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Featured Application: This paper aims at proposing the use of a topological metrics based on the
persistent homology, enabling efficient surfaces classification, and ordering the elastodynamics
eigenmodes to construct parametric reduced bases.

Abstract: Modal analysis is widely used for addressing NVH—Noise, Vibration, and Hardness—in
automotive engineering. The so-called principal modes constitute an orthogonal basis, obtained
from the eigenvectors related to the dynamical problem. When this basis is used for expressing
the displacement field of a dynamical problem, the model equations become uncoupled. Moreover,
a reduced basis can be defined according to the eigenvalues magnitude, leading to an uncoupled
reduced model, especially appealing when solving large dynamical systems. However, engineering
looks for optimal designs and therefore it focuses on parametric designs needing the efficient solution
of parametric dynamical models. Solving parametrized eigenproblems remains a tricky issue, and,
therefore, nonintrusive approaches are privileged. In that framework, a reduced basis consisting
of the most significant eigenmodes is retained for each choice of the model parameters under
consideration. Then, one is tempted to create a parametric reduced basis, by simply expressing
the reduced basis parametrically by using an appropriate regression technique. However, an issue
remains that limits the direct application of the just referred approach, the one related to the basis
ordering. In order to order the modes before interpolating them, different techniques were proposed
in the past, being the Modal Assurance Criterion—MAC—one of the most widely used. In the
present paper, we proposed an alternative technique that, instead of operating at the eigenmodes
level, classify the modes with respect to the deformed structure shapes that the eigenmodes induce,
by invoking the so-called Topological Data Analysis—TDA—that ensures the invariance properties
that topology ensure.

Keywords: modal analysis; topological data analysis; NVH; structural dynamics

1. Introduction

Linear structural solid dynamics [1] expressed in the time domain results in the linear
system of second order ordinary differential equations

M
d2U(t)

dt2 + C
dU(t)

dt
+ KU(t) = F(t), (1)

with the mass, damping, and stiffness matrices given by M, C, and K respectively, U the
vector that contains the nodal displacements, and F the applied nodal forces. Its time
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integration can be performed by using any well experienced state of the art discretization
technique, as [2] or [3].

In what follows, we will omit the damping term that results from the fact of assum-
ing a proportional damping that expresses it as a combination of the mass and stiffness
contributions.

To enhance the integration efficiency, mass lumping is usually considered, leading
to a mass diagonal matrix. Model analysis looks also for enhancing the solution effi-
ciency by decoupling the motion equation. For that purpose, the last extracts the basis
{φ1, φ2, . . . , φN} (N being the problem size, i.e., the number of degrees of freedom) by
solving the eigenproblem (

−ω2M + K
)

φ = 0, (2)

associated with the dynamical problem expressed in the Fourier space,(
−ω2M + K

)
U = F , (3)

where U and F refer to the Fourier transform of the nodal displacement U and forces F.
The eigenmodes φi, i = 1, · · · , N define an orthogonal basis, normalized with respect

to the mass matrix, i.e.,
φT

i Mφj = δij, (4)

with δ the Kroenecker delta, and
φT

i Kφj = κiδij. (5)

With P the matrix composed by the eigenmodes, i.e., P = (φ1, · · · , φN), the matrix
form of the previous expressions reads PTMP = I and PTKP = K, with I the identity
matrix and K the diagonal matrix with entries Kii = κi.

In the modal basis U = Pϕ, the dynamical problem reads

I
d2ϕ(t)

dt2 +Kϕ(t) = PTF(t), (6)

which constitutes a system of N uncoupled second order ordinary differential equations.
The main limitation of modal analysis is the lack of validity of such basis in the case

of parametric models. In the case of parametrized dynamical systems, with the model
parameters grouped in vector µ, the model matrices will depend on those parameters, i.e.,
M(µ) and K(µ). The solution of parametric eigenproblems remains a tricky issue.

When one is not really interested in the transient regime, but much more in the forced
regime, harmonic analysis represents a valuable route as considered in our former works
where the so-called Proper Generalized Decomposition—PGD—enabled considering the
frequency as a model extra-parameter as well as addressing general (non-proportional)
damping and nonlinear dynamics, under the stringent real-time constraint, with even the
inclusion of model parameters as extra-coordinates [4–6].

However, certain applications need accurate transient responses, and in that case the
formulation and solution of the dynamical problem in the time domain is retained. Three
routes are usually considered:

1. The previously referred mass lumping that transforms the so-called consistent mass
matrix into its diagonal counterpart, facilitating an explicit integration;

2. In the context of model order reduction—MOR—, in [7], authors proposed a Proper
Orthogonal Decomposition—POD—based reduced order modeling operating in the
time domain. Ladeveze and coworkers proposed an extension of their radial approxi-
mation [8] for addressing mid-frequency dynamics, the so called TVCR (variational
theory of complex rays) [9]. In our former works, we considered a PGD formulation
for constructing a parametric transfer function [10] that allowed efficient solutions of
transient dynamics operating in the time-domain. On the other hand, the separation
of variables, at the heart of PGD [11], was extensively employed in the harmonic
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domain for solving multi-parametric dynamics, and was successfully extended to the
nonlinear case, and then combined with modal analysis [4–6].

3. Modal analysis is one the most widely used techniques for solving dynamical prob-
lems. Other than the benefits in the time integration, due to the dynamical system
decoupling, the eigenmodes benefit from a physical interpretation, of great interest
for the designer or structural analyst. However, when considering parametric models,
as is always the case during the design stage, when the material and geometry are
not totally defined, the dynamical modes depend on those parameters as previously
discussed. Having a surrogate model expressing the parametric evolution of the
eigenmodes is of great interest. Constructing those surrogate models is nowadays
quite mature, by using usual and advanced nonlinear regressions [12], the last making
use of sparsity and appropriate regularizations for operating in high-dimensional
settings, while keeping as reduced as possible the number of data (eigenproblem so-
lution), and leading to rich enough (nonlinear) regressions while avoiding overfitting.
Here, the trickiest issue is not the regression construction but the fact of ordering
the different eigenmodes involved in the modal basis for each parameter choice, in
order to create N clusters (or less in the reduced case), and putting in each one a
mode of each modal basis, such that modes in each cluster remain close (in certain
metrics). The main issue remains the metric to be used to successfully and efficiently
accomplishing such clustering. In general, such clustering is performed by operating
at the level of the eigenmodes, in the associated vector space, by using, for example,
the Modal Assurance Criterion—MAC— [13] that proceed with comparing the modes
resulting from each eigenproblem, by using the usual scalar product (modes similar
to a given one should remain quite collinear).

The present paper focuses on the techniques based on modal analysis. As just de-
scribed, usual techniques operate at the eignemodes level, defined in a vector space. When
operating in high dimensional parametric spaces, sparsely sampled, the matrices involved
in the resulting eigenproblem can vary a lot from one choice of the parameters to another,
and consequently the scalar product criterion at the basis of the MAC could fail. On
the other hand, the fact of proceeding in a vector space needs to carefully address the
expression of the different modes by considering the same frame for all the analyzed
mechanical systems.

For alleviating those difficulties, this paper proposes an alternative technique that in-
stead of operating at the eigenmodes level, classifies the modes with respect to the deformed
structures shape that the eigenmodes produce, by invoking the so-called Topological Data
Analysis—TDA— that benefits from the invariance property of topology. The present
paper does not aim at addressing the interpolation between the original and deformed
structures that could be addressed by using optimal transport, or the parametrization of
the manifold as in the parallel transport [14]. The present work aims only at addressing the
deformed structures comparison using an appropriate metric, in particular the one based
on the employment of TDA.

After the above short introduction, Section 2 addresses the problem and methodologies
employed, Section 3 reports the obtained results, and Section 4 discusses the obtained
results emphasizing the added value of the proposed approach.

2. Methods

As just indicated, the present paper aims at addressing the classification of a series of
modal basis related to the eigenmodes of a thin structure equipped with a mesh consisting
of shell elements, with displacement and rotation degrees of freedom at each node of
the mesh.

The thickness of the structural part varies, with its consequent effect on the mass and
stiffness matrices (damping is assumed proportional) and consequently on the eigenvalues
and eigenvectors, the former defining the number of modes to be retained in the reduced
basis. In the present study, the six rigid modes representing the whole structure translation
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(three modes) and rotation (three modes) will be discarded and among the remaining pairs
eigenvalue-eigenvector, the most relevant six eigenvectors (corresponding to the six highest
eigenvalues) retained in the reduced basis related to each choice of the model parameter
(the thickness).

These six modes related to each structure (related to a thickness value) define a reduced
basis that one would like render parametric. However, prior to constructing a regression
able to define the reduced basis for each possible choice of the parameter (thickness), one
should classify the six eigenmodes of each reduced basis associated with each structure
into six clusters.

This task is compulsory to facilitate the interpolation in the parametric space and also
to attach a physical sense to those modes. One could imagine that, for a given thickness,
the most relevant deformation mode could be related to the extension, whereas, for another
choice of the thickness, the most relevant deformation mode could be the bending. In such
a case, one prefers to create a cluster grouping similar deformation modes, to evaluate how
each of them depends on the parameter from one side, and on the other to facilitate the
subsequent construction of the parametric modal reduced basis.

To preform such a clustering, we must employ an appropriate metric to compare
those modes. In general, this comparison was traditionally performed by comparing
the eigenmodes within the vector space to which they belong. In the present work, as
announced previously, we prefer applying the deformation mode to the reference (unde-
formed) structure, that is, applying the eigenmode at the nodes location in the reference
structure for obtaining the deformed structure related to each mode of each structure
configuration (thickness) and then clusterizing the resulting deformed structures with
respect to their shape.

Thus, we are employing a metric able to compare shapes, more than a metric for
comparing the vectors (eigenmodes) that produced those shapes, the last being more in-
trinsic and inheriting invariance features. Moreover, in the present case study, eigenmodes
are heterogeneous in the sense that they involve displacements and rotations, whereas
the associated deformed surfaces are purely geometrical. For that purpose, the TDA will
be applied.

In the remaining part of the present section, we will describe the available data and its
organization, and then all the concepts enabling the use of a metric applying on the shapes,
based on the employment of persistent homology, at the heart of the TDA, employed in
our former works [15,16].

2.1. Data Description

As the different analyzed structures are shells of different thicknesses, from now on,
we will describe these structures by their surfaces, each equipped of a node distribution
and the associated mesh.

In this study, we consider a collection ofM = 102 surfaces corresponding to the effect
of a given deformation mode on the reference undeformed surface, as Figure 1 shows.

Figure 1. Reference undeformed structure (left) and its deformed counterpart (right) when a given
deformation mode applied on the reference one.
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Each surface Mr, r = 1, . . . ,M is equipped with a mesh associated with N = 3636
nodes, each node described by xn ≡ (xn, yn, zn), n = 1, . . . ,N and xn ∈ R3, all them
making use of the same common coordinates frame.

The deformed structures consist of the nodes and elements resulting from the reference
one by applying the associated deformation mode. There is neither nodes’ redistribution
nor refinement in the deformed surfaces. Figure 2 depicts the reference surface and the
nodes distribution on it, from which all the deformed structures with their associated nodal
distribution and deformed mesh will result. It is important to note that the undeformed
and deformed meshes (elements connectivity) remain unchanged, facilitating the use of
the proposed metrics discussed later.

Figure 2. Reference surface (left) and nodes distribution on it (right).

TheM = 102 surfaces are associated with 17 different structures, each one of them
having a different thickness, with the consequent effect on the mass and stiffness matrices,
and therefore on the resulting eigenfrequencies and eigenmodes. For each of the 17 struc-
tures, the six most significant deformation modes (related to the six highest eigenvalues
with the rigid modes excluded) are retained. As mentioned, by applying this 17× 6 de-
formation modes to the original undeformed reference surface, theM = 102 deformed
surfaces result.

The data are structured as a table, and, within each row, the six deformation modes
related to a given structure (with its own thickness) are as follows:

M1 M2 M3 M4 M5 M6
M7 M8 M9 M10 M11 M12
. . . . . . . . . . . . . . . . . .
M97 M98 M99 M100 M101 M102

Our main aim in what follows is ordering the elements in the columns, such that each
column will represent a similar deformation behavior.

2.2. On the Surface Topology

Consider a data-set M related to a given deformed surface defined from its N nodes,
all of them in R3. We are interested in extracting the geometric features of M and how they
are distributed across the different spatial scales.

2.2.1. Geometric Features

In order to describe the geometry of the data-set M, we first identify four types of
geometrical features associated with M:

• A vertex [xm] is generated by an individual point xm ∈M;
• A segment [xm, xn] joins two vertex [xm], [xn] ∈M

[xm, xn] :=
{

x ∈ R3 : x = λxm + (1− λ)xn where 0 ≤ λ ≤ 1
}

;
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• A triangle is generated by three different vertexes [xm], [xn], [xl ] ∈ M, such that
xm − xn and xm − xl are linearly independent, and then:

[xm, xn, xl ] :=
{

x ∈ R3 : x = λmxm + λnxn + λlxl

}
,

where λm, λn and λl are the barycentric coordinates, with λm + λn + λl = 1;
• A tetrahedron is generated by four different vertices [xm], [xn], [xl ], [xp] ∈M, such

that xm − xn, xm − xl , and xm − xp are linearly independent, and then:

[xm, xn, xl , xp] :=
{

x ∈ R3 : x = λmxm + λnxn + λlxl + λpxp

}
,

where λm, λn, λl and λp are the barycentric coordinates, with λm + λn + λl + λp = 1.

The vertices represent the dimension-0 features, segments the dimension-1 features,
and triangles the dimension-2 features and tetrahedron dimension-3 features.

2.2.2. Features’ Filtration

To describe the appearance and disappearance of the features of M across different
scales, we consider the so-called Alpha Filtration. For that purpose, an interval [αmin, αmax]
is considered. It reflects the smallest features’ scale, in our case αmin = 0 (the vertex) and
the largest one αmax representing the largest distance between points of M.

The features of M considered here are elements of the Simplicial complex associated with
M, noted S(M), and constructed from the finite cells of the the Delaunay Triangulation
of the set of points in M. The elements of S(M) are the geometric features of M i.e.,
tetrahedrons, triangles, edges, and vertices.

In order to describe efficiently the elements of the Simplicial complex S(M), and map
a set of d-dimensional simplices to a set of (d− 1)-dimensional simplices, we construct a
finite sequence of sets of d-dimensional simplices, denoted by Sd(M), d = 0, 1, 2, 3.

Set S0(M) := {[xm] : xm ∈ M}; then, the simplices in Sd(M) for each d = 1, 2, 3 are
obtained from the simplices in Sd−1(M) taking into account the following two properties:

1. For every simplex in Sd(M), the (d − 1)-dimensional simplices forming it are in
Sd−1(M) (e.g., a triangle is in S2(M) and its three edges are in S1(M));

2. If two simplices in Sd(M) have a common element σ, then there exists 0 ≤ l ≤ (d− 1)
such that σ ∈ Sl(M).

Given the scale values (αj)
m
j=0, the Alpha Filtration is then a non-decreasing sequence

describing the evolution of the features of the simplicial complex S(M) at each scale αj,
and computed as follows:

• First, the filtration value of each tetrahedron is computed as the circumradius of the
tetrahedron if its circumsphere is empty, and as the minimum of the filtration values
of the triangles that are within the circumsphere otherwise.

• Similarly, the filtration value of each triangle is computed as the circumradius of the
triangle if the circumcircle is empty, and as the minimum of the filtration values of the
segments that are within the circumcircle otherwise.

• Then, the filtration value of each segment is computed as its circumradius.
• Finally, the filtration value of the vertices is set to 0.

The discrete values used for the radii are the αj, and all simplices that have a filtration
value larger than αmax are discarded.

The time complexity of the algorithm is O(n2). The choice of the Alpha Filtration was
motivated by its relatively much smaller size compared to other filtrations. A detailed
definition and implementation are provided in [17,18].
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2.2.3. Persistence Diagrams

In order to have a more exhaustive view on how the features are changing across differ-
ent scales, the appearance and disappearance of each feature within the filtration are tracked
and coded into the Homology Groups Hk(M), where k = 0, 1, 2, 3 is the homology dimension.

The elements of a Homology Group Hk(M) are classes of chains of simplices (“packets”)
σ ∈ Sk(M), that is, simplices sharing faces, edges, or vertices. It can be seen as a connected
component of the intersection of M with a k-dimensional linear subspace of R3. The use of
Homology Groups allows for performing algebraic operations over their elements.

Given a Homology Group, we can now define how to track the appearance of the
features across different scales, by defining the Homology Group at a scale α, Hα

k (M). It
represents the classes of simplices as described previously, but taken from Sα

k (M). That is,
the elements of Sk(M) with a filtration value lesser that α.

This approach is known as the Persistent Homology. It allows for quantifying the
appearance and disappearance of the features across the different scales and dimensions:

• The birth scale bγ of the feature γ at homology k

bγ = min
0≤j≤m

{αj : γ ∈ H
αj
k }

• The death scale dγ of the feature γ at homology k

dγ = max
0≤j≤m

{αj : γ ∈ H
αj
k }

The birth scale represents the value at which the feature appeared in the filtration by
combining lower dimensional simplices to form it. Conversely, the death scale represents
the value at which the feature disappeared in the filtration by being combined into a higher
dimensional feature. For example, if a vertex is part of a segment, then the death scale of
the vertex is exactly the birth scale of the associated segment.

Note that, by definition, vertices always have a zero birth scale, while tetrahedrons
always have an infinite death scale (in the numerical results, we removed the infinite values
for computation purposes). Given that our data points M are embedded in R3, we will
only track up to the dimension-2 features, thus the definition of S(M) with k = 0, 1, 2. More
generally, if the data points are embedded in a d-dimensional manifold, the persistent
homology can be computed up to dimension d− 1.

Finally, the persistence of the features throughout the scales can be represented by the
so-called Persistence Diagram of M, defined at dimension-k from

PDk(M) = {(bγ, dγ) : γ ∈ Hk},

where bγ and dγ are the birth and death scales of a feature γ at homology k.
The surface M persistence diagrams PD(M) read

PD(M) = {PD0(M),PD1(M),PD2(M)}.

2.2.4. Illustrating the Concepts on an Example

We illustrate the computational aspects of the Alpha Filtration on a simple example,
consisting of six points in R3, as shown in Figure 3:

M = {x0 = (1.1, 0.9, 0), x1 = (0.1, 0, 1), x2 = (0, 0, 0),

x3 = (0, 0.1, 1), x4 = (0.9, 1.1, 0), x5 = (0, 1, 0)}
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Figure 3. Example of data points M.

The filtration values are computed and presented below in Table 1:

Table 1. Alpha Filtration of M.

α Sα
0 Sα

1 Sα
2 Sα

3

0.00 [x0], [x1], [x2] - - -
[x3], [x4], [x5]

0.50 [x0], [x1], [x2] [x1, x3] - -
[x3], [x4], [x5]

2.00 [x0], [x1], [x2] [x1, x3], [x0, x4] - -
[x3], [x4], [x5]

20.50 [x0], [x1], [x2] [x1, x3], [x0, x4] - -
[x3], [x4], [x5] [x0, x2], [x4, x5]

45.25 [x0], [x1], [x2] [x1, x3], [x0, x4] - -
[x3], [x4], [x5] [x0, x2], [x4, x5]

[x1, x2], [x3, x5]

50.00 [x0], [x1], [x2] [x1, x3], [x0, x4] - -
[x3], [x4], [x5] [x0, x2], [x4, x5]

[x1, x2], [x3, x5]
[x2, x5]

50.02 [x0], [x1], [x2] [x1, x3], [x0, x4] - -
[x3], [x4], [x5] [x0, x2], [x4, x5]

[x1, x2], [x3, x5]
[x2, x5], [x2, x4]

64.73 [x0], [x1], [x2] [x1, x3], [x0, x4] [x1, x2, x5], [x1, x3, x5] -
[x3], [x4], [x5] [x0, x2], [x4, x5]

[x1, x2], [x3, x5]
[x2, x5], [x2, x4]

[x1, x5]
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Table 1. Cont.

α Sα
0 Sα

1 Sα
2 Sα

3

70.64 [x0], [x1], [x2] [x1, x3], [x0, x4] [x1, x2, x5], [x1, x3, x5] -
[x3], [x4], [x5] [x0, x2], [x4, x5] [x0, x1, x2], [x3, x4, x5]

[x1, x2], [x3, x5]
[x2, x5], [x2, x4]
[x1, x5], [x0, x1]

[x3, x4]

71.38 [x0], [x1], [x2] [x1, x3], [x0, x4] [x1, x2, x5], [x1, x3, x5] -
[x3], [x4], [x5] [x0, x2], [x4, x5] [x0, x1, x2], [x3, x4, x5]

[x1, x2], [x3, x5] [x0, x1, x4], [x1, x3, x4]
[x2, x5], [x2, x4]
[x1, x5], [x0, x1]
[x3, x4], [x1, x4]

71.55 [x0], [x1], [x2] [x1, x3], [x0, x4] [x1, x2, x5], [x1, x3, x5] [x0, x1, x2, x4]
[x3], [x4], [x5] [x0, x2], [x4, x5] [x0, x1, x2], [x3, x4, x5] [x1, x2, x4, x5]

[x1, x2], [x3, x5] [x0, x1, x4], [x1, x3, x4] [x1, x3, x4, x5]
[x2, x5], [x2, x4] [x1, x2, x4], [x1, x4, x5]
[x1, x5], [x0, x1]
[x3, x4], [x1, x4]

We can then track the birth and death of the features and compute the persistence
diagrams PD(M), as shown in Figure 4.

Figure 4. Persistence diagrams PD(M).

2.2.5. Matching Persistence Diagrams

Consider two data-sets Mr and Ms representing two deformed configurations of the
same surface. A matching between two persistence diagrams with the same number of
features, PDk(Mr) and PDk(Ms), for k = 0, 1, 2, is a bijective map ψk that reads:

ψk : PDk(Mr) −→ PDk(Ms),

such that ∀γ = (b, d) ∈ PDk(Mr),

ψk(γ) = (ψk
1(b), ψk

2(d))

= (b′, d′) ∈ PDk(Ms).

The map ψk associates each feature from PDk(Mr) to a feature from PDk(Ms). The Optimal
Matching between PDk(Mr) and PDk(Ms) is a matching ψ̂k

ψ̂k : PDk(Mr) −→ PDk(Ms),
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minimizing the transport cost Ck to move the features from PDk(Mr) to PDk(Ms):

Ck
min = ∑

γ∈PDk(Mr)

‖γ− ψ̂k(γ)‖2

= ∑
(b,d)∈PDk(Mr)

‖
(
b− ψ̂k

1(b), d− ψ̂k
2(d)

)
‖2

= ∑
(b,d)∈PDk(Mr)

√(
b− ψ̂k

1(b)
)2

+
(
d− ψ̂k

2(d)
)2.

When Mr is the reference surface, and Ms is any deformed surface resulting from
Mr, the optimal matching ψ̂k represents and quantifies the deformation from a topological
viewpoint, at each dimension k = 0, 1, 2.

We note that, in our case considered here, the diagrams have all been reduced to their
top 3000 persistence values, making the bijective matching possible. In the case of diagrams
with a different number of points, a partial matching is rather considered.

The optimal matching is computed using a combinatorial optimization procedure,
where the points in both diagrams are matched while minimizing the transport cost
function defined above. A graphical representation of the matching is shown in Figure 5.

Figure 5. Optimal matching of two persistence diagrams PD1(M) and PD1(N).

2.2.6. Multi-Scale Topological Measure of Surface Deformation

It is now possible to measure the degree of deformation from one data-set to another.
For that purpose, consider two data-sets Mr and Ms representing two deformed states
of the same surface, and a finite sequence of (αj)

m
j=0. Then, for k = 0, 1, 2, the k-distance

between PDk(Mr) and PDk(Ms) reads

Wk
(
PDk(Mr),PDk(Ms)

)
= ∑

(b,d)∈PDk(Mr)

√(
b− ψ̂k

1(b)
)2

+
(
d− ψ̂k

2(d)
)2,

where ψ̂k is the optimal matching between PDk(Mr) and PDk(Ms). An efficient computa-
tion of that distance Wk, known as the Wasserstein Distance, is performed using the kernel
linearization presented in Algorithm 2 of reference [19].

The Multi-Scale Topological Distance between Mr and Ms reads

Ω(Mr,Ms) =
√

ω2
0 + ω2

1 + ω2
2,
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where ωk = Wk
(
PDk(Mr),PDk(Ms)

)
, k = 0, 1, 2.

2.2.7. Comparing Tropological Descriptions of Deformed Surfaces

Consider now our collection {M0,M1, . . . ,MM} of data-sets, consisting of the refer-
ence surface M0 andM = 102 deformed surfaces Mr, r = 1, . . . ,M.
By using the previously defined metric Ω, we can measure each surface deformation with
respect to the reference one, such that ∀r ∈ {1, · · · ,M} and we have

Ωr = Ω(M0,Mr) =
√

ω2
0,r + ω2

1,r + ω2
2,r ,

where ∀r ∈ {1, . . . ,M}, ∀k ∈ {0, 1, 2}, we denote

ωk,r = Wk(PDk(M0),PDk(Mr)).

The measure Ωr enables clustering the different surfaces (6× 17, 17 being the number
of structural configurations, each one related to a particular value of the thickness) into
six clusters.

2.3. Modal Assurance Criterion

One of the most popular tools for the quantitative comparison of modal vectors is the
Modal Assurance Criterion (MAC) [13]. The MAC criterion is a statistical indicator that is
quite sensitive to large differences of the eigenmodes.
In our case, each mode Mr (r = 1, . . . ,M) is decomposed in its linear and angular compo-
nents (with respect to the three coordinate axes), resulting in the six vectors {Ψr

c}1≤c≤6.
The MAC of two surfaces Mr and Ms is then computed according to

MAC(Mr,Ms) =
∑6

c=1
(
Ψr

c ·Ψs
c
)2(

∑6
c=1
(
Ψr

c
)2
)(

∑6
c=1
(
Ψr

c
)2
) .

The MAC takes values between 0 (representing no consistent correspondence) and
1 (representing a consistent correspondence). Values larger than 0.9 indicate consistent
correspondence, whereas small values indicate poor resemblance of the two eigenmodes.

Thus, considering the six modes related to two different structures (with two different
thicknesses), it is now possible to compute the so-called MAC matrix M to compare the
modes and identify resemblances or discrepancies.

The MAC matrix M becomes diagonal dominant when modes are well ordered,
whereas the loss of that diagonal dominancy informs on eventual permutations. In order to
apply the MAC criterion in the case study addressed in the present paper, the first reduced
modal basis consisting of the six modes related to the first thickness will be compared with
the six modes of all the other configurations, the remaining 16 thickness choices.

3. Results
3.1. Topological Modes Identification

By applying the methodology described in Section 2.2 to the surface data-sets, by
first computing the Alpha Filtration, we obtain the persistence diagrams {PDk(Mr)}M=102

r=0 ,
with the ones associated with the reference surface shown in Figure 6.

The multi-scale distance defined in Section 2.2.6 and here associated with each surface
{Ωr}M=102

r=1 is then computed, and reported in Table 2.
This multi-scale topological distance is then used to order the deformed surfaces to

retain in each column of Table 3 those exhibiting a shape resemblance. From Tables 2 and 3,
the surfaces have been sorted using the values of Table 2, and their sorted order displayed
in Table 3. The goal is to have the surfaces labeled from the least to the most deformed,
according to our measure of deformation. In Table 3, numbers in red indicate surface
(modes) permutations that have been made in order to classify all the shapes.
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Figure 6. Persistence diagrams associated with the reference surface, PDk(M0), for k = 0 (left), k = 1
(center) and k = 2 (right)

Table 2. Multi-scale topological distance of the six deformed surfaces related to the six most signifi-
cant deformation modes, of the 17 choices of the structure thickness with respect to the reference
undeformed surface.

Case 1st surf. 2nd surf. 3rd surf. 4th surf. 5th surf. 6th surf.

01 2828 3742 6012 6281 7070 7314
02 3839 4341 5160 5269 8299 9530
03 3540 4003 4702 5536 6436 8023
04 2971 3762 5883 7481 7429 9314
05 3062 3762 5437 6156 9865 10,307
06 4852 5239 7294 8336 8237 9585
07 3482 4411 6095 6882 9319 10,627
08 3392 3684 5903 6710 9273 9438
09 4648 5436 7986 7707 10,415 9406
10 4425 4267 5583 5811 9620 9163
11 3256 3722 4782 4888 5840 8064
12 2993 3750 5551 6885 7135 8474
13 4281 4862 7127 8230 8170 9687
14 4367 5004 7140 7036 8285 8008
15 4937 5396 6484 6446 9323 10,031
16 3184 3941 4907 4965 7205 8869
17 2957 3652 5652 6021 7659 7571

Table 3. Surface ordering. Numbers in red indicate the permutation that must be performed in order
to align surfaces with respect to its shape.

Case 1st surf. 2nd surf. 3rd surf. 4th surf. 5th surf. 6th surf.

01 1 2 3 4 5 6
02 1 2 3 4 5 6
03 1 2 3 4 5 6
04 1 2 3 5 4 6
05 1 2 3 4 5 6
06 1 2 3 5 4 6
07 1 2 3 4 5 6
08 1 2 3 4 5 6
09 1 2 4 3 6 5
10 2 1 3 4 6 5
11 1 2 3 4 5 6
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Table 3. Cont.

Case 1st surf. 2nd surf. 3rd surf. 4th surf. 5th surf. 6th surf.

12 1 2 3 4 5 6
13 1 2 3 5 4 6
14 1 2 4 3 6 5
15 1 2 4 3 5 6
16 1 2 3 4 5 6
17 1 2 3 4 6 5

3.2. MAC Identification

Using the MAC criterion described in Section 2.3, we compute the MAC matrices
comparing the model reduced basis (of the first thickness choice) with the remaining
16 reduced modal bases for the other thickness choices, and the results are reported in
Figure 7.

Figure 7. Modal Assurance Criterion matrices when comparing the model reduced basis—RB— (of
the first thickness choice) with the remaining 16 reduced modal bases for the other thickness choices.

4. Discussion and Conclusions

Labelling the surfaces as reported in Table 3 aims at classifying them according their
shape induced by their deformation. The greater the value of the topological metric Ω,
the more deformed the surfaces are. The surface discrepancies are quantified from the
transport cost related to the matching of the topological features that the deformed meshes
express, through the different scales and dimension.
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The value of Ω can be interpreted as a level of topological deformation for a certain
deformed mesh on the deformed surface compared with the undeformed mesh and sur-
face. Thus, labels 1 to 6 in the case addressed here express the magnitude of the surface
deformation. Figure 8 depicts the six ordered deformed surfaces for one particular case
(structure with a given thickness).

Figure 8. (top-left) First mode; (top-right) Second mode; (middle-left) Third mode; (middle-right)
Fourth mode; (bottom-left) Fifth mode; and (bottom-right) Sixth mode.

By inspecting Table 3, it can be noticed that the surface label usually matches the order
of the eigenmodes provided by the eigenproblem solution. However, when modifying the
structure thickness, some shapes that were important for a given thickness can be now
more or less significant and the order of apparition in the eigenproblem differs. Thus,
a permutation must be performed for ordering the modes with respect to their intrinsic
shapes, here evaluated by using a metric based on topological concepts.The MAC matrices
displayed in Figure 7 show similar tendencies, as the modes are globally consistent with
their labels.

The presented topology-based framework for measuring surface deformations seems
a very pertinent, powerful, and intrinsic way of quantifying, characterizing, and analyz-
ing the deformation modes of structures. The strength of the framework relies on both
the topology description of the surface at multiple scales, and the proposed measure
based on the optimal matching of the features, to detect how each feature of the surface
was deformed.
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