (k, A) fW(R|,1,k):%<§> exp <_ (%) >
: ~ ~ 2
Rayleigh 0=0 fR(Rlﬂ)—;eXP<W>

304 A. Parametric probability functions used in this paper

All the parametric density functions used in this paper are summarized in Table 4.
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Figure 11: Results from MLE applied on synthetic polycrystals: evolution of mean values for the
estimated parameters (broken lines) as functions of the sample size (n) and shape parameter for the
lognormal distribution of equivalent radii (¢); the error bars represent +2std. The shaded regions
illustrate the intervals given by inequations (34) and (36).

D. Depriester et al.: Preprint submitted to Elsevier Page 33 of 32



Grain size in polycrystals: solving the corpuscle problem using MLE

1.0

0.8

Values

0.4

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 12: Evolution of mean values values for the estimators given by MLE on synthetic polycrystal
(scatter plots). The continuous lines illustrate the polynomial regressions given in Egs. (43).
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Figure 13: Results from MLE on UO,: transformed PDFs (f), as compared to the empirical distribution
(histogram).
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Figure 14: Results from MLE on UO,: unfolded PDFs (f).
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