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Hybrid hierarchical homogenization theory for unidirectional CNTs-coated 
fuzzy fiber composites undergoing inelastic deformations 

Qiang Chen , George Chatzigeorgiou , Fodil Meraghni *

Arts et Métiers Institute of Technology, CNRS, Université de Lorraine, LEM3-UMR7239, F-57000 Metz, France   

A B S T R A C T

A new hybrid homogenization approach is proposed for simulating the homogenized and local response of 
unidirectional fuzzy fiber nanocomposites undergoing inelastic deformations. Fuzzy fiber composites are hier
archical reinforcing structures where the fibers coated with radially aligned carbon nanotubes (CNTs) are 
embedded in the matrix. In this spirit, the fuzzy fiber composites are modeled as a three-scale medium. At the 
microscale, the CNTs-reinforced matrix is homogenized as nanocomposite interphase (NCP) attached to the main 
fiber via the asymptotic expansion homogenization (AEH). At the mesoscale, an intermediate equivalent fiber 
that substitutes for the NCP and the main fiber is constructed using the composite cylinder assemblage (CCA) and 
the transformation field analysis (TFA) techniques. At the macroscale, homogenization of the equivalent fiber 
and the surrounding matrix is handled by AEH which yields the effective response of the whole fuzzy fiber 
composites. The new technique facilitates accurate and efficient studies of the inelastic deformation mechanisms 
of periodic fuzzy fiber arrays with single or multiple inclusions under biaxial and triaxial loading conditions, 
eliminating exhausting interphase mesh discretizations encountered in the classical full-field homogenization. An 
added advantage is that the proposed theory captures the fiber-fiber interaction neglected in the classical CCA- 
TFA, an issue that leads to the exceptionally stiff post-yielding stress-strain response common in the mean-field 
micromechanics approaches.   

1. Introduction

Carbon nanotubes have been demonstrated to be a promising
candidate material for enhancing the mechanical and physical proper
ties of the traditional fiber-reinforced polymer composites, especially for 
improving the interfacial and transverse mechanical properties [1–5]. 
This scientific interest is motivated by the fact that CNTs have an axial 
Young’s modulus ranging between 300 and 1000 GPa, while their 
theoretical elongation to break reaches 30–40% [6–8]. Particularly, 
grafting or depositing CNTs on the fiber surfaces through the chemical 
vapor deposition [9] and electrospray technique [10], etc., to form the 
fuzzy fiber reinforcements, is one of the most favorable techniques. In 
essence, composites with enhanced fibers are hierarchical reinforcing 
structures, in which the glass or ceramic fibers are coated with CNTs, 
and the latter is embedded in the polymer matrix, as depicted in Fig. 1 by 
Li et al. [11] and Aziz et al. [12]. 

Thus far, much effort has been made to validate the effectiveness of 
the CNTs-reinforced interphase in improving the interfacial and me
chanical properties of such composites, for instance, the interfacial 

damage [11–13], tensile modulus [11], toughness [14], and energy 
absorption [3]. Apart from the experimental investigation, the 
increasing usage and development of new fuzzy fiber composites and 
their structural components have also flourished a novel research sphere 
from the simulation communities aiming at identifying the 
nano/microstructure-property relationship of such composites. On ac
count that the CNTs are deposited on the surface of the main fiber in all 
the possible radial directions, the interlayer is often viewed as a ho
mogenous equivalent medium with cylindrically orthotropic properties. 
As such, the fuzzy fiber composites can be modeled as two concentric 
cylinders placed in the matrix phase, producing a three-scale medium 
with micro-(CNTs reinforced matrix), meso-(fuzzy fiber-reinforced ma
trix), and macro-(composites) scales. 

Homogenization of the hierarchical media requires appropriate 
reiterated homogenization methods such as [15]. Broadly speaking, two 
groups of approaches have been adopted in the literature for predicting 
the effective behavior of fuzzy fiber composites with micromechanics 
simulations. The first group of approaches includes mainly the classical 
micromechanics approaches that contain either no detailed 
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microstructural information, such as the Mori-Tanaka micromechanics 
strategy [16–19], or certain geometric representation of the material 
microstructure, such as the composite cylinder assemblage model 
[20–22]. Analytical solutions for the displacement and stress field in the 
presence of a cylindrically orthotropic interphase layer in unidirectional 
composites have been developed by Tsukrov and Drach [23]. Classical 
micromechanics approaches provide closed-form solutions for com
bined thermo-mechanical multiaxial loading, hence remain useful tools 
for the prediction of the effective behavior of heterogeneous materials. 
Nonetheless, the classical micromechanics approaches either neglect the 
interaction of the adjacent reinforcements or account for this interaction 
only in an average sense. Such interaction is crucial and its neglect may 
significantly underestimate the local stress fields that affect the damage 
and plastic field evolution. For instance, it is a well-known issue that the 
Mori-Tanaka approach predicts exceptionally high initial yielding 
strength and stiff post-yielding stress-strain response for composites. 
This overestimation is typically attributed to the lack of fiber-fiber 
interaction [16,24]. An advanced computational model based on the 
bridging micromechanics [25], developed originally by Huang [26,27], 
has also been applied to identify the effective properties of fuzzy 
fiber-reinforced composites. 

Alternative approaches are based on the full-field displacement 
representation of repeating microstructures, commonly referred to as 
the repeating unit cell (RUC), with periodic displacement/traction 
boundary conditions. The finite-element [28–30] and finite-volume 
[31–33] methods in their various forms are the dominant techniques 
because of the ability to admit complex unit cell structures containing 
random inclusions of arbitrary shapes and sizes. They also permit the 
incorporation of arbitrary deformation mechanisms at the individual 
phase, such as plasticity [34], viscoelasticity-viscoplasticity [35,36], 
martensitic transformation [37], as well as hyperelasticity in finite 
transformation [38]. For the case of a continuous fuzzy fiber-reinforced 
composite, the effective properties have been determined by Kundalwal 
and Ray [19,39] using the method of cells approach and the finite 
element method. These numerical methods, however, require substan
tial mesh discretization to predict the drastically changing stress fields 
within the repeating unit cell in the case of plastic deformation. This is 
particularly true for the fuzzy fiber composites, in which the nano
composite interphase presents spatially-dependent mechanical behavior 
in the Cartesian coordinates. Extensive mesh refinements in the affected 
region are preferred to capture the rapid variation of interphase prop
erties. The elasticity-based locally-exact homogenization theory (LEHT) 
developed by Pindera and his coworkers [40,41] is a viable alternative 
to the prevalent finite-element and finite-volume-based micromechanics 
theories. The LEHT satisfies exactly the governing differential equations 
as well as the interfacial continuity conditions. The recent development 
of the LEHT provides a paradigm shift by admitting multi-inclusion 
random distribution for unidirectional composites [42]. In addition to 

the physics-based analytical or numerical techniques, machining 
learning-driven numerical approaches have also shown potential in the 
multiscale simulations of composite materials. The latter provides 
possible speed-ups of several magnitudes relative to the former ones [43, 
44]. 

To the best of the authors’ knowledge, the effect of CNTs-reinforced 
interphase on the elastic properties is well documented in the literature 
through the classical micromechanics approaches and the periodic ho
mogenization theories, whereas the effect of the CNTs-reinforced 
interphase on the elastoplastic response has not been investigated as 
extensively. Towards this end, a novel hybrid multiscale homogeniza
tion approach is constructed herein to predict reliably the response of 
fuzzy fiber composites. The new approach makes use of the CCA and the 
transformation field analysis approach recently developed by the pre
sent authors, Chatzigeorgiou et al. [20], as well as the periodic ho
mogenization theory. Specifically, an intermediate equivalent fiber is 
obtained via the CCA-based TFA analysis. The equivalent fiber as a 
whole is a substitute for the fiber and nanocomposite interphase in the 
classical full-field homogenization. The significance of the hybrid ho
mogenization is several-fold. First of all, the new approach avoids the 
exhausting interphase mesh discretization in the classical periodic ho
mogenization, a substantial advantage especially in the case involving 
multiple inclusions of random distribution. Elimination of interphase 
mesh discretization also facilitates the simulating nanocomposite 
interphase of arbitrary thickness for understanding the influence of local 
properties and their microstructures on the macroscopic behavior over a 
large parameter space, thereby accelerating the development cycle of a 
material system for specific high-potential applications. The ability to 
capture the fiber-fiber interaction neglected in classical micromechanics 
is an added advantage of the hybrid homogenization. In this regard, the 
inelastic deformation mechanism can be described correctly using this 
new technique. The new contributions include:  

• the first time that a hybrid hierarchical homogenization scheme is
proposed for investigating the inelastic response of fuzzy fiber
composites.

• demonstration that the new approach doesn’t predict excessively
stiff stresses inherent to the classical CCA-TFA homogenization, with
the accuracy of the predicted local and global response comparable
to the full-field homogenization.

• demonstration that the special strength of the hybrid hierarchical
homogenization lies in the elimination of the three-dimensional
mesh discretization of the nanocomposite interphase since the
interphase and main fiber can be treated as an equivalent medium
using an analytical approach.

The rest of the paper is organized as follows : Section 2 presents the
theoretical framework of the new hybrid homogenization technique. 

Fig. 1. Scanning electron microscopy image 
of fibers with densely-packed CNTs on the 
surface by (a) Li et al. [11] and (b) Aziz et al. 
[12]. Fig. 1(a) is reprinted from the Com
posite Science and Technology, Vol. 117, 
“Hierarchical carbon nanotube carbon fiber 
unidirectional composites with preserved 
tensile and interfacial properties” by Richard 
Li, Noa Lachman, Peter Florin, H. Daniel 
Wagner, Brian L.Wardle, p139-145, 2015, 
with permission from Elsevier. Fig. 1(b) is 
reprinted from the Polymer Composites, Vol. 
36, “Experimental evaluation of the interfa
cial properties of carbon nanotube coated 
carbon fiber reinforced hybrid composites” 
by Shazed Aziz, Suraya Abdul Rashid, Saeed 
Rahmanian et al., p1941-1950, 2015, with 

permission from John Wiley and Sons.   



Section 3 illustrates the new theory’s capability to capture the homog
enized and the local response of unidirectional fuzzy fiber composites 
with single inclusion vis-à-vis the classical periodic homogenization 
method and the CCA-TFA approach, under various uniaxial loadings. 
Numerical experiments conducted in Section 4 demonstrate the new 
approach’s accuracy to capture the inelastic deformation mechanism 
under nonproportional loading paths. New results are also generated in 
order to highlight the strengths of the developed theory for simulating 
periodic multi-inclusion fuzzy fiber arrays. Section 5 draws pertinent 
conclusions leading to potential future work. 

2. Theoretical framework

Fig. 2(a) depicts a repeating unit cell representing the geometrical
characteristics of unidirectional fuzzy fiber composites. The main fibers 
are coated with radially oriented carbon nanotubes, which are further 
embedded in the matrix phase. Therefore, the fuzzy fiber composites can 
be treated as a three-phase medium comprised of the homogeneous 
main fiber, the matrix, and the nanocomposite interphase, Fig. 2(b). The 
latter is considered as an equivalent heterogeneous medium consisting 
CNTs (or microfibers) embedded in the matrix materials. 

Accordingly, the multiscale homogenization approach proposed 
herein for such medium consists of three steps. The first step (micro
scale) is conducted on the nanocomposite interphase, where the CNTs- 
reinforced matrix is homogenized as an equivalent heterogeneous 
coating layer attached to the main fibers. The second homogenization 
step (mesoscale) is performed on the fuzzy fiber, in which a new 
equivalent fiber mimicking the inelastic response of the coated main 
fiber is obtained through a cylindrical representative volume element 
described in detail in the relevant subsection. Homogenization of the 
equivalent fiber and the remaining matrix at the macroscopic scale 
yields the overall constitutive relations of the fuzzy fiber composites, as 
illustrated in Fig. 2(c). It should be noted that the CNTs are assumed to 
have the same averaged radii and lengths. The effects of waviness [20] 

and irregular distribution patterns of the CNTs are not taken into ac
count in this work. 

2.1. Microscale: homogenization of nanocomposite interphase 

Fig. 3 shows the microscopic cross-section of the nanocomposite 
interphase. It consists of radially aligned carbon nanotubes distributed 
uniformly in the matrix phase. The cylindrical structure of the nano
composite interphase produces a challenge in terms of periodic ho
mogenization in the Cartesian coordinate system since such structure 
cannot be replicated by repetition of the same unit cell, cf., Tsalis et al. 
[45,46]. An additional complication related to the cylindrical period
icity is the fact that the volume fractions of CNTs inside the surrounding 
matrix are reduced progressively with the increasing radial coordinates. 

To properly capture the mechanical properties of the equivalent 
nanocomposite interphase medium, the asymptotic expansion homog
enization approach, developed in the cylindrical coordinates by Chat
zigeorgiou et al. [29], is utilized herein. The AEH provides a consistent 
framework for taking into account the effect of macroscopic strain 
variations in Cartesian/cylindrical periodic materials whose micro
structural scale is characterized by the characteristic length δ [47,48]. In 
the cylindrical coordinates, the mesoscale coordinates are defined as 
(r, θ, x3) and the microscale coordinates are defined as (r /δ, θ /δ,
x3 /δ)→(̃r,θ̃, x̃3). For the sake of simplicity, the axes (r, θ, x3) are denoted 
as (1, 2,3) as well. Within this framework, the macroscopic behavior of 
the composites is obtained when the microstructure length becomes 
infinitesimally small (δ→0). The two-scale displacement field is repre
sented by an asymptotic expansion in powers of δ: 

ûδ
i = û(0)

i (r, θ, x3)+ δû(1)
i

(

r, θ, x3, θ̃, x̃3

)

+ δ2 û(2)
i

(

r, θ, x3, θ̃, x̃3

)

+ ⋯ (1)  

where û(0)
i denotes the mesoscale displacement and û(δ)

i are the periodic 
functions indicating the displacement fluctuations induced by the het

Fig. 2. (a) Microscale fuzzy fiber composites containing the main fiber, CNTs, and matrix phases; (b) Mesoscale fuzzy fiber composites containing the main fiber, 
nanocomposite interphase, and matrix; (c) Equivalent repeating unit cell containing equivalent fiber and matrix. 

Fig. 3. Cross-section of the nanocomposite interphase.  



erogeneities. “̂” denotes a specific quantity in the cylindrical coordinate 
system. In the above equation, considering the geometry of the CNT, the 
displacements are assumed to depend only on the microcoordinates 
(θ̃, x̃3) as there is no significant variation in the radial direction. 

Similarly, the strains can be expressed in the following form: 

ε̂δ
ij = ε̂(0)

ij + δε̂(1)
ij + δ2 ε̂(2)

ij + ⋯,

with ε̂(m)

ij = ε̂(m*)
ij +

1
2

(

L̃i û(m+1)
j + L̃j û(m+1)

i

)

, m = 0, 1, 2...
(2)  

where 
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3
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, ε̂(m*)
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1
2

(
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1

)

,

ε̂(m*)
12 =

1
2

(

L2 û(m)
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2 −
û(m)

2

r
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(3)  

where 

L1 = ∂
∂r, L2 =

1
r

∂
∂θ, L3 =

∂
∂x3
,

L̃1 =
∂
∂r̃
, L̃2 =

1
r

∂
∂θ̃
, L̃3 =

∂
∂x̃3

(4) 

Using Hooke’s law σ̂ δ
ij = Ĉ

δ
ijkl ε̂

δ
ij, and Eq. (2), the stresses can be ob

tained as follows: 

σ̂δ
ij = σ̂ (0)

ij + δσ̂ (1)
ij + δ2 σ̂ (2)

ij + ⋯,

with σ̂ (m)

ij = Ĉijkl ε̂(m*)
kl + ĈijklL̃k û(m+1)

l

(5)  

where Ĉijkl denotes the position-dependent elastic stiffness which is 
necessarily symmetrical fourth-order tensor. 

In the absence of body force, the equilibrium equations can be 
expressed using Eq. (5): 

1
δ

(

L̃j σ̂ (0)
1j

)

+ Lj σ̂ (0)
1j +

σ̂ (0)
11 − σ̂ (0)

22

r
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1
δ

(
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)

+ Lj σ̂ (0)
2j + 2

σ̂ (0)
12

r
+ L̃j σ̂ (1)

2j + δ⋯ = 0

1
δ

(

L̃j σ̂ (0)
3j

)

+ Lj σ̂ (0)
3j +

σ̂ (0)
13

r
+ L̃j σ̂ (1)

3j + δ⋯ = 0

(6) 

Following the classical asymptotic expansion homogenization, the 
homogenized constitutive equations of the nanocomposite interphase 
are defined at the order of δ− 1: 

L̃j σ̂ (0)
ij = 0, i = 1, 2, 3 (7) 

Using Eq. (5), Eq. (7) can be further expressed as: 

L̃j

(

Ĉijkl

)

ε̂(0*)
kl + L̃j

(

ĈijklL̃k û(1)
l

)

= 0 (8) 

In the above equation, ε̂(0*)
kl depends only on the mesoscale dis

placements û(0)
i . 

Assuming that û(1)
i = N̂

mn
l ε̂(0*)

kl , the solution of Eq. (8) at the order of
δ− 1 yields the homogenized properties of the nanocomposites as follows: 

Ĉ
NCP
ijmn = 〈Ĉijmn + ĈijklL̃k N̂

mn
l 〉 (9)  

where 〈φ〉 = (1 /A)
∫ x̃3/2
− x̃3/2

∫ θ̃
′

/2

− θ̃
′

/2
rφ(r, θ̃, x̃3)dθ̃dx̃3 denotes the area inte

gral symbol on the area A of the 2-D unit cell with respect to (θ̃, x̃3) and 
N̂

mn
l are periodic functions given by Chatzigeorgiou et al. [29]. 

It should be pointed out that the periodic structure of the nano
composite interphase depends on the radial coordinate and the volume 
fraction decreases with increasing radial distance. The effective prop
erties, in theory, are obtained by solving the unit cell problems multiple 
times, with each unit cell representing a different profile at a specific 
radial location. For the sake of simplicity, in this work, the nano
composite interphase is assumed to be transversely isotropic with the 
axis of symmetry parallel to the axis of the CNTs. In this regard, the unit 
cell problem can be solved only once by considering one interfacial 
layer. An additional simplification employed in the present work is that 
the inelastic behavior of the NCP is described directly using the plastic 
flow rule for transversely isotropic material. Parametric investigations 
and applications explicitly accounting for the nonlinear deformation 
mechanisms of the CNTs and the surrounding matrix require a multi
scale analysis methodology such as FE2 analysis [35], which will be 
addressed in a forthcoming publication. 

2.2. Mesoscale: homogenization of equivalent fiber 

Having obtained the effective properties of the nanocomposite 
interphase, the homogenized behavior of the actual composites can be 
determined via either the periodic homogenization approaches such as 
the finite-element and finite-volume techniques, or the classical micro
mechanics approaches that are based on homogeneous boundary con
ditions. In the second step of homogenization, the CNTs and their 
surrounding matrix are substituted by an equivalent interphase medium 
which presents cylindrical orthotropy. In the Cartesian coordinates, 
however, the NCP exhibits spatially dependent behaviors. Under such 
circumstances, the finite-element and finite-volume techniques require 
an exceptionally refined mesh discretization in the interphase region to 
capture the rapidly changing interphase properties. This will ineluctably 
induce an increase in the computational cost. A viable alternative to the 
finite-element or the finite-volume-based periodic homogenization is 
the meshless classical micromechanics approach. Nonetheless, the latter 
is derived based on average stress/strain per phase and hence signifi
cantly overestimates the inelastic response. 

Herein, a novel hybrid homogenization technique is developed that 

Fig. 4. (a) Composite cylinder assemblage model with coated fiber; (b) Equivalent composite medium.  



makes use of the elements of the extended classical micromechanics 
approach based on CCA, recently developed by the present authors in 
Chatzigeorgiou et al. [20], and the mainstream finite-element based 
periodic homogenization technique. Specifically, an equivalent fuzzy 
fiber is created via the CCA-TFA micromechanics simulations, with the 
purpose of replacing the nanocomposite interphase and the main fiber, 
also referred to as composite fiber in this manuscript. In the third step of 
homogenization described in the next subsection, the composite fibers 
are substituted by the equivalent fibers to obtain the macroscopic 
stress-strain behavior of the whole fuzzy fiber composites. The current 
hybrid homogenization approach not only permits the accurate char
acterization of the inelastic deformation mechanisms in the matrix 
phase and the fiber-fiber interactions in multi-inclusion repeating unit 
cells neglected in the classical micromechanics approaches, but also 
avoids the three-dimensional mesh refinement in the nanocomposite 
coating layers if the periodic homogenization approaches are followed. 
The latter facilitates simulating the nanocomposite interphase of arbi
trary thickness and more complex microstructures such as random fiber 
distributions. 

The extended CCA is based on the transformation field analysis, 
developed by Dvorak [49], of inelastic stress fields to account for the 
inelastic mechanisms of each phase. Fig. 4(a) depicts a perfectly bonded 
multi-concentric cylinder model. The cylinder is made of three distinct 
phases, namely, the matrix phase (denoted by subscript 0), the inter
phase (denoted by subscript 2), and the inclusion (denoted by subscript 
1). The inclusion occupying the space Ω1 is represented by a constant 
elasticity modulus L1 and subjected to the inelastic stress σp

1. Likewise, 
the matrix occupying the space Ω0 is characterized by a constant elas
ticity modulus L0 and subjected to inelastic stress σp

0. The coating layer 
which is subjected to the inelastic stress σp

2 fills up the space Ω2 between 
the matrix and the inclusion phases. The elastic modulus of the coating 
layer L2(x) is, however, spatially dependent on the Cartesian co
ordinates due to the cylindrical orthotropic nature of the interphase 
material. Along the boundary of the matrix phase, a linear displacement 
field uext = ε⋅x is imposed, with ε denoting the mesoscale strain tensor. 
The volume of each phase is represented by Vi(i = 0,1, 2). With the 
above definition, space Ω = Ω1 ∪ Ω2 ∪ Ω0 denotes the whole represen
tative volume element (RVE), with a volume of V = V1 + V2 + V0. 

In the absence of inertial and body forces, the governing equation of 
the RVE reads: 

divσ= 0, in Ω (10)  

where 

σ(x)=

⎧
⎪⎪⎨

⎪⎪⎩

L1 : ε(x) + σp
1 x ∈ Ω1

L2(x) : ε(x) + σp
2 x ∈ Ω2

L0 : ε(x) + σp
0 x ∈ Ω0

(11) 

Eq. (10) is solved based on an essential assumption that the inelastic 
stress per phase is uniform, which is common in the development of 
classical micromechanics approaches. The inelastic stresses within the 
composite microstructure are strongly nonuniform. This is particularly 
true in the matrix phase of the fuzzy fiber composites, where large stress 
and strain deformation gradients are expected in this phase due to the 
large property contrast between the composite fiber and the surrounding 
matrix. Like all other classical micromechanics models, the uniform 
inelastic stress field is a vital issue in the extended CCA-TFA approach 
presented herein, which produces a substantially stiff macroscopic 
response in generating the results that follow. 

In the present analytical scheme, an equivalent medium occupying 
the space Ω is considered, as shown in Fig. 4(b). The macroscopic 
constitutive law for this equivalent medium reads: 

σ=L : ε + σp (12)  

where L is the unknown effective elasticity tensor and σp is the effective 
inelastic stress tensor. σ =

∑2
i=0ciσi and ε =

∑2
i=0ciεi, with ci = Vi/V 

denoting the volume fraction of each phase. 
Following the TFA method, the averaged strain per phase is 

expressed as a function of the applied macroscopic strain and the in
elastic stresses from all phases as [20]: 

εi =Ai : ε +
∑2

j=0
Ap

j,i : σp
j (13)  

where Ai and Ap
j,i are the strain-type elastic and inelastic concentration 

tensors. σp
j is assumed to be a constant per phase. Similarly, the average 

stress per phase may be expressed as [20]: 

σi =Di : ε +
∑2

j=0
Dp

j,i : σp
j (14)  

where Di and Dp
j,i are the stress-type elastic and inelastic concentration 

tensors. 
Combining Eqs. (12) and (14) yields: 

L=
∑2

i=0
ciDi, σp =

∑2

j=0
Bp

j : σj, Bp
j =

∑2

i=0
ciDp

j,i (15) 

Following the classical composite cylinder assemblage approach, 
several boundary value problems are solved analytically under 
axisymmetric and anti-plane shear loading conditions to identify the 
elastic and inelastic concentration tensors. For the transverse shear 
loading, the generalized self-consistent composite cylinder assemblage 
model is adopted. The readers are referred to our recent work, Chatzi
georgiou et al. [20], for a detailed derivation of these tensors. 

In this contribution, to address the overestimation of the inelastic 
stress-strain behavior of fuzzy fiber composites in the case of CCA-TFA 
being followed, an equivalent fiber is obtained when the volume of 
the matrix approaches zero. This equivalent fiber is subsequently inte
grated into the macroscale homogenization elaborated in the following 
subsection to mimic the inelastic response of the composite fiber. 

2.3. Macroscale: hybrid homogenization of equivalent fiber embedded in 
a matrix 

In the third step of homogenization, the macroscopic constitutive 
relation of the whole fuzzy fiber composites is obtained. The macroscale 
repeating unit cell is considered to possess two unique phases, i.e., the 
equivalent fiber and the surrounding matrix. The matrix phase is 
assumed to be elastic-plastic material which is described by classical J2 
elastoplasticity. The equivalent fiber is elastic-plastic, the response of 
which is given by the lower-scale CCA-TFA analysis. Under these con
ditions, homogenization of the second periodic boundary value prob
lems can be achieved using the standard asymptotic expansion 
homogenization at the order of δ− 1, interpreted in the Cartesian coor
dinate system, cf. Chatzigeorgiou et al. [50]. 

3. Verification and assessment

In this section, the inelastic behavior of a fuzzy fiber composite is
generated under various loading conditions to assess the accuracy of the 
proposed hybrid homogenization vis-à-vis the classical CCA-TFA, as well 
as the classical periodic homogenization approach. 

The fuzzy fiber composites investigated herein consist of three ma
terial phases. The matrix is assumed to be epoxy, which is represented by 
the classical elastoplasticity of isotropic material. The main fiber is made 
of isotropic glass which is taken to be elastic during the entire defor
mation history. The carbon nanotube is made of graphene which is also 
isotropic. The elastic properties for all these materials taken from 



Chatzigeorgiou et al. [22] are listed in Table 1. At the microscopic scale, 
the internal and external radii of the CNTs are 0.51nm and 0.85nm, 
respectively, cf. Chatzigeorgiou et al. [22]. At the mesoscale, the glass 
fiber radius is equal to 2.5μm, and the length of the CNTs is taken to be 
2μm. The volume fraction of the composite fiber (NCP +main fiber) over 
the whole fuzzy fiber composite system is 30%. 

For the sake of simplicity, the nanocomposite interphase is consid
ered to be transversely isotropic with the axis of symmetry parallel to the 
axis of the CNTs. The elastic tensor of the equivalent nanocomposite 
interphase reads: 

L2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k + μ k − μ l 0 0 0
k − μ k − μ l 0 0 0
l l n 0 0 0
0 0 0 μtr 0 0
0 0 0 0 μax 0
0 0 0 0 0 μax

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16) 

In the above equation, k denotes the plane strain bulk modulus, μtr 

denotes the transverse shear modulus, μax denotes the axial shear 
modulus, n is the modulus related to the axial tensile loading, and l re
flects the coupling between the axial tension and transverse tension 
loadings. It should be pointed out that the scope is to investigate the 
accuracy of the proposed methodology for capturing the inelastic 
mechanisms at the mesoscopic hence macroscopic scale. In order not to 
deviate from this goal, the NCP is treated as a homogeneous medium 
whose inelastic behavior is described directly using the plastic flow rule 
for transversely isotropic material, Long et al. [51]. Parametric in
vestigations and applications involving nonlinear analysis of CNTs and 
surrounding matrix will be addressed in a forthcoming publication. 

At the microscale analysis, the periodic boundary conditions are 
imposed at the boundary of the repeating unit cell. To establish the 
complete elastic stiffness tensor, the unit cell problems are solved six 
times by applying sequentially one nonzero unit mesoscopic strain at a 
time, Chatzigeorgiou et al. [20]. Herein, the equivalent properties of the 
nanocomposite interphase obtained via the finite-element package 
ABAQUS are listed in Table 2 and they are directly utilized in the second 
step of the mesoscale analysis. 

Concerning the plastic parameters, the yield surface of the elasto
plastic matrix reads: 

Φ= σVM − Y − Q[1 − exp(− bp)] (17)  

where σVM and p are the Von Mises equivalent stress and the cumulative 
effective plastic strain, respectively. Ydenotes the initial yield strength 
and Q indicates the difference between the saturation and initial 
yielding stresses. b represents the hardening rate. 

In the case of NCP, the transversely isotropic elastoplasticity theory 
is employed. As such, the yield surface may be decomposed into in-plane 
and axial shear loadings: 

Φt =
̅̅̅̅̅̅̅̅̅̅
1
2s

t
ijst

ij

√
− Yt − Qt[1 − exp( − btpt) ],

Φa =

̅̅̅̅̅̅̅̅̅̅̅
1
2

sa
ijsa

ij

√

− Ya − Qa[1 − exp( − bapa) ]

(18)  

where the subscripts (or superscripts) t and a indicate inplane and axial 
shear loading respectively. For a transversely isotropic elastoplastic 
material with the axis of symmetry parallel to direction 3, 

st
ij = σij + σ33δi3δj3 − σ̃

[
δij − δi3δj3

]
−
[
σi3δj3 + σj3δi3

]
,

sa
ij =

[
σi3δj3 + σj3δi3

]
− 2σ33δi3δj3

(19)  

where σ̃ = (σ11 + σ22)/2. In the present work, the plastic properties 
listed in Table 3 will be used in generating results that follow. 

The homogenized nonlinear stress-strain behaviors of the fuzzy fiber 
composites are obtained following three different approaches: (1) via 
the hybrid homogenization method (HHM) with two distinct phases (the 
equivalent fiber and matrix) proposed in the present work; (2) via the 
classical full-field homogenization (FFH) with three distinct phases (the 
main fiber, NCP, and matrix); (3) via the recently developed CCA-TFA 
theory, cf., Chatzigeorgiou et al. [20]. The full-field homogenization is 
considered to be the most accurate hence it is used as a gold standard to 
assess the accuracy of both the HHM and CCA-TFA approaches. 

Fig. 5(a) and (b) show the repeating unit cells used in FFH and HHM 
calculations, which are discretized into 12096 and 12548 fully inte
grated ten-node tetrahedral elements, respectively. For both cases, the 
composite fibers are distributed in the matrix phase periodically in a 
square arrangement. Exactly the same mesh discretization in the matrix 
was adopted in both FFH and HHM simulations, while the total number 
of elements in the equivalent fiber and the fiber/interphase domain has 
been kept as closely as possible. Finer meshes have also been used to 
validate the generated results based on the chosen mesh discretizations 
but do not yield any differences, indicating converged unit cell solutions 
based on the present mesh discretizations. This mesh refinement is not 
presented in this paper to keep it concise. It is worth noting that while 
the NCP is transversely isotropic in the cylindrical coordinates, it pre
sents spatially-dependent monoclinic mechanical behavior in the Car
tesian coordinates. Due to this spatial dependency, greater mesh 
discretizations in the affected region are required to capture the rapid 
variation of interphase properties. The field quantities within the 
nanocomposite domain also change more drastically. Smaller step size 
(hence more loading increments) is (are) preferred in the classical full- 
field homogenization simulation which is necessary to ensure numeri
cal stabilities. 

Fig. 6 presents the comparison of the homogenized stress-strain 
response of the fuzzy fiber composites generated by the HHM, FFH, 
and CCA-TFA approaches. Uniaxial strain-controlled loading and stress- 
controlled unloading tests are performed under transverse tensile, lon
gitudinal tensile, transverse shear, axial shear loading paths. It is evident 
that the FFH and HHM results show a good level of accordance during 
the entire loading-unloading history under every loading condition. In 
contrast, the classical micromechanics approach based on CCA-TFA can 
only provide reasonable estimations of the stress-strain curves under the 
longitudinal tensile loading path. It predicts significantly stiffer stress- 

Table 1 
Elastic properties of the fuzzy fiber composite constituents (Chatzigeorgiou 
et al. [22]).   

E (GPa) v  

Epoxy 3 0.3 
Glass 72 0.2 
Graphene 1100 0.14  

Table 2 
Effective properties of the nanocomposite obtained via periodic 
homogenization.  

Properties k  l  n  μtr μax

Value (MPa) 5758.1 2526 299714 2523.6 2807.1  

Table 3 
Plastic properties of the matrix and the NCP.  

Matrix NCP 

Y(MPa)  20 Yt (MPa)  30 
Q (MPa)  30 Qt (MPa)  160 
b  200 bt 3   

Ya (MPa)  30   
Qa (MPa)  160   
ba 3  



strain behavior under transverse tensile, transverse shear, and axial 
shear loading cases, relative to the FFH and HHM approaches. The main 
reason for this discrepancy, frequently observed between the mean-field 
and full-field approaches, is that the CCA-TFA neglects the fiber-fiber 
interactions, which leads to the stress field inside the composites 

cannot be properly captured. In addition to the fiber-fiber interactions, 
the CCA-TFA is developed based on averaged inelastic stress per phase, 
thus it cannot capture the plastic strain localization inside the plastic 
phase. When the plastic strains are significant, the plastic flow changes 
drastically in terms of evolution that affects the concomitant 

Fig. 5. (a) Repeating unit cell containing fiber, nanocomposite interphase, and matrix phases; (b) Repeating unit cell containing equivalent fiber and matrix phases.  

Fig. 6. Comparison of the uniaxial homogenized response of the fuzzy fiber composites based on FFH, HHM, and CCA-TFA approaches.  



macroscopic stresses. The ability to capture the spatially varying in
elastic stress field is more essential in the case of fuzzy fiber composites 
due to the large property contrast between the constituent materials 
observed in this type of material. 

The importance of accurate prediction of local stress fields on the 
design of durable composite materials, herein the fuzzy fiber compos
ites, cannot be overstated [52]. To assess the capability of the HHM in 
predicting the stress localizations induced by the microstructures, in the 
following, the stress fields predicted by the HHM are extensively verified 
vis-à-vis the FFH results which are the gold standard. Fig. 7 presents the 
differences between the matrix transverse normal stress σ11distributions 
generated by the FFH and HHM approaches, at the macroscopic strain 
level of ε11 = 2.5% under the uniaxial loading σ11 branch. Fig. 8 presents 
the differences between the matrix axial shear stress σ13 distributions 
generated by the FFH and HHM approaches, at the macroscopic strain 
level of 2ε13 = 2.5% under the uniaxial shear loading σ13 branch. As 
observed, the HHM produces nearly identical stress distributions noted 
in the FFH predictions almost everywhere for both transverse tensile and 
axial shear loadings, even in the vicinity of the composite fiber where 
significant plastic field localizations are expected. This suggests that the 
HHM can properly capture the local inelastic deformation mechanisms 
in the matrix phase neglected in the classical mean-field homogenization 
theories and hence the concomitant macroscopic response. The advan
tage of HHM over the classical full-field homogenization lies in the 
elimination of interphase mesh discretization, which may be excep
tionally exhausting for periodic fuzzy fiber arrays with complex or 
random fiber microstructures. Another significance of the hybrid 
approach is that it enables simulating fuzzy fiber composites of arbitrary 
thickness that may be used in parametric studies for understanding the 
microstructure-property relationship over large parameter space. 

Quantitative comparisons of the average stresses per phase predicted 
by three approaches at different levels of macroscopic strain are sum
marized in Tables 4 and 5 for the transverse tensile and the axial shear 
loadings, respectively. It should be noted that in the case of HHM 

Fig. 7. Comparison of matrix transverse normal stress σ11 distributions at the macroscopic strain of ε11 = 2.5% under uniaxial loading by σ11 ∕= 0 obtained using FFH 
and HHM approaches. 

Fig. 8. Comparison of matrix axial shear stress σ13 distributions at the macroscopic strain of 2ε13 = 2.5% under uniaxial loading by σ13 ∕= 0 obtained using FFH and 
HHM approaches. 

Table 4 
Comparison of average phase stress σ11 (MPa) as a function of applied loading 
ε11 (%) generated by CCA-TFA, HHM, and FFM under uniaxial transverse ten
sion by.σ11 ∕= 0  

Materials ε11 (%)  1.25 2.5 3.75 5 

Equivalent Fiber 
/NCP + Fiber 

CCA-TFA 67.08 110.32 141.77 172.00 
HHM 63.22 69.40 68.02 66.87 
FFH 61.57 69.28 67.88 66.70 

Matrix CCA-TFA 42.74 61.33 68.14 73.82 
HHM 42.30 51.24 52.78 53.69 
FFH 41.69 51.20 52.80 53.74  

Table 5 
Comparison of average phase stress σ13 (MPa) as a function of applied loading 
2ε13 (%) generated by CCA-TFA, HHM, and FFM under uniaxial axial shear 
loading by.σ13 ∕= 0  

Materials 2ε13 (%)  1.25 2.5 3.75 5 

Equivalent Fiber 
/NCP + Fiber 

CCA-TFA 26.57 44.25 56.26 66.88 
HHM 23.26 33.20 34.98 35.14 
FFH 23.29 32.75 34.68 34.88 

Matrix CCA-TFA 15.33 23.46 27.38 28.57 
HHM 15.11 22.66 25.54 26.13 
FFH 15.11 22.66 25.63 26.24  



prediction, the average stresses over the equivalent fiber are evaluated, 
which correspond to the average stresses over the main fiber and NCP in 
the case of FFH and CCA-TFA simulations. Again, it is observed that 
while the correlations of the average phase stresses between the HHM 
and FFH approaches are remarkable at every loading step, the CCA-TFA 
predicts exceedingly higher stresses in the plastic loading range, and 
perhaps even the stresses in the elastic stage. The second observation is 
that increasing the macroscopic strain accentuates the differences be
tween the CCA-TFA and the HHM/FFH results caused by the continuing 
microstructure-induced plastic field localization neglected in the clas
sical CCA-TFA approach. 

4. Numerical results

4.1. Single inclusion case 

Thus far, there has been no reported data in the open literature on the 
macroscopic inelastic response of periodic fuzzy fiber arrays under 
arbitrary multiaxial loading paths. Such knowledge is important to 
efficiently design durable and sustainable structural components made 
of fuzzy fiber composites to meet the specific needs of applications. In 
this subsection, the biaxial and triaxial loading numerical experiments 

were conducted to demonstrate the hybrid homogenization approach’s 
ability to analyze periodic fuzzy fiber arrays subjected to more complex 
nonproportional loading conditions. As demonstrated in the previous 
subsection, the classical CCA-TFA approach fails to capture the inelastic 
deformations under uniaxial transverse tension, transverse shear, and 
axial shear loading cases. Hence the numerical examples presented 
herein provide a very demanding test of the new method’s accuracy. 

Fig. 9 illustrates the comparison of the biaxial homogenized stress- 
strain response generated by the hybrid homogenization method vis- 
à-vis the classical full-field homogenization. At the first stage, the fuzzy 
fiber composite is subjected to strain-controlled uniaxial stress loading 
by σ11 ∕= 0 up to ε11 = 5%. At the second stage, linearly increasing axial 
shear strain ε13 is imposed till ε13 = 2.5% while the ε11 has been kept the 
same. The third stage is stress-controlled unloading. An excellent 
agreement between the HHM and FFH results is observed, suggesting the 
hybrid approach’s capability to capture the inelastic deformation 
mechanisms under multiaxial loading conditions. Comparison of the 
homogenized stress-strain response generated by the FFH and HHM 
under the biaxial transverse shear and axial shear loading paths is pre
sented in Fig. 10. Similar to the previous case, the fuzzy fiber composite 
is first subjected to strain-controlled transverse shear loading by σ12 ∕= 0 
up to ε12 = 2.5%. Then, linearly increasing axial shear strain ε13 is 

Fig. 9. Comparison of the homogenized response of the fuzzy fiber composites based on FFH and HHM under the biaxial transverse tension-axial shear loading path.  

Fig. 10. Comparison of the homogenized response of the fuzzy fiber composites based on FFH and HHM under the biaxial transverse shear-axial shear loading path.  



imposed till ε13 = 2.5% while the ε12 has been kept the same, which is 
followed by stress-controlled unloading. Once again, no visible differ
ences are observed between the FFH and HHM predictions. 

Fig. 11 presents the comparison of the homogenized stress-strain 
response of fuzzy fiber composites under triaxially loaded in-plane 
tension-axial shear paths obtained by the two approaches. In this case, 
the fuzzy fiber composite is loaded by equal biaxial tension by ε11 =

ε22 = ε0 till ε0 = 5%. Next, linearly increasing axial shear strain ε13 is 
superposed till ε13 = 2.5%. The third stage is still stress-controlled 
unloading. It is evident that the HHM coincides with FFH during the 
entire loading history. Fig. 12 illustrates the comparison of the macro
scopic response of fuzzy fiber composites under triaxially loaded in- 
plane tension-transverse shear paths by the FFH and HHM approaches. 
The fuzzy fiber composite is loaded by biaxial tension by ε11 = 2ε22 = ε0 

till ε0 = 5%. In the second loading stage, linearly increasing transverse 
shear strain ε12 is superposed till ε12 = 2.5%. As customary, the third 
stage is stress-controlled unloading. It is remarkable how well the HHM 
is capable of capturing the inelastic deformation predicted by the 
reference FFH results, further lending credence to the new hybrid 
approach’s rigorous validation. 

4.2. Multi-inclusion case 

In the last subsection, the hybrid homogenization technique is 
employed to investigate the homogenized and local inelastic response of 
fuzzy fiber composites with more complex microstructures by increasing 
the number of inclusions to 3, Fig. 13. The ability to simulate irregular 
multi-inclusion periodic microstructure is a substantial advantage of the 
HHM over the classical or extended mean-field approaches. Hence the 
cases considered in this section highlight the new hybrid theory’s special 
strengths and predictive capabilities. 

The repeating unit cells were produced by placing a fiber in the 
center of the left-hand side half-plane and two fibers uniformly in the 
right-hand side subdomain. The characteristic size of the main fiber and 
the nanocomposite interphase remains unaffected, while the length and 
width of the unit cell are twice the sizes of the previous case, yielding a 
periodic array with a total volume fraction of 22.5%. As well- 
documented in the literature, the importance of the fiber-fiber interac
tion in such configuration cannot be overstated in terms of plastic field 
evolution and localization, the neglect of which is typically considered 
to be the main reason for the overestimation of post-yielding stress- 
strain response in numerical simulations. Fig. 14 depicts the homoge
nized loading/unloading stress-strain response for the fuzzy fiber 

Fig. 11. Comparison of the homogenized response of the fuzzy fiber composites based on FFH and HHM under the triaxial transverse tension-axial shear 
loading path. 

Fig. 12. Comparison of the homogenized response of the fuzzy fiber composites based on FFH and HHM under the triaxial transverse tension-transverse shear 
loading path. 



composites with the muti-inclusion periodic arrangement shown in 
Fig. 13. The numerical experiments were conducted for uniaxial trans
verse tensile, transverse shear, and axial shear loadings. The previous 
results clearly indicate that the classical CCA-TFA approach exhibits a 
large deviation from the full-field reference solutions under such loading 

conditions, hence they are excellent candidates to test the accuracy of 
the new hybrid approach. As anticipated, the differences between the 
FFH and HHM results are really negligible during the whole loading/ 
unloading history. Fig. 15 shows the local stress σ11 fields at the 
macroscopic strain of 2.5% during the uniaxial transverse tensile 

Fig. 14. Comparison of load/unload stress-strain response of multi-inclusion repeating unit cell generated by FFH with coated fibers and HHM with equivalent fibers.  

Fig. 13. (a) Multi-inclusion repeating unit cell containing three coated fibers (b) Multi-inclusion repeating unit cell containing three equivalent fibers.  



loading, generated by the FFH and HHM methods, for which excellent 
agreement is obtained. The results immediately demonstrate the in
teractions between the three fibers, producing drastically changing local 
stress fields in the matrix phase, hence the plastic flow and plastic field 
localization. Comparison of the transverse shear stress σ12 profiles 
generated by the FFH and HHM approaches is presented in Fig. 16, 
where a macroscopic strain of 2ε12 = 2.5% is applied. Similar comments 
in terms of microstructure-induced stress fields can be applied for this 
loading condition. 

5. Summary and conclusions

The present paper introduces a novel hierarchical homogenization
theory for predicting the thus-far little-explored inelastic response of 
fuzzy fiber composites. This new theory combines the elements of the 
previously developed classical CCA-TFA, as well as the AEH homoge
nization theories for periodic fuzzy fiber composites accounting for in
elastic mechanisms. Specifically, an equivalent fiber is created by the 
classical CCA-TFA analysis, which is utilized to substitute the nano
composite interphase and the main fiber in the full-field homogeniza
tion. The significance of the new hybrid homogenization approach is the 
elimination of the tedious interphase mesh discretizations and the 
related refinement in the classical full-field homogenization along with 
capturing the fiber-fiber interaction neglected in the classical CCA-TFA 
approach. 

Results generated from the new approach are compared extensively 
with the classical CCA-TFA and the full-filed analysis for single and 
multi-inclusion periodic fuzzy fiber arrays under various loading con
ditions. It is demonstrated that the classical CCA-TFA approach signifi
cantly overshoots the post-yielding stress-strain response for transverse 

tensile, transverse shear, and axial shear loadings. In contrast, the hybrid 
homogenization technique is capable of accurately capturing the ho
mogenized inelastic stress-strain response of fuzzy fiber composites 
obtained by the reference classical full-field homogenization. The pre
sent work provides a path towards efficiently identifying the inelastic 
response of fuzzy fiber composites in parametric studies for design 
nanocomposite interphase with improved performance, an area that 
deserves attention and requires further investigation due to the limited 
knowledge. 
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