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A B S T R A C T

Estimation of damping can be of great importance for turbomachines, where vibration based instabilities like
flutter occur. The paper discusses a numerical method to predict the homogenized viscoelastic behavior of 3D
woven composites, used in fan blades, from elementary constituent behavior. Yarn and weave microstructures
are considered in a two scale homogenization. The matrix and fibers are considered homogeneous with linear
viscoelastic and elastic behavior respectively. Temperature and frequency dependence of matrix properties are
characterized by complex moduli. Confrontation of numerical predictions with modal damping of a modified
Oberst experiment, for a temperature range of �40 to 120 °C, gives good results in terms of absolute value and
trends. The homogenization is formulated using matrix operations, which enables the simple use of model
reduction techniques for parametric studies on temperature and leads to energy fraction analyses useful to gain
understanding of how different components of the constitutive laws contribute to damping and change with
temperature. Finally, since weaving patterns have a scale of a few centimeters, that is not small compared
to gradients found in the experiment, exact solutions for responses to regular volume loads are used to char-
acterize the validity of the scale separation hypothesis as a function of wavelength.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Viscoelastic homogenization using complex modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1. Elastic homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2. Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3. Extension to viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4. Viscoelastic benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5. Application to 3D woven composite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Validation of scale separation hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1. Theoretical development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Verification at micro and meso scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4. Experimental identification of damping properties of 3D woven composites in temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2. Pretest analysis of the FE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3. Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CRediT authorship contribution statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2021.114375&domain=pdf


1. Introduction

Use of composites, after having increased in aircraft structure for
the past decades, is now making its way into engines as well. For exam-
ple, the LEAP composite fan blade makes use of a 3D woven compos-
ites for their design flexibility and high mechanical performance,
especially for impact. But building less fuel consuming engines, that
operate in high‐performance ranges, also implies the need to increase
margins for the flutter phenomenon, a structural dynamic instability,
by controlling modal damping. Predicting composite damping from
constituent properties is thus a critical step.

Review papers [1–3] analyze damping properties of composite
materials, by experimental characterization or finite element computa-
tion, in order to identify the mechanisms and take them into account
in the design and analysis stages. The viscoelastic nature of the matrix,
the interphase, the damage, the weaving ondulation, the geometry of
the mesostructure, the orientation, the nature of the reinforcement, the
hybridization with highly damped materials or systems are listed as
sources of dissipation. But, outside non desirable damage, these corre-
spond to a combination of viscoelastic dissipation and geometric
effects of the microstructure that enhance this dissipation. The paper
will thus focus on viscoelastic homogenization, using illustrations for
the case of 3D woven composites whose matrix and fibers are consid-
ered homogeneous with respectively linear viscoelastic and elastic
behavior.

The will to increase the damping has long been a research subject
in composites materials. At the microscale, recent studies show that
the shape of the inclusion and the properties of interphase also has
an impact on the stiffness and damping of the homogenized cell [4].
At the mesoscale, [5] shows that the mesoscale architecture of the tex-
tile composite has a strong influence on its damping for the frequen-
cies that were studied.

The charaterization of the dynamic mechanical properties of a vis-
coelastic material corresponds to the measurement of a complex mod-
ulus [6,7] that dependent on frequency and temperature. Complex
modulus can also be obtained through time domain relaxation tests,
leading to Prony series representations which are equivalent to the
generalized Maxwell frequency domain model [8,9]. Numerically,
using this complex modulus is also referred to as exploiting the corre-
spondence principle between linear elasticity and linear
viscoelasticity.

The first homogenization approaches considering linear viscoelas-
tic materials were developed in the 1960s [10,11]. More recently for
3D woven composites, homogeneization was performed in time by
[12,13] to study the effect of manufacturing residual stress on shapes
and [14] to study the influence of temperature.

Homogenization estimate the effective macroscopic properties of a
medium seen as heterogeneous at a low scale. The main variations
[15] are associated with the choice of boundary conditions applied
to the representative volume element (RVE). The nature of 3D woven
composite requires a multiscale approach to obtain yarn then weave
properties illustrated in Fig. 1. Many reviews summarizing methods
for the multiscale analysis of composites can be found [16–19] with
broad categories being analytical, semi‐analytical or computational
homogenization techniques like self consistent scheme, variational for-

mulation, transformation fields analysis or finite element (FE)
approaches. This paper focuses on a purely numerical method with a
multiscale finite element model.

Homogenization assumes a scale separation between the wave-
length, the RVE size and the size of heterogeneities inside the RVE.
The study [20] for instance details the impact of RVE choices on
homogenization results. In the considered case the weaving pattern
length can be significant compared to blade dimensions, so that the
scale separation assumption is not necessarily verified. Introducing
generalized continuous media of the Cosserat type, or second gradient
[21,22] in order to better account for the strong gradients at micro-
scopic level is a known but costly option. So that the focus will be
on determining the scale separation validity.

Section 2 addresses homogenization. The classic objective of
obtaining equal work for homogeneous and heterogeneous media is
developed using matrix formulations that are adapted for optimized
implementation of parametric studies in a finite element setting. For
the viscoelastic case, the dependence of properties on temperature
and frequency is shown to correspond to the weighted sum of real
matrices with coefficients corresponding to the complex components
of constitutive material stiffness matrix depending on temperature
and frequency. Equality of stored and dissipated energy is then used
to obtain homogenized properties using simple matrix expressions.
Illustrations for the 3D interlock woven composite shown in Fig. 1,
consider evolution of storage moduli and loss factors with temperature
and demonstrate the notable impact of matrix property changes with
temperature, relative moduli of matrix and fibers and geometry of
the microstructure.

Weave patterns of 3D composites can be quite large and the exper-
iment detailed in Section 4 will be shown to have gradient lengths that
do not verify the scale separation hypothesis. Thus a methodology is
developed in Section 3 to quantify the accuracy of homogenized prop-
erties by comparing stored and dissipated energies for regular volume
loads of arbitrary wavelength. Using periodic solutions [23,24], these
can be evaluated exactly assuming a geometrically periodic medium,
meaning a cell repeated indefinitely in space.

Finally, to make sure that the proposed viscoelastic homogeniza-
tion is valid, predictions are confronted with test results in Section 4.
Measuring low damping at low frequencies on stiff samples is a chal-
lenge so that a modified Oberst setup is considered. After discussing
the experimental difficulties, the FEM model of the experiment is ana-
lyzed to gain an understanding of the expected damping contributions
and spatial distribution of dissipation. The final comparison of the pre-
dicted modal damping of two bench modes gives very good results in
terms of absolute value and trends of evolution with temperature.

All computations and post‐processing were performed in Structural
Dynamics Toolbox (SDT) [25].

2. Viscoelastic homogenization using complex modulus

The homogenization approaches developed in this paper use stan-
dard techniques expressed with a matrix formulation adapted for
FEM computation.

2.1. Elastic homogenization

The classical approach for homogenization is to use the work equal-
ity between the homogeneous and heterogeneous media, also known
as the Hill Mandel Lemma [26,27], where the strain energy computed
for the heterogeneous medium, noted with the h exponent, is equal to
the energy computed at the macroscopic level or homogeneous level
noted with m,Z
V

σmf gT ɛmf gdV ¼
Z
V

σh
� �T

εh
� �

dV ð1Þ

Fig. 1. Finite element models for micro (yarn) and meso (weave) scales.



homogeneous fields umk , with k indicating the load case, applied on
the faces of the volume are

½ umk
� �� ¼

um1 k

um2 k

um3 k

8><
>:
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>;

2
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3
75 ¼

x 0 0 0 z=2 y=2
0 y 0 z=2 0 x=2
0 0 z y=2 x=2 0

2
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3
75 ð2Þ

where the subscript i∈ ½1;2;3� corresponds to the direction of displace-
ment along each of the coordinates axis x; y and z respectively. These
displacement fields correspond to the integration of a unit infinitesimal
strain

εmk
� �� � ¼ 1

2
ðr umk
� �þrT umk

� �Þ� �

¼ ½I� ¼
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8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

2
666666664

3
777777775
¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
666666664

3
777777775

ð3Þ

Thus, for an homogeneous macroscopic medium, since the strain is
given by εmk

� � ¼ Ikf g, the stress σm
k

� �
corresponding to each loading is

found using the generalized Hooke’s law or using Voigt notation as

σm
k

� � ¼ Cm½ � εmk
� � ð4Þ

The work of the homogeneous medium is written

1
Vj j
Z
V

εmk
� �T

σm
l

� �
dV ¼ Ikf gT σml

� � ¼ Cm
kl ð5Þ

with Vj j the total volume of the RVE and Cm
kl corresponding to the klth

component of the matrix Cm½ �, the matrix representation of the material
stiffness tensor.

The equivalence is obtained by computing the heterogeneous solu-
tion with displacement Eq. (2) imposed on volume faces and enforcing
equality of work between the homogeneous and heterogeneous solu-
tions for the fields umk

� ���
nodes which corresponds to the field umk

� �
dis-

cretized to each node of the finite element model.
Other boundary conditions such as periodic boundary condition

(PBC) or a homogeneous mixed field controlled in displacement
(MUBC) detailed in [28] also lead to a direct computation of the mate-
rial stiffness matrix [29]. Static uniform boundary condition (SUBC),
apply a stress, which leads to the compliance matrix that is inverted
to obtain the stiffness matrix.

In a finite element setting, the displacement field uf g is described
by the kinematic degree of freedom (DOF) field called qf g. For the
heterogeneous solution, the known displacement fields Eq. (2) are only
enforced at the model nodes belonging to the RVE boundaries denoted
with the I index

qhI k
� � ¼ qmI k

� � ¼ umk
� ���

nodes ð6Þ
The static equilibrium in absence of volume forces is defined by the

following matrix system

Kh
II Kh

IC

Kh
CI Kh

CC

" #
qhI
qhC

( )
¼ RI

0

	 

ð7Þ

where RI corresponding to reaction forces at RVE boundaries. Degrees
of freedom are divided into complementary (interior) and interface
groups denoted respectively with C and I indices. A static solution is
found for the complementary degrees of freedom by solving

qhC
� � ¼ � Kh

CC

� ��1
Kh

CI

� �
qhI
� � ð8Þ

which leads to the approximation of a statically admissible stress state.
The link between strain and displacement is defined using the clas-

sical notation εhk
� � ¼ B½ � qhk

� �
[30], with B½ � the differential operator

matrix applied to the shape functions and qhk
� �

the vectors fields of
degrees of freedom associated with the heterogeneous medium. The
stresses are only known at integration points and the heterogeneous
work Eq. (5) can be rewritten asR

V εhk
� �T

σh
l

� �
≈∑

g
εhk
� �T Ch� �

εhl
� �

wgJg

¼ qhk
� �T ∑

g
B½ �T Ch� �

B½ �wgJg

!
qhl
� �

¼ qhk
� �T Kh� �

qhl
� �

ð9Þ

with Jg the determinant of the jacobian matrix associated with each
quadrature point g;wg the quadrature weight and Kh� �

the linear elastic
stiffness matrix of the heterogeneous medium. The application of Eq.
(1) gives

Cm½ �6�6 ¼
qh
� �T

6�N Kh� �
N�N qh
� �

N�6

Vj j ð10Þ

with N the number of degrees of freedom of the system.
While, this expression does not change the classical result, where

work can be computed at integration point level asking the FEM soft-
ware to extract strain and stress fields [15], the matrix expression
shown here notably simplifies implementation and extension to para-
metric reduced models [31] which will be used to reduce the cost of
temperature and frequency dependence studies. Restricting the basis
learning phase to computations at two temperatures, as in the classical
multimodel reduction introduced in [31], is not detailed but used in
this paper. At the mesoscale, a computation at one temperature for a
3D woven composites mesostructure of around 1.5 millions of DOF
lasts 6 000s. Reduction lasts 13 000s and computation at 100 temper-
atures 28 000s, or a factor 15 speedup.

2.2. Benchmark

The implementation has been benchmarked against available solu-
tions found in literature [28]. In this subsection, the fiber volume is
fixed to 0.47 (see Fig. 2). A tetrahedral conform mesh with quadratic
elements is used and isotropic materials are considered. The fiber
(boron) and the matrix (aluminum) are respectively denoted with a f
and m index and have the following properties Ef ¼ 379:3 GPa,
νf ¼ 0:1 and Em ¼ 68:3 GPa, νm ¼ 0:3. Fiber axis is the direction 1.

The solution under Abaqus software is performed using the classi-
cal post‐treatment method with the computation of the mean stress/
strain whereas with SDT, effective properties are calculated with Eq.
(10). Table 1 presents the estimated Engineering Constants, which val-
idates the implementation.

Fig. 2. RVE meshed with Abaqus with tetrahedral elements.

with σ and ε respectively the stress and strain, and V the domain of the 
RVE.

Limiting the details to the Kinematic Uniform Boundary Conditions 
(KUBC) approach, explained for example in [15], a displacement field 
is imposed at all poi ts �belonging to the boundaries of a RVE. The six



2.3. Extension to viscoelasticity

In one dimension, linear viscoelasticity of a non‐aging material can
use time domain constitutive relations using the Boltzmann integrals
[33]

σðtÞ ¼
Z t

0
Eðt � τÞ dεðτÞ

dτ
dτ ð11Þ

where EðtÞ is an axial relaxation modulus. Alternatively, the frequency
domain model considers harmonic excitation εðtÞ ¼ ReðεðωÞeiωtÞ at
angular frequency ω, as typically used for sine testing in a Dynamic
Mechanical Analysis (DMA), leading to harmonic stress and the ratio
of first harmonics gives the complex modulus

σðωÞ ¼ EðωÞεðωÞ: ð12Þ
The two representations can be shown to be equivalent using the

Laplace‐Carson transform [34]. The linear stress/strain relation Eq.
(12) is characterized by a frequency and temperature dependent com-
plex modulus [6]
Eðω;TÞ ¼ E0 þ iE00 ¼ E0ð1þ iηÞ ð13Þ
where E0 is the storage modulus and E00 the loss (dissipative) modulus
and η the loss factor given by η ¼ E00=E0.

To describe the effect of temperature, the frequency/temperature
superposition principle [6,7] is assumed to be sufficient here, so that
one describes the modulus as a function of the reduced frequency
ωR ¼ αðTÞω with αðTÞ a temperature dependent shift factor. In 3D,
for an anisotropic viscoelastic material, each term of the constitutive
matrix C½ � is assumed complex and frequency dependent thus general-
izing the scalar expression Eq. (12)

σðωÞf g ¼ CðωÞ½ � εðωÞf g ð14Þ
with
Cij ¼ C0

ij þ iC00
ij ¼ C0

ijð1þ iηijÞ: ð15Þ
Assuming a loss factor associated to each stiffness components is

not usual, and the only way to implement it in Abaqus is to develop
a Umat subroutine. But this is consistent with the assumption that
stress and strain are related by a linear time invariant multiple input/-
multiple output transfer function.

Simplified forms exist in the presence of material symmetries. In
the special case of isotropic material, Hooke’s law can be expressed as

C½ � ¼

2μþ λ λ λ 0 0 0
2μþ λ λ 0 0 0

2μþ λ 0 0 0
μ 0 0

μ 0
symm: μ

2
666666664

3
777777775

¼ μ

2 0 0 0 0 0
2 0 0 0 0

2 0 0 0
1 0 0

1 0
symm: 1

2
666666664

3
777777775
þ λ

1 1 1 0 0 0
1 1 0 0 0

1 0 0 0
0 0 0

0 0
symm: 0

2
666666664

3
777777775
ð16Þ

which uses the two complex and frequency/temperature dependent
Lamé parameters λðω;TÞ and μðω;TÞ and two constant real matrices.

Using engineering constants λ ¼ Eν
ð1þνÞð1�2νÞ and μ ¼ E

2ð1þνÞ, the non‐

linear dependence on the Poisson’s ratio ν makes things more difficult
and the classical approach is to only consider a scalar Eðω;TÞ with ν
real and constant leading to

C½ � ¼ E Cu½ �

¼ E

Aþ 2B A A 0 0 0
Aþ 2B A 0 0 0

Aþ 2B 0 0 0
B 0 0

B 0
symm: B

2
666666664

3
777777775

ð17Þ

where A ¼ ν
ð1þνÞð1�2νÞ and B ¼ 1

2ð1þνÞ are non‐linear functions of ν and thus

often considered constant. Some experimental studies [35–37] consider
a dependence of ν on frequency and temperature and thus a ratio of
transfers. This is not as direct as the assumption made here of a multi-
variable transfer with frequency and temperature dependent coeffi-
cients. The choice of a E; ν parametrization is thus not practical if ν is
not assumed real and constant.

For any anisotropic materials, the constitutive law can be expressed
as a weighted sum

C½ � ¼ C11

1 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
symm: 0

2
666666664

3
777777775
þ . . .þ C66

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
symm: 1

2
666666664

3
777777775

¼ ∑
ij
Cij Cu

ij

h i
ð18Þ

where the complex Cij is the ijth component of the stiffness matrix tensor

and matrix Cu
ij

h i
is a constant real matrix with the only nonzero compo-

nents having the same ij indices as the coefficient.
The interest of this decomposition of the constitutive law is that it

directly translates into the expression of the finite element complex
stiffness matrix K½ � ¼ KðC0Þ½ � þ i KðC00Þ½ � ¼ K 0½ � þ i K00½ � as a linear combi-
nation with frequency and temperature dependent coefficient Cij of
constant real matrices associated with unit constitutive contribution

Cu
ij

h i
Kðω;TÞ½ � ¼ ∑

ij
Cijðω;TÞ KðCu

ijÞ
h i

ð19Þ

For viscoelastic homogenization, the work equality is still used. The
meaning is however slightly different since in a harmonic forced
response, one distinguishes the elastic and dissipated work over a
cycle.

The workWelas of elastic forces can be expressed as a function of the
storage moduli which are the real part of Cm. It corresponds to the inte-
gral over the volume of elastic forces at each material point and can be
written as

Engineering Constants Abaqus SDT Hello [28] VAMUSH [32]

E1 (GPa) 215.33 215.33 215.33 215.3
E2 = E3 (GPa) 143.98 143.98 143.96 144.1

G12 = G13 (GPa) 54.38 54.38 54.38 54.39
G23 (GPa) 45.83 45.83 45.82 45.92

ν12=ν13 0.195 0.195 0.195 0.195
ν23 0.255 0.255 0.255 0.255

Table 1
Effective elastic properties for Boron/Aluminum composite (Vf = 0.47).



2Welasðqhk; qhl Þ ¼ qhk
� �H

K0½ � qhl
� � ð20Þ

where H means Hermitian (complex conjugate transpose). The dissi-
pated work is related to the work of viscous forces within the volume
over a cycle. It can be expressed as a function of the imaginary part
of Cm as

Wdissðqhk; qhl Þ ¼ π qhk
� �H

K00½ � qhl
� � ð21Þ

The heterogeneous solution given by Eq. (7) is now complex since
Kh is complex, and the homogenized properties are simply obtained as

Cm½ �6�6 ¼
qh
� �H K0½ � þ i K00½ �ð Þ qh

� �
Vj j ð22Þ

From the complex constitutive law Cm½ �, getting the complex engi-
neering constants is not obvious since as mentioned in earlier, the
dependence on the Poisson’s ratio are non‐linear, so that conserving
the elasticity relations as in [38,39] may not be a correct solution. Fur-
thermore, the use of SUBC leads to the complex compliance matrix and
an inverse operation, that may be source of error, is needed in order to
get the stiffness matrix [40].

2.4. Viscoelastic benchmark

Loss factor computations are here compared to the results of Chan-
dra [41] and Rezaei [42]. The RVE considered is a cylindrical inclu-
sion in a rectangular cuboid of dimension 10� 10� 2 mm. The fibre
and the matrix are considered isotropic viscoelastic with the following
properties Ef = 72.4 GPa, Gf = 30.2 GPa, νf = 0.2, ηf = 0.18% and
Em = 2.76 GPa, Gm = 1.02 GPa, νm = 0.35, ηm = 1.5%. The boundary
conditions used are PBC as in the publication of Rezaei [42].

For a volume fiber of 30%, the results shown in Table 2 have a max-
imum numerical difference of 7% in the axial direction with Rezaei
and are very close to those of Chandra.

2.5. Application to 3D woven composite

At the yarn level (microscopic), which corresponds to the first
scale, isotropic transverse elastic fiber and isotropic viscoelastic matrix
are considered. A RVE consisting in an hexagonal arrangement (fiber
packing) is used (see Fig. 3). According to [43], hexagonal arrayed
fibers provide effective properties very close to randomly distributed
fibers.

At the microscale, a conform mesh is used. It is generated by a 2D
mesh cut by a level‐set and then extruded in direction 3 (z) which cor-
responds to the axis fiber. The number of elements in this direction is
fixed to 2 and has no influence on the homogenization.

The convergence study performed on this conform mesh shows that
a refined mesh has no effect on the final result if the volume fraction of
each constituent is constant. Indeed, for homogenization computation,
the main influential factor is the accuracy on geometry. The mesh
shown in Fig. 3 is used to perform the homogenization of the yarn
using linear elements. In order to have accurate results, the volume
fraction of each component is checked. The fiber volume fraction is
set to 79% in the yarn.

A DMA is used to characterize the matrix behavior. For a tempera-
ture in the ½�40;120� �C range, and a frequency in the ½50;300� Hz
range, which correspond to the range of interest, Fig. 4 illustrates that
the matrix loss factor has important variation. The jerky effect
observed is assumed to be linked to test machine stabilization prob-
lems for stiff and lightly damped material. However, the results are
repeatable.

The area of interest is located on the ω transition just before the β
transition [44,45], that is why the loss factor decreases from �40 �C to
0 �C (β transition), then increases to 100 �C and slightly decreases to
120 �C (ω transition). These transitions are known to appear for some
epoxy/amine networks, and are mainly due to local movements at the
molecular scale.

In order to get a continuous curve to model the matrix behavior,
experimental data are fitted in Fig. 5 with a 6th order polynomial.

Table 2
Comparison of loss factors for a cylindrical inclusion for a volume fiber of 30%.

VF 30%

SDT Chandra [41] Rezaei [42]

η11 ð%Þ 0.30 0.31 0.28
η22 ð%Þ 1.49 1.48 1.43
η12 ð%Þ 1.49 1.48 1.46
η23 ð%Þ 1.48 1.47 1.43

Fig. 3. Conform mesh for microscale.

Fig. 4. Behavior of the matrix.

Fig. 5. Fit of matrix loss factor η in the range of interest.



For a fixed frequency of 80 Hz, the fit of the matrix loss factor has a
Pearson correlation coefficient R2 ¼ 0:87.

Fig. 6 shows the results in longitudinal (3) and the transverse (1)
direction of the homogenization at the microscale obtained with peri-
odic boundary conditions. In the longitudinal direction, the modulus
does not depend on the matrix behavior and the damping is very
low. The matrix behavior shown as a dashed line with a constant scale
factor indicates that the modulus variation is much larger in the matrix
than in the homogenized material, which is consistent with a very low
damping.

In the transverse direction, the modulus is notably more sensitive
and as expected this translates in notably higher damping. The loss fac-
tor evolution is similar to that of the matrix but the ratio is not con-

stant. This is an indication of a microstructure effect, with the strain
energy ratio in different constituents changing with temperature.

At the mesoscale, a voxel mesh shown in Fig. 1 with linear elements
is used. For voxel meshes, geometric accuracy, which controls homog-
enized properties, depends on voxel size. Here the retained size is
100 μm, which corresponds to around 5 elements in the minor axis
of the tow and was found to be a reasonable trade‐off between cost
and accuracy.

After the homogenization performed at the microscale, an isotropic
transverse viscoelastic behavior is estimated for the yarns. The result is
used at the mesoscale and combined with matrix volumes between
yarns, in order to compute the homogenized viscoelastic properties
of a 3D woven composite presented in Fig. 7).

At the mesoscale, the modulus is notably influenced by matrix
properties. The warp direction is direction 1, the weft direction 2
and weft/warp shear is component 55 of the constitutive law. The
matrix influence is more important in the shear direction because
the modulus is lower and more sensitive to temperature and this trans-
lates into a higher loss factor. As for the microscale, the first order
influence on the loss factor is the trend on the matrix. But the ratio
between matrix and macroscale modulus is not perfectly constant,
which indicates that energy contributions of the various constituents
evolve slightly with the drop of matrix modulus at higher
temperatures.

3. Validation of scale separation hypothesis

The next question is the validation of the scale separation assump-
tion. Since the weaving pattern has a scale of a few centimeters that is
close to characteristic dimensions of the structures thickness and char-
acteristic stress gradient lengths, the assumption is not obvious. This
will be pointed out during the experimental validation performed in
Section 4.

3.1. Theoretical development

To determine the validity domain of the homogenized model, it is
necessary to obtain an exact solution without the RVE edge effects that
are present in the considered homogenization methods. For a geomet-
rically periodic medium, which means a cell repeated indefinitely in
space, an exact solution without discontinuity on the cell edges can
be computed for all wavelengths using a model of size equal to two
times the number DOF of the repeated cell [23,24]. Varying the wave-
length of such exact solutions independently of the RVE dimension,
gives a way to test the homogenized model validity as a function of
wavelength and thus control the scale separation assumption.

A trivial approach would consider an arbitrary propagating wave in
the homogeneous medium

Fig. 6. Yarn storage modulus and loss factor at 80 Hz as a function of
temperature for the longitudinal C33 and transverse C11 and its associated loss
factor at micro-scale.

Fig. 7. 3D woven composite storage modulus C11 and C55 and its associated
loss factor as function of temperature. Fig. 8. Wavelength propagation in z direction at microscale.
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with j index corresponding to the jth displacement direction,
Xf g ¼ x; y; zf gT the space position of a point inside the RVE and

κf g ¼ kx; ky ; kz
� �T representing wave number vector characterizing

the propagation direction and of modulus giving the wavelength λ by

κk k ¼ 2π
λ

ð24Þ

Fig. 8 illustrates a shear wave with direction x displacement prop-
agating in direction z (that is with kx ¼ ky ¼ 0). The solid surface is the
cell model and the wire frame illustrates restitution over multiple cells
of a period. A compression wave would be motion in direction z prop-
agating in direction z. It is however useful to note that propagation in
oblique directions could also be considered.

Enforcing displacement in the heterogeneous medium however
does not allow for the fluctuations expected at small scales and, as
expected, the resulting strain energy is quite different from that of
the homogeneous medium. The proposed alternative is to apply a peri-
odic volume loading.

A first choice is to consider a propagating volume load equivalent

to the shape of the displacement field as f vf g≡ udj
n o

which in a FEM

model corresponds to the discretized load

FvðκÞf g ¼ 1
ρm

MmðρmÞ½ � qdðκÞj
n o

ð25Þ

where values at mesh degrees of freedom are obtained as analytic value

at nodes qdðkz;XÞj
n oh i

¼ udðkz;XÞj
n oh i

jnodes
; ρm is the density of the

homogenized medium and MmðρmÞ½ � is the homogenized mass matrix
associated.

Note that the above expression, is independent of ρm, and gives a
field in length4 units and a unit scaling is used to obtain Newtons.

A second choice is to consider the volume load in equilibrium with
a chosen displacement wave propagating in the homogeneous med-

ium, in other words f vðκ;XÞ ¼ div Cm½ � εdðκ;XÞj
n o� �

, which is more

easily computed using

FvðκÞj
n o

¼ Km½ � qdðκÞj
n o

ð26Þ

Working in a quasi‐static regime, the inertia terms are neglected.

Thus, given a choice of FvðκÞj
n o

, the static periodic response qðκÞj
n o

is computed [23,24].
As in Eqs. (20) and (21) respectively, the stored energy is character-

ized by qj
n o 2

K0½ �
¼ qj
n oH

K 0½ � qj
n o

and the dissipated energy by

qj
n o 2

K00½ �
¼ qj
n oH

K 00½ � qj
n o

. To check the validity of the homogenized

properties, two indexes are defined, one for the stored energy

Eh
elas

Em
elas

¼
qhj
n o 2

K0h½ �
qmj
n o 2

K0m½ �

ð27Þ

and one for the dissipated energy

Eh
diss

Em
diss

¼
qhj
n o 2

K00h½ �
qmj
n o 2

K00m½ �

: ð28Þ

Both should tend to one when the homogenized model is valid.
Indeed, for high wave length, which means without stress gradient
within the RVE, the energies of the two media are equal and scale sep-
aration hypothesis is verified.

An objective limit can be given by setting a threshold on previous
indexes in order to have respectively information on the homogenized
storage modulus and loss factor.

3.2. Verification at micro and meso scale

The microscale corresponds to the fiber scale, here, long continu-
ous fibers composites are considered, therefore due to the yarn weav-
ing the gradient of solicitation is expected to appear more in the
longitudinal direction of the yarn than in the transverse one. To be
confident in the homogenized value computed, the verification is per-
formed by propagating a wave in the fiber direction which correspond
to the direction z as shown Fig. 8. Indeed, it is the most disadvanta-
geous direction of the RVE because it is the smallest with 1 μm, fur-
thermore, for long fiber composites a RVE with this dimension
doesn’t represent well the fiber inside the yarn; whereas in the trans-
verse direction fiber are fully represented.

Fig. 9 shows that compression (longitudinal, direction 3) waves
have less than 2% elastic energy error for wavelengths above
λz ¼ 40 μm. For shear waves (direction 1 and 2), the curves are identi-
cal and the 2% error only occurs below λz ¼ 200 μm. Convergence in
the axial direction is thus faster and the most penalizing wave is shear.
For the dissipated energy, convergence is slower. The wave nature
does not seem to have influence on the range of validity. Indeed, for
shear and compression waves, with the same 2% error margin, the
homogenized loss factor is valid for λz ¼ 1000 μm. Moreover, the elas-
tic and the dissipated energy inside the heterogeneous is overesti-
mated for compression waves whereas it is the opposite for
transverse waves. Finally, one can note that higher material contrast
leads to slower convergence. Indeed, at �40 �C, the matrix is stiffer
than at 120 �C, so its properties are closer those of the fiber.

Fig. 9. Ratio between elastic (up) and dissipated (down) energy of the
heterogeneous and homogeneous model for a yarn with a volume fiber of
75%.



tions were used to estimate the damping added by such imperfect
boundary conditions. Several investigations were made on the screw
connection and power of the signal excitation in order to obtain a
trade‐off between signal to noise ratio and added friction damping.

To avoid additional dissipation, the bending support is welded on a
large steel block mounted on metallic springs. Permanently glued
piezoelectric patches are used for both excitation and sensing allowing
precise tracking of vibration properties when placing the bench in an
environmental chamber. Finally, to estimate remaining bench induced
damping, metallic specimens were tested both on the bench and in
free‐free conditions.

4.2. Pretest analysis of the FE model

The finite element model of the bench has been computed using
SDT. Fig. 11 shows the first two modes which are bending modes.

In order to show the energy contribution of each component of the
constitutive law, a simultaneous decomposition of the real and imagi-
nary parts of the constitutive law is to obtain a series of 6 rank one
energy contributions

C ¼ ∑
6

i¼1
Ci ¼ ∑

6

i¼1
εif gσi εif gH ð29Þ

with principal values σi being complex, and left and right singular vec-
tors εif g being equal and real because the matrix is symmetric. Naming
of the contributions is based on the largest components of εi. Thus Cl is
associated with the εif g whose largest component is in direction 11;Cti

with i∈ ½1;2� is related to the component with 22 and 33 term and Cxz is
the shear component C55 in the Eq. (18).

Fig. 12 shows the elastic and dissipated energy from the longitudi-
nal, transverse and shear components.

Fig. 10. Test bench and associated FE model.

Fig. 11. Shape of the two first bending modes.

Fig. 12. Strain and dissipated energy fraction at �40 �C for mode 1 and 2.

For a wave propagation in the transverse direction (1 or 2), and 
loading given by Eq. (25), the convergence is reached for wavelength 
above 30 μm, implying that the homogenization is valid for any type of 
waves.

These observations show that the viscoelastic homogenization of 
the yarn is valid if the wavelength of the solicitation is higher than 
1 mm in the targeted temperature range. Therefore, homogenized yarn 
properties can be used with confidence to perform mesoscale 
computations.

Similar computations will be shown in Section 4 for the mesoscale, 
since it can then be used to analyze validity of a finite model. Overall, 
the same trends as the microscale can be observed regarding the effect 
of the temperature, overestimation of energy in the heterogeneous 
medium for compression waves and slower convergence of dissipated 
energy.

4. Experimental identification of damping properties of 3D woven
composites in temperature

To characterize modal damping of 3D woven composites specimens 
as a function of temperature, a modified Oberst test is considered. 
Focus is placed on the two first bending modes. The finite element 
model of this test is analyzed and shown to have imperfect scale sep-
aration, which may explain part of the small discrepancies between 
test and prediction.

4.1. Experimental setup

The validation experiment used here, and illustrated in Fig. 10, 
seeks to use relatively short 3D woven composite samples to character-
ize damping at low frequencies (a point needed below 100 Hz because 
it corresponds to the first bending mode of fan blades) and in the
�40 �C to 120 �C temperature range. The 200 mm sample length con-
straint answers the need to cut samples with repetitions and multiple
orientations from a single test panel. But considering that a sufficient 
number of plies is needed to be representative of actual weaving, the 
resulting thickness varies from 4 to 12 mm.

Characterizing damping at low frequencies requires both a clamped 
free boundary condition and the addition of a significant top mass 
shown in Fig. 10. It is well known that clamping, tends to induce fric-
tion damping. Significant efforts were developed to minimize these 
effects. Thus a small contact surface was used and significant torque 
was applied to obtain high contact pressures. For thick samples, nar-
row 14 mm beams were preferred to the nominal 21 mm to obtain 
bending at lower frequencies. Finally amplitude/torque characteriza-



2ζ ¼ η ¼ ∑
ij
ηij

EðC0
ijÞ

∑ijEðC0
ijÞ

ð30Þ

where EC0
ij
is the elastic energy associated with component C0

ij of the

constitutive law and ηCij
is the associated loss factor.

The dissipated energy computations, and the measured damping
ratio, give a global quantification of damping. Visualizing where this
energy gets dissipated is also important. Fig. 13 shows that the stress
distribution in the sample for each bending modes differs for each con-
stitutive components.

For the Cxx component, the distribution is for both modes well dis-
tributed along all the test specimen and a wavelength of 150 mm can
be estimated. The length of the yellow stress concentration zone is
26 mm for the first mode and 40 mm for the second. For the Cxz, com-
ponent, the first mode stress is concentrated near jaws with a zone of
10 mm; while the second mode shows concentrations in a 10 mm area
at the top and 6 mm area at the bottom. These zones are smaller than
the RVE size, so that the scale separation assumption is not obviously
verified.

Fig. 14, uses the criteria introduced in Section 3, but focuses on x
propagation at small wavelength. The plot colors correspond to those
used in Fig. 12.

For Cxx component, which has the highest contribution according
to Fig. 12, one looks for x wave propagating in the x direction and

Fig. 13. Strain energy distribution for the two first bending modes at �40 �C
regarding the contribution of the component Cxx and Cxz .

Fig. 14. Ratio between stored and dissipated energy of the heterogeneous and
homogeneous model for a 3D woven composite for a direction of propagation
in direction x.

Fig. 15. Results of the simulation vs. test for mode 1.

Fig. 16. Results of the simulation vs. test for mode 2.

It appears that the percentage of elastic energy from the bench and 
the bonds is significant, but these parts are considered purely elastic 
and thus their dissipated energy is zero. For the first and the second 
mode of a test specimen of 9:52 mm thickness, the energy fraction 
from the bench represent respectively 48% and 23% at a temperature
of �40 �C thus the measurement for mode 2 should give a better char-
acterization of the composite.

The second visible aspect is that Cxz contributes much more to 
damping dissipated than to stored energy. Indeed, for mode 1 at 
57:3 Hz, the stored energy fraction for Cxz is 10%, while dissipated 
energy represents 41% of total. This results from the fact that the loss 
factor of this constitutive component is notably more damped than the 
axial component as shown in Fig. 7.

Due to confidential reasons, the properties and the weave pattern 
of the tested material are not those homogenized in Section 2.

It has been checked that the dissipated energy fraction shown in 
Fig. 12 corresponds to the weighting of elastic energy by that loss fac-
tor of each component. The modal strain energy approximation [46] 
estimating the modal damping ζ as



5. Conclusion

This paper proposed a numerical approach for viscoelastic homog-
enization. Assuming a viscoelastic behavior for the matrix, yarn and
weave scales were considered successively and confrontation with
experiment on a modified Oberst test bench was good in both absolute
value and trends in temperature.

Matrix formulations allowed the simple use of model reduction
methods leading to a procedure that is numerically efficient for tem-
perature studies.

The methodology allowed detailed analysis of trends. First, the
variations with temperature of the homogenized damping properties
are, as expected, showing the same trends than the matrix with differ-
ent transition temperatures affecting the response. But various compo-
nents, corresponding to orientation and nature of loading, of the
homogenized properties show significantly different damping levels

and sensitivity to temperature. The usual correlation between high
damping and high sensitivity to temperature is observed.

For predictions at the structure level, stored and dissipated energy
were analyzed for principal components of the constitutive law and
clearly demonstrated the presence of gradients at scales close to the
RVE size. A verification strategy for the scale separation hypothesis
using periodic computations provided an objective measure of accu-
racy for both storage moduli and loss factor. For the composite consid-
ered in the test, scale separation is improperly verified and could
results in errors of up to 20% for the loss factor. Future steps, will
be the consideration of a structural zoom near the jaw to verify the
impact of the improper scale separation even though damping predic-
tions are already quite satisfactory.

While these homogenization errors might explain some of the dif-
ferences between test and analysis, it can be noted that the predicted
damping minimum shifts of about 20 �C between matrix and compos-
ite tests and that the ω transition does not appear within the tested
temperature range of the composite. Change of the matrix chemistry
or inaccuracies in the measurement of matrix properties are plausible
causes of theses differences that will need further investigation.
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wavelengths of 150 mm as seen in Fig. 13, and finds a 2% error for the 
storage modulus shown by an arrow in Fig. 14a and a 15% error for the 
loss factor in Fig. 14b.

For the component Cxz , one considers wavelengths of 10 mm for a 
vertical wave 3 (z) propagating in the x direction, the figure show 9%
error on storage modulus and 20% on loss factor. These observations 
can explain part of the difference between the test and simulation 
results.

4.3. Comparison

For the temperature range of interest, [−40 120] °C, specimens cut 
in the warp direction (length direction) were tested and modal damp-
ing of the first two modes are shown in Figs. 15 and 16 respectively. 
The raw test result is represented by a dotted line. The dash‐dot line 
represents the retained fit and an error bar is added to represent the 
variations in the measurement and an additional bench damping.
The bench damping values, ζbench ¼ 0:18% for mode 1 and
ζbench ¼ 0:08% for mode 2, are derived from comparison of free/free
and bench test of metallic materials. Finally, the thick solid line repre-
sents the numeric results at the corresponding frequency.

The absolute level of predicted damping is very satisfactory for 
both modes. For the first mode, bench damping is actually higher than 
the composite sample contribution, but the composite values could be 
confirmed independently from full blade tests (not discussed in this 
paper).

The next feature to be predicted is the damping change with tem-
perature, which presents a minimum in both test and analysis. The 
minimum is reached at 15 and 26 °C for the test and 6 and 15 °C in 
the analysis. The analysis values are within 1 °C of the minimum 
matrix damping using temperature/frequency equivalence. An error 
of about 10 °C in the position of this minimum seems quite plausible 
considering experimental difficulties in characterizing the matrix 
using frequency/temperature equivalence and the possible modifica-
tion of its properties during the manufacturing process.

In the composite test, the ω transition (bump near 100 °C in the 
simulation) does not appear, with two plausible explanations. First 
Ref. [44] states that transition exists only for some specific epoxy 
materials and appears only in the initial state. In other words for an 
aged epoxy, this transition does not exist contrary to the β and α tran-
sitions. Second, imprecisions in the frequency/temperature equiva-
lence used to predict matrix properties may play a role, since 
characterization was not perfect as discussed earlier.

The last feature is the extent of damping variations, about 0.16%
for the first mode and 0.21% for the second for the simulation and 
respectively 0.16% and 0.18% for the experiment. These values are 
quite similar in test and analysis which is satisfying.
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