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Modeling and simulation of laser shock waves in elasto-plastic 1D layered
specimens
L. Lapostolle ∗, K. Derrien, L. Morin, L. Berthe, O. Castelnau
PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l’Hopital, 75013 Paris, France

A B S T R A C T

The aim of this paper is to study the effect of microstructure heterogeneity upon elasto-plastic wave
propagation generated during laser shot peening. We consider a simplified elasto-plastic laminate specimen
subjected to uniaxial strain. The microstructure is composed of two phases alternating periodically and
perfectly bonded together. The associated PDE system is solved using a high-resolution Godunov scheme,
allowing to study the wave propagation in the heterogeneous structure. It is found that, even for a small
mechanical contrast between the two phases, the considered laminate microstructure has a significant effect on
the distribution of plastic strain. In addition, an elasto-plastic homogenization of the laminate has been carried
out, and the resulting Homogeneous Equivalent Medium (HEM) has been used to decrease the computation
time of the wave propagation. The HEM-based model is able to reproduce accurately the full-field solution in
terms of distribution of mean plastic strain within the specimen and its fluctuation between the two phases.

1. Introduction

The mechanical process motivating this work is Laser Shot Peening
(LSP). The process consists in impacting the surface of a metallic target
with a high intensity laser beam (>GW/cm2), producing a high pressure
plasma in the GPa range. In reaction, a shock wave travels through the
specimen and generates plastic strain, as illustrated in Fig. 1a. Upon
relaxation, this induces compressive residual stresses in the specimen.
Those residual stresses have been shown to increase the fatigue resis-
tance of the specimen treated (Peyre et al., 1996, 1998; Ding and Ye,
2006). In the standard experimental configuration, the interaction is
confined by water (Fox, 1974) allowing better efficiency. A protective
coating can be used to avoid strong thermal effects inducing tensile
stresses at the uppermost surface. In this configuration, the profile
pressure of the plasma typically lasts a few tens of nanoseconds and
has been modeled in several works (Fabbro et al., 1990; Peyre et al.,
2007, 2012; Rondepierre et al., 2021). A typical profile of the plasma
pressure, normalized with the maximal pressure, is shown in Fig. 1b.
LSP finds applications in the aeronautics industry, as well as in the
energy industry, where numerous parts and machines can benefit from
fatigue protection treatments (Clauer, 2019; Montross et al., 2002).

The analytical and numerical modeling of LSP has been studied
over the years, starting with the seminal works of Ballard (1991)
and Braisted (1999). The principle is to simulate the propagation of
elasto-plastic waves that are produced by dynamic stress impulse. In

most of the works, the impacted specimens are assumed to be ho-
mogeneous and to exhibit an isotropic mechanical behavior, with an
elastic behavior described by the equation of state (EOS) (Peyre et al.,
2003, 2012) when necessary, or with a purely elastic behavior (Song,
2010). In terms of plastic properties, the most used model at high strain
rates is the Johnson–Cook model (Johnson and Cook, 1983). Other
authors also investigated the effect of LSP on single crystals (Wang
et al., 2008; Vukelic et al., 2009) and bi-crystals (Vukelić et al., 2009)
both experimentally and numerically, using crystal plasticity based
constitutive equations. Residual stresses are then calculated from the
residual plastic strain field generated by the plastic wave propagation.
Several process conditions can be explored using numerical simulations
such as the overlapping of many laser pulses (Brockman et al., 2012;
Chaieb, 2004).

LSP processing usually involves large spot size of a few millimeters
together with a high power laser source, to achieve the desired plasma
pressures. An interesting alternative is to consider a low laser energy,
so that the whole system can be more compact and transported by an
optical fiber, which is known as micro-LSP. The consequence of a low
laser energy is a decrease of the laser spot sizes, which can become close
to the grain size for some materials (for instance aluminum alloys).
Therefore, studying the interactions between the shock wave and the
microstructure thus becomes needed when the laser spot diameter is
small, such as in micro-LSP. On top of that, one can anticipate that
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Fig. 1. Laser shot peening processing. (a) Representation of the LSP process (after (Scius-Bertrand et al., 2021)). (b) Typical profile of the normalized pressure at the center of
the impact (Le Bras et al., 2019).

accounting for the elongated grain shape and/or non-random distribu-
tion of the grain orientations, very often encountered in most industrial
alloys (and known as morphological and crystallographic textures in
the literature), is a prerequisite to improve the control of the effect of
LSP. Hence, the problem to be addressed is the propagation of a stress
wave in a heterogeneous (polycrystalline) elasto-plastic specimen. Al-
though the propagation of elastic stress waves in heterogeneous media
has been widely studied (Berezovski et al., 2006; Tedesco and Landis,
1989), especially for seismology applications, the numerical study of
elasto-plastic shockwaves in heterogeneous media is scarce (Agrawal
and Bhattacharya, 2014; Chen et al., 2004; Chen and Chandra, 2004
focused mostly on shockwaves with no plastic effects). Due to the
non-linearities brought by plasticity, the numerical simulation of stress
waves in heterogeneous materials requires notably specific numerical
solvers for hyperbolic equations that do not induce spurious oscillations
nor damping.

From the modeling point of view, the up-scaling of elasto-plastic
heterogeneous media under dynamic conditions is also of interest in or-
der to decrease the computational time of full-field simulations (inher-
ent to the spatial description of the heterogeneities). Under quasi-static
conditions, the overall elastic behavior of a heterogeneous material can
be usually determined from the description of its local constituents
using homogenization techniques (Milton, 2002). Several works have
been proposed to enrich homogenization techniques. In presence of
dynamic effects, the homogenized wave equation has been studied by
mean of a spatial filter that allows to separate scales in the hetero-
geneity pattern of the medium (Capdeville et al., 2010; Capdeville
and Marigo, 2007). On the other hand, analytic models have been de-
rived to extent homogenization scheme to plasticity (but in quasi-static
conditions) for ideal laminate microstructures (Chatzigeorgiou et al.,
2009; He and Feng, 2012). However, in presence of both dynamic and
plasticity effects, homogenization techniques are yet to be developed.

The aim of this paper is to study numerically the propagation of a
shock wave in an elasto-plastic heterogeneous specimen, in order to as-
sess the effect of microstructure on residual plastic strain distributions.
To do so, we will consider the case of a laminate specimen subjected to
a uniaxial strain state. This allows to study numerically the effect of a
microstructure upon the elasto-plastic wave propagation (and residual
plastic strain field). Furthermore, as those full-field simulations can be
demanding in terms of computational time, an approximate HEM-based
model, based on the quasi-static solution of the elasto-plastic laminate,
will also be presented to address the effect of material heterogeneity.
Although LSP is motivating this work, the proposed modeling is also
valid for various impact problems causing a stress wave to propagate in
a material. Mention has to be made to the work of Zhuang et al. (2003)
who studied experimentally the propagation of stress waves induced by

a plate impact in a layered specimen, reporting a viscous macroscopic
behavior due to the laminate nature of the specimen.

The paper is organized as follows. In Section 2, we define the
general mechanical framework for a heterogeneous laminate specimen,
which we will then use to model the stress wave propagation. In
Section 3, we develop an elasto-plastic HEM-based model based on
quasi-static loading conditions. Finally, in Section 4, we investigate the
propagation of shock wave in laminate elasto-plastic specimens, using
both full-field and HEM-based descriptions.

2. Mechanical modeling of stress waves in a layered specimen

2.1. Equations of elasto-plastic dynamics

LSP introduces, by the way of a high-pressure plasma produced
by a laser, stress waves within the specimen. The (local) mechanical
behavior of the target material is supposed to be elasto-plastic and
obeys the following dynamic equations:
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2
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Flow rule and consistency
conditions

(1)

where the unknowns are the stress tensor 𝝈, the plastic strain tensor
𝜺𝑝 and the displacement field 𝒖. In system (1), 𝜺𝑒 is the elastic strain
tensor, 𝜌 is the local density, C is the local stiffness tensor, 𝑔 is the
yield function of plasticity, 𝐗 is the backstress (used for kinematic
hardening), 𝑅 is the isotropic hardening function, 𝑝 is the accumulated
plastic strain and 𝜆̇ is the plastic multiplier. We assume that the
plasticity criterion is isotropic where 𝐽2 is given by

𝐽2(𝝈) =
√

3
2

(

𝝈 − 1
3

Tr(𝝈)𝑰
)

∶
(

𝝈 − 1
3

Tr(𝝈)𝑰
)

, (2)

where 𝑰 is the second-order identity tensor.
Few remarks concerning the modeling hypotheses of the material

behavior can be discussed shortly. In this work, both strain rate effects
and ‘‘elastic shock behavior’’ of the material will be neglected. As
presented by Seddik et al. (2021), considering a strain rate dependent
model acts as a refinement of an elastic perfectly plastic model, and
permits to fit more accurately the experimental results. According to
their work, an elastic perfectly plastic model already captures the



important features of the propagation. Then, a standard elasticity law 
is considered, instead of shock Equations Of States (EOS). EOS describe 
the propagation of the shock when the material’s behavior become 
dependent on the applied pressure, which results in different wave 
speeds at various locations of the wave. Moreover, it has been shown 
that the effect of EOS on plastic strain and residual stress fields is 
generally negligible (Chaieb, 2004). Therefore, following the analysis 
of Ballard (1991) who defines applied pressure thresholds based on 
the material properties under which the material’s behavior can be 
assumed not to be hydrodynamic, we choose to neglect the shock 
behavior, and we will check the validity of his hypothesis for our 
applications.

2.2. Uniaxial case

As mentioned in the introduction, we aim at investigating the effect 
of a microstructure upon elasto-plastic wave propagation. We consider 
in this paper the simplified case of a layered specimen which allows to 
investigate the main features of LSP in one dimension. The following 
1d ansatz is thus considered:

(1) Hypotheses on the mechanical properties. In terms of description
of the microstructure, we assume that the spatial domain is
divided into a large number of layers, each one behaving with its
own local mechanical behavior. Anticipating the developments
to come, the choice is now made to consider a periodic mi-
crostructure made of two phases of volume fraction 𝑓1 and 𝑓2
respectively. This corresponds to a composite material with a
periodic repetition of layers with mechanical properties varying
from one to another, as represented in Fig. 2. Finally we assume
that the interface between the layers is perfect. The mechanical
property fields thus only depend on the variable 𝑥1:

𝜌 = 𝜌(𝑥1), C = C(𝑥1), 𝜎𝑌 = 𝜎𝑌 (𝑥1). (3)

The elastic behavior of the local phases will be assumed to be
isotropic, so that the whole problem exhibits transverse isotropy.
In this case, the stiffness tensor C reduces to

C(𝑥1) = 3𝜅(𝑥1)J + 2𝜇(𝑥1)K, (4)

where 𝜅 and 𝜇 are respectively the bulk and shear moduli, and
J and K are fourth-order tensors defined as

J = 1
3
𝑰 ⊗ 𝑰 and K = I − J, (5)

with 𝑰 the second-order identity tensor and I the fourth-order
identity tensor. The 2-indices matrix representation (using
Kelvin convention, see e.g. Morin et al. (2020)) of the stiffness
tensor reads:

C(𝑥1) =
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⎟
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⎟

⎠

,

(6)

with 2𝐶1212(𝑥1) = 𝐶1111(𝑥1) − 𝐶1122(𝑥1) = 2𝜇(𝑥1) and 𝐶1122(𝑥1) =
𝜅(𝑥1) − 2𝜇(𝑥1)∕3. In order to unify the notations during the
forthcoming developments, the 𝐶𝑖𝑗𝑘𝑙 coefficients will be used in
all calculations.

(2) Hypotheses on the plasticity model. An elastic perfectly plastic
model will be assumed for the sake of simplicity. The backstress
𝑿 is thus supposed to vanish and the yield limit 𝑅(𝑝) is taken as
constant.

𝑿 = 𝟎 and 𝑅(𝑝) = 𝜎𝑌 , (7)

where 𝜎𝑌 is the (local) yield strength.

Fig. 2. Representation of the layered specimen. The plasma pressure is applied to the
left on the specimen of length 𝐿 and comprising many layers. Direction 𝒆1 denotes the
direction of 1D wave propagation.

(3) Hypotheses on the mechanical fields. The mechanical fields are
supposed to be axisymmetric with respect to the propagation
axis, denoted by 𝒆1. This choice is mostly motivated by the fact
that the laser used in experimental conditions has a circular spot,
applied at the center of the specimen. Moreover, we consider
that these fields only depend on one spatial dimension corre-
sponding to the axis of symmetry 𝒆1 (in addition to their time
dependence 𝑡), i.e. all gradients with respect to 𝑥2 and 𝑥3 vanish,
and that the specimen exhibits a transverse isotropic mechanical
behavior. The strain tensor is supposed to be uniaxial, along the
direction 𝒆1. This hypothesis, which follows the previous work
of Ballard (1991), is reasonable provided that the duration of
impacts is short (e.g. less than a few hundreds of nanoseconds for
a steel material). In doing so however, we lose the description of
the propagation of radial waves, and the description of the state
of the material close to the edge of the laser spot, which can be
the locus for important shear stresses. These specific issues are
left for future works. The displacement field 𝒖 and total strain
tensor 𝜺 are thus supposed to be of the form

𝒖 = 𝑢1(𝑥1, 𝑡)𝒆1, 𝜺 = 𝜀11(𝑥1, 𝑡)𝒆1 ⊗ 𝒆1, (8)

where 𝜀11 = 𝜕𝑢1∕𝜕𝑥1, and 𝑥1 the coordinate along 𝒆1. Moreover
we make the (standard) hypothesis that plasticity is incom-
pressible so that the plastic strain tensor 𝜺𝑝 is of the form

𝜺𝑝 = 𝜀𝑝,11(𝑥1, 𝑡)
(

𝒆1 ⊗ 𝒆1 −
1
2
𝒆2 ⊗ 𝒆2 −

1
2
𝒆3 ⊗ 𝒆3

)

. (9)

By material symmetry and the form of 𝜺 given in (8), the form
of the stress tensor 𝝈 is

𝝈 = 𝜎11(𝑥1, 𝑡)𝒆1 ⊗ 𝒆1 + 𝜎22(𝑥1, 𝑡)
(

𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3
)

. (10)

To summarize, we have now the following expressions for 𝜎11, 𝜎22
and 𝐽2(𝝈):

𝜎11 = 𝐶1111𝜀11 +
(

𝐶1122 − 𝐶1111
)

𝜀𝑝,11,

𝜎22 = 𝜎33 = 𝐶1122𝜀11 +
𝐶1111 − 𝐶1122

2
𝜀𝑝,11,

𝐽2(𝝈) = |𝜎11 − 𝜎22|.

(11)

2.3. Stress wave propagation equation

Using the previous hypotheses, the stress wave propagation equa-
tions can be presented during elastic propagation and plastic propaga-
tion for this simplified 1d problem.

2.3.1. Elastic propagation
First, we assume that the material response is purely elastic, so that

𝜺̇𝑝 = 0. Since the mechanical fields depend spatially only on the variable
𝑥1, the first two equations of system (1) lead to the partial derivative
system

⎧

⎪

⎨

⎪

⎩

𝜕𝜎11
𝜕𝑥1

(𝑥1, 𝑡) = 𝜌(𝑥1)
𝜕𝑣1
𝜕𝑡

(𝑥1, 𝑡)
𝜕𝜎11
𝜕𝑡

(𝑥1, 𝑡) = 𝐶1111(𝑥1)
𝜕𝑣1
𝜕𝑥1

(𝑥1, 𝑡),
(12)



where 𝑣1 is the material velocity, defined as 𝑣1 = 𝜕𝑢1∕𝜕𝑡. The system
(12) can be cast under the following matrix form:

𝑼 𝑡 +𝑨 ⋅ 𝑼𝑥1 = 𝟎, (13)

where the partial derivatives are denoted by the subscripts 𝑥1 and 𝑡.
In Eq. (13), 𝑼 and 𝑨 are given by

𝑼 =
(

𝜎11
𝑣1

)

, 𝑨 =
⎛

⎜

⎜

⎝

0 −𝐶1111

−1
𝜌

0

⎞

⎟

⎟

⎠

. (14)

Eq. (13) is known as the advection equation, and describes the propa-
gation of stress waves. The matrix 𝑨 has two eigenvalues, both corre-
sponding, in absolute value, to the axial wave velocity in the material:

𝑐(𝑥1) =

√

𝐶1111(𝑥1)
𝜌(𝑥1)

. (15)

It is worth noting that this propagation problem can be written alterna-
tively by considering the sole displacement as the unknown. This would
lead to the wave equation for the displacement 𝑢1:

𝐶1111(𝑥1)
𝜌(𝑥1)

𝜕2𝑢1
𝜕𝑥21

=
𝜕2𝑢1
𝜕𝑡2

. (16)

The physical phenomenon described by Eq. (16) is the same as for Eq.
(13), but the unknown is different. Though mathematically equivalent,
both equations cannot be solved by the same numerical methods. The
resolution of Eq. (16) can be subject to numerical artifacts, as it will be
discussed in Section 4.1.

2.3.2. Plastic propagation
In the case of a plastic behavior, the plastic strain increment 𝜺̇𝑝 is

non zero. Together with the assumption of axisymmetry of the stress
tensor, the incremental form of the plasticity criterion leads to an
explicit relation between the longitudinal plastic strain rate 𝜀̇𝑝,11 and
the rate of total strain 𝜀̇11 = 𝜕𝑣1∕𝜕𝑥1:

𝜀̇𝑝,11 = 𝛼𝜀̇11 = 𝛼
𝜕𝑣1
𝜕𝑥1

, (17)

where 𝛼 is given in our case by:

𝛼 = 2
3
. (18)

The incremental form of the plasticity criterion reads:

𝐽̇2 (𝝈) = 0. (19)

Consequently, considering (8), (9) and (11), the elasto-plastic propaga-
tion equations reduce, for the ansatz considered, to

⎧

⎪

⎨

⎪

⎩

𝜕𝜎11
𝜕𝑥1

= 𝜌
𝜕𝑣1
𝜕𝑡

𝜕𝜎11
𝜕𝑡

=
(

𝐶1111 (1 − 𝛼) + 𝛼𝐶1122
) 𝜕𝑣1
𝜕𝑥1

.
(20)

As in the elastic case, this system can be written under the matrix form
(13), where 𝑼 and 𝑨 are this time given by

𝑼 =
(

𝜎11
𝑣1

)

, 𝑨 =
⎛

⎜

⎜

⎝

0 𝐶1111 (𝛼 − 1) − 𝛼𝐶1122

−1
𝜌

0

⎞

⎟

⎟

⎠

. (21)

The resolution of this system permits to determine the stress increment
𝜎̇11 which allows the determination of the axial strain increment 𝜀̇11
using Eq. (20)2 and ultimately the determination of 𝜀̇𝑝,11 using Eq. (17).

3. Elasto-plastic homogenization of laminate specimen for static
loading

The aim of this section is to derive an elasto-plastic HEM-based
model of the laminate microstructure considered in Section 2. We
consider the case where the two phases share the same density 𝜌.

Thus, instead of homogenizing the wave equation with an elasto-plastic
behavior of the phases (as it was done by Capdeville et al. (2010) in
elasticity solely, with the definition of an effective density 𝜌 = ⟨𝜌⟩,
where ⟨⋅⟩ is the spatial average operator defined by Eq. (24)) we will
consider the homogenization of the laminate microstructure in quasi-
static conditions, following previous work (Chatzigeorgiou et al., 2009;
He and Feng, 2012). This will permit to define the HEM-based elasto-
plastic behavior of the laminate specimen, whose behavior depends on
several internal parameters related to its microstructure, which will
then be used in the wave propagation equation.

We begin with the determination of the effective stiffness and plastic
strain tensors, for a given initial mechanical state.

3.1. Effective stiffness tensor

The effective elastic constitutive relation reads

𝝈 = C̃ ∶ 𝜺̃𝑒, (22)

where C̃ is the (unknown) effective stiffness tensor, 𝝈 is the macro-
scopic stress tensor and 𝜺̃𝑒 is the effective elastic strain tensor. The
macroscopic stress 𝝈 and strain 𝜺 are defined by

𝝈 = ⟨𝝈⟩ , 𝜺 = ⟨𝜺⟩. (23)

In Eq. (23), the operator ⟨⋅⟩ is the spatial average over the domain 𝑉
defined by

⟨𝑓 ⟩ = 1
vol(𝑉 ) ∫𝑉

𝑓d𝑉 . (24)

In order to determine the stiffness tensor C̃ we make use of (standard)
properties of laminated specimens, that is the uniformity of the axial
stress and in-plain elastic strain:

𝜎11 = 𝜎11, 𝜎12 = 𝜎12, 𝜎13 = 𝜎13, 𝜀22 = 𝜀22, 𝜀33 = 𝜀33, 𝜀23 = 𝜀23,

(25)

as well as the per-phase homogeneous stress and strain states in both
phases, which are exact properties also valid when the phases deform
plastically as considered in the next section (Postma, 1955; Milton,
2002; He and Feng, 2012). Those relations lead to the definition of
the effective stiffness tensor, which describes a transverse isotropic
behavior by material symmetry. Using Kelvin’s notation, C̃ reads

C̃ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐶1111 𝐶1122 𝐶1122 0 0 0
𝐶1122 𝐶2222 𝐶2233 0 0 0
𝐶1122 𝐶2233 𝐶2222 0 0 0
0 0 0 2𝐶2323 0 0
0 0 0 0 2𝐶1313 0
0 0 0 0 0 2𝐶1313

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (26)

where the non-null components are given by1

𝐶1111 =
⟨

1
𝐶1111

⟩−1
,

𝐶2222 = ⟨𝐶1111⟩ +
⟨

1
𝐶1111

⟩−1 ⟨𝐶1122
𝐶1111

⟩2
−

⟨

𝐶2
1122

𝐶1111

⟩

,

𝐶1122 =
⟨

1
𝐶1111

⟩−1 ⟨𝐶1122
𝐶1111

⟩

,

𝐶2233 = ⟨𝐶1122⟩ +
⟨

1
𝐶1111

⟩−1 ⟨𝐶1122
𝐶1111

⟩2
−

⟨

𝐶2
1122

𝐶1111

⟩

,

𝐶1313 =
⟨

1
𝐶1212

⟩−1
, 2𝐶2323 = 2 ⟨𝐶1212⟩ = 𝐶2222 − 𝐶2233.

(27)

1 The details of the calculations leading to the definition of the effective
stiffness tensor are given in Appendix A.



3.2. Effective plastic strain tensor

Now that the effective stiffness tensor has been derived, we are
looking for the expression of the effective plastic strain tensor 𝜺̃𝑝 in
order that it verifies

𝝈 = C̃ ∶
(

𝜀 − 𝜺̃𝑝
)

=
⟨

C ∶
(

𝜺 − 𝜺𝑝
)⟩

, and 𝜺̃𝑒 = 𝜀 − 𝜺̃𝑝. (28)

We remind here that local plasticity is incompressible (i.e. the trace of
the local plastic strain tensor vanishes). Let us first detail the expression
of the local strain 𝜀11 and stress 𝜎22 (which also verifies 𝜎22 = 𝜎33):

⎧

⎪

⎨

⎪

⎩

𝜀11 =
1

𝐶1111
𝜎11 − 𝜀𝑝,11

(

𝐶1122
𝐶1111

− 1
)

𝜎22 = 𝐶1122𝜀11 + 𝜀𝑝,11
𝐶1111 − 𝐶1122

2
.

(29)

Injecting the first equation of (29) into the second one, and taking the
average value of both equations leads to the following system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜀11 =
⟨

1
𝐶1111

⟩

𝜎11 −
⟨

𝜀𝑝,11

(

𝐶1122
𝐶1111

− 1
)⟩

𝜎22 =
⟨

𝐶1122
𝐶1111

⟩

𝜎11 +

⟨

𝜀𝑝,11

(

𝐶1122 + 𝐶1111
2

−
𝐶2
1122

𝐶1111

)⟩

.
(30)

Then, we define the intermediate dimensionless quantities

𝑀1 =
⟨

𝜀𝑝,11

(

𝐶1122
𝐶1111

− 1
)⟩

and

𝑀2 =
1

𝐶1122

⟨

𝜀𝑝,11

(

𝐶1111 + 𝐶1122
2

−
𝐶2
1122

𝐶1111

)⟩

,
(31)

which will be useful to link the local plastic strain to the effective
plastic strain. The system (30) is now recast so as to separate the stress
and the strains:
{

𝜎11 = 𝐶1111𝜀11 + 𝐶1111𝑀1
𝜎22 = 𝐶1122𝜀11 + 𝐶1122(𝑀1 +𝑀2).

(32)

It is then straightforward to identity the non-null components of the
effective plastic strain from Eq. (32):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜀𝑝,11 = −𝑀1 +
2𝐶2

1122

𝐶1111

(

𝐶2222 + 𝐶2233

)

− 2𝐶2
1122

𝑀2

𝜀𝑝,22 = 𝜀𝑝,33 =
𝐶1111𝐶1122

2𝐶2
1122 − 𝐶1111

(

𝐶2222 + 𝐶2233

)𝑀2.
(33)

Some comments are in order:

• Unlike the macroscopic stress and total strains, the effective
plastic strain is not defined by averaging the local corresponding
quantity, i.e 𝜺̃𝑝 ≠

⟨

𝜺𝑝
⟩

, which is a standard property in elasto-
plastic homogenization (He and Feng, 2012; Chatzigeorgiou et al.,
2009).

• The effective plastic strain is not incompressible (Tr
(

𝜺̃𝑝
)

≠ 0) in
contrast with the local plastic strain which verifies the property
of incompressibility (Tr

(

𝜺𝑝
)

= 0). This comes from the fact that
when local plastic strains come in play, an elastic strain field is
generated in order to accommodate the plastic incompatibilities.

3.3. Effective incremental elasto-plastic behavior

Then the next step is to derive the effective incremental elasto-
plastic behavior. The quantities we are ultimately looking for are thus
𝜕𝜎11∕𝜕𝜀11 and 𝜕𝜎22∕𝜕𝜀11. Their expression will depend on the local
elasto-plastic behavior of the phase. In the following, the index (𝑖)
indicates that a quantity is evaluated in the phase (𝑖).

First, we remind that the local axial plastic strain rate 𝜀̇(𝑖)𝑝,11 (when it
is non-null) can be deduced from the local total strain 𝜀̇(𝑖)11 rate by the
relation (17)

𝜀̇(𝑖)𝑝,11 = 𝛼(𝑖)𝜀̇(𝑖)11, (34)

where 𝛼(𝑖) is defined according to Eq. (18). Then, by taking advantage
of the relation 𝜎̇(1)11 = 𝜎̇(2)11 , which is valid for a quasi-static loading, it is
possible to express the local total strains rate 𝜀̇(𝑖) as a function of the
total macroscopic strain rate 𝜀̇11 by the relation

𝜀̇(𝑖)11 = 𝛽(𝑖)𝜀̇11, (35)

where the coefficients 𝛽(𝑖), which are components of a strain-rate
localization tensor, remain to be found.

It is straightforward to note that, from system (32) in incremental
form and Eqs. (31), (34) and (35), the expressions of 𝜎̇11 and 𝜎̇22
depend solely on 𝜀̇11 and 𝜀̇(𝑖)𝑝,11. From such relations one can easily

identify the values of 𝜕𝜎11∕𝜕𝜀11 and 𝜕𝜎22∕𝜕𝜀11, which can in turn be
used to properly define the advection equation. Thus, the determination
of the conditions promoting local plasticity together with the values
of the parameters 𝛽(𝑖) suffices to define completely the incremental
elasto-plastic behavior.

Several cases need to be considered, depending on which phase
reaches (or not) plasticity. First, we introduce the quantities 𝜎(+) and
𝜎(−), which correspond to the values of 𝜎11 for which one of the phases
starts to reach plasticity, when 𝜀̇11 > 0 and 𝜀̇11 < 0, respectively. Their
expressions are obtained by expressing the yield criterion (1) with local
stresses given by (11) while noting that 𝜎(𝑖)11 = 𝜎̄11 (see (B.5)):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎(+) = min
(𝑖)

(

𝐶 (𝑖)
1111

𝐶 (𝑖)
1111 − 𝐶 (𝑖)

1122

[

𝜎(𝑖)
𝑌 −

(

(𝐶 (𝑖)
1122)

2

𝐶 (𝑖)
1111

−
𝐶 (𝑖)
1111 + 𝐶 (𝑖)

1122

2

)

𝜀(𝑖)𝑝,11

])

𝜎(−) = max
(𝑖)

(

𝐶 (𝑖)
1111

𝐶 (𝑖)
1111 − 𝐶 (𝑖)

1122

[

−𝜎(𝑖)
𝑌 −

(

(𝐶 (𝑖)
1122)

2

𝐶 (𝑖)
1111

−
𝐶 (𝑖)
1111 + 𝐶 (𝑖)

1122

2

)

𝜀(𝑖)𝑝,11

])

.

(36)

With 𝜎(+) and 𝜎(−), only 𝜎11 is in fact required to assess whether one of
the phases started to plastify. However to follow the form of the local
plasticity criterion, this assessment will be expressed as a condition on
𝜎11 − 𝜎22. The study of different cases, whose details can be found in
Appendix B, leads to the following incremental equations2:

• If 𝜀̇11 ≥ 0:

- If 𝜎11−𝜎22 ≤
(

1 −
𝐶1122

𝐶1111

)

𝜎(+)+𝜀𝑝,22

(

𝐶2222 + 𝐶2233 −
2𝐶2

1122

𝐶1111

)

:

{

𝜀̇(1)𝑝,11 = 0
𝜀̇(2)𝑝,11 = 0.

(37)

- If
(

1 −
𝐶1122

𝐶1111

)

𝜎(+) + 𝜀𝑝,22

(

𝐶2222 + 𝐶2233 −
2𝐶2

1122

𝐶1111

)

< 𝜎11 −

𝜎22 < ⟨𝜎𝑌 ⟩:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜀̇(1)𝑝,11 = 𝛼(1)𝜀̇(1)11 = 𝛼(1)𝛽(1)𝜀̇11

𝜀̇(2)𝑝,11 = 0

𝛽(1) =

⎛

⎜

⎜

⎜

⎝

𝑓1 + 𝑓2
𝐶 (1)
1111 +

(

𝐶 (1)
1122 − 𝐶 (1)

1111

)

𝛼(1)

𝐶 (2)
1111

⎞

⎟

⎟

⎟

⎠

−1

.

(38)

• If 𝜀̇11 < 0:

2 The results are presented in the case where phase (1) reaches plasticity
before phase (2) (the results for phase (2) plastifying first being just a matter
of index swapping).



(

1 −
𝐶1122

𝐶1111

)

𝜎(−)+𝜀𝑝,22

(

𝐶2222 + 𝐶2233 −
2𝐶2

1122

𝐶1111

)

:

⎧

⎪

⎨

⎪

⎩

- If 𝜎11−𝜎22 ≥ 

𝜀̇ 𝑝,
(1)
11 = 0

𝜀̇(2)𝑝,11 = 0.
(39)

- If
(

1 −
𝐶1122

𝐶1111

)

𝜎(−) + 𝜀𝑝,22

(

𝐶2222 + 𝐶2233 −
2𝐶2

1122

𝐶1111

)

> 𝜎11 −

𝜎22 > − ⟨𝜎𝑌 ⟩:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜀̇(1)𝑝 = 𝛼(1)𝜀̇(1)11 = 𝛼(1)𝛽(1)𝜀̇11
𝜀̇(2)𝑝 = 0

𝛽(1) =

⎛

⎜

⎜

⎜

⎝

𝑓1 + 𝑓2
𝐶 (1)
1111 +

(

𝐶 (1)
1122 − 𝐶 (1)

1111

)

𝛼(1)

𝐶 (2)
1111

⎞

⎟

⎟

⎟

⎠

−1

.

(40)

• If 𝜎11 − 𝜎22 = ⟨𝜎𝑌 ⟩ (regardless of the sign of 𝜀̇11):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜀̇(1)𝑝,11 = 𝛼(1)𝜀̇(1)11 = 𝛼(1)𝛽(1)𝜀̇11

𝜀̇(2)𝑝,11 = 𝛼(2)𝜀̇(2)11 = 𝛼(2)𝛽(2)𝜀̇11

𝛽(1) =

⎛

⎜

⎜

⎜

⎝

𝑓1 + 𝑓2
𝐶 (1)
1111 +

(

𝐶 (1)
1122 − 𝐶 (1)

1111

)

𝛼(1)

𝐶 (2)
1111 +

(

𝐶 (2)
1122 − 𝐶 (2)

1111

)

𝛼(2)

⎞

⎟

⎟

⎟

⎠

−1

𝛽(2) =

⎛

⎜

⎜

⎜

⎝

𝑓2 + 𝑓1
𝐶 (2)
1111 +

(

𝐶 (2)
1122 − 𝐶 (2)

1111

)

𝛼(2)

𝐶 (1)
1111 +

(

𝐶 (1)
1122 − 𝐶 (1)

1111

)

𝛼(1)

⎞

⎟

⎟

⎟

⎠

−1

.

(41)

It should be noted that introducing two elastic perfectly plastic phases
with different properties results in macroscopic behavior exhibiting an
apparent linear (kinematic) hardening. Indeed, the local plastic flow
depends on the value of the macroscopic stress, which causes the phases
to reach plasticity separately. In particular, each component of the
macroscopic stress tensor depends linearly (with a slope depending on
the local material properties) on the macroscopic axial strain when only
one phase is plastic. In the case of both local phases having reached
plasticity, the macroscopic behavior becomes elastic perfectly plastic.

The incremental HEM-based elasto-plastic model has been mainly
derived to take into account the effect of the microstructure on the
effective properties. However, it can also be used to estimate the
local plastic strains in the different phases. Indeed, the local plastic
strains 𝜀(𝑖)𝑝 are internal parameters on the HEM-based model since they
are used to compute the overall plastic properties. Moreover, their
evolution equation can be directly related to the macroscopic axial
stress increment 𝜎̇11:

𝜎̇11 =

(

𝐶 (𝑖)
1111

𝛼(𝑖)
+ 𝐶 (𝑖)

1122 − 𝐶 (𝑖)
1111

)

𝜀̇(𝑖)𝑝,11. (42)

The HEM-based model, combined with the wave propagation equation,
can be thus used to determine (approximately) the local plastic strains
in the phases without having to resort to a full-field simulations in
which the local phases need to be finely meshed. In Eq. (42), the
increment of local plastic strain only depends on the increment of
axial stress (which is uniform in the quasi-static laminate) and the
mechanical properties of the chosen phase. As such, the computation
of the local plastic strain is not different from a homogeneous case.

A key point in the previous developments is that the local phases
have an elastic perfectly plastic behavior. Thanks to this hypothesis,
the coefficients 𝛼(𝑖) from Eq. (34) are constant, and the local plastic
strains increments depend explicitly on the local total strain incre-
ments. Considering a strain rate dependent plasticity model would
make the 𝛼(𝑖) functions of the plastic strains, and the plastic wave

velocities would not be constant. Therefore, in the case of strain rate
dependent plasticity model, a radial return algorithm would be neces-
sary to solve the plasticity criterion, which would make the HEM model
only semi-analytic.

4. Numerical simulation of shock wave propagation in heteroge-
neous elasto-plastic layered specimens

4.1. Numerical implementation

We will now detail the numerical methods used to solve the elasto-
plastic wave propagation Eq. (13). The finite volume methods are a
good choice for such problem, because they allow the use of a vari-
ety of numerical schemes suitable for hyperbolic equations (Leveque,
2002). Let us subdivide the spatial and temporal domains with constant
spatial and time increments, 𝛥𝑥 and 𝛥𝑡 respectively. In non-linear
wave propagation problems, explicit time integration methods are gen-
erally preferred over implicit methods because they do not require
matrix inversion operations. The numerical stability of explicit meth-
ods needs to be enforced using the standard Courant–Friedrichs–Lewy
(CFL) condition

CFL = 𝑐max
𝛥𝑡
𝛥𝑥

≤ 1. (43)

Eq. (43) ensures that no information propagates outside the numerical
domain in which the equation is solved. The quantity 𝑐𝑚𝑎𝑥 is the maxi-
mum value of the axial wave velocity for all the phases considered. This
enforces the validity of Eq. (43) for each spatial cell of the numerical
domain. The CFL value is thus an input parameter of the simulations.
The time increment 𝛥𝑡 is then deduced using the value of 𝛥𝑥 chosen and
the material parameters of the phases, which allows the computation
of 𝑐𝑚𝑎𝑥 with Eq. (15).

The quality of numerical schemes can be assessed by the amount of
spurious oscillations and artificial viscosity introduced in the solution.
To that extent, high resolution Godunov-type schemes offer very good
performances as they introduce very little spurious oscillations and
artificial viscosity (Heuzé, 2017, 2019; Leveque, 1997), compared to
other method such as the Lax–Wendroff scheme, Lax–Friedrichs scheme
(whose details can be found in Leveque, 1997), and the finite ele-
ments solver coupled with explicit time integration (Park et al., 2011,
2012; Mirbagheri et al., 2015; Noh and Bathe, 2013). The Godunov
scheme makes notably use of a spectral decomposition of the matrix 𝑨
of Eq. (13) and a flux limiter (in this case, a scalar function limiting the
amplitude of the in and out-going fluxes at each cell if they are above a
certain value). Thus, this method adds only a small amount of artificial
viscosity locally where it is necessary, to prevent the emergence of
spurious oscillations. Some illustrative examples of several numerical
schemes are provided in Appendix C.

4.2. Description of the simulations

In this section, we describe the simulations that will be performed
to study the effect of microstructural heterogeneity on elasto-plastic
stress wave propagation. In order to characterize this effect, we need to
consider several microstructures with various degrees of heterogeneity.
We will consider the same volume fraction for the two phases (𝑓1 =
𝑓2 = 0.5) and several couples (𝜅(1), 𝜅(2)) and (𝜇(1), 𝜇(2)) defining the
stiffness tensor (4), that lead to the same effective elastic properties: this
permits to study the sole effect of elastic heterogeneity (the yield stress
being assumed to the same in both phase). Three cases will thus be
considered numerically:

• The heterogeneous microstructure, comprising many elastic per-
fectly plastic isotropic layers, solved with the full field numerical
scheme presented above.



Table 1
Values of the material parameters considered for the simulations.
Test cases 𝜅(1) (GPa) 𝜅(2) (GPa) 𝜇(1) (GPa) 𝜇(2) (GPa) 𝜌 (kg m−3) 𝜎𝑌 (MPa) 𝑑ln

Homogeneous 175 175 80.8 80.8 7800 870 0

Cases with uniform 𝜇

Test case 1 193.9 158.3 80.8 80.8 7800 870 0.2
Test case 2 204.3 150.8 80.8 80.8 7800 870 0.3
Test case 3 215.0 143.8 80.8 80.8 7800 870 0.4
Test case 4 226.5 137.3 80.8 80.8 7800 870 0.5

Cases with uniform 𝜅

Test case 5 175 175 84.5 77.1 7800 870 0.2
Test case 6 175 175 86.3 75.4 7800 870 0.3
Test case 7 175 175 88.1 73.7 7800 870 0.4
Test case 8 175 175 90.0 71.9 7800 870 0.5

• The homogenized equivalent medium (HEM) whose effective be-
havior is given in the incremental elasto-plastic homogenization
procedure indicated in Section 3.

• A standard homogeneous isotropic description of the material in
several cases: (i) with the properties of phase 1, (ii) with the
properties of phase 2 and (iii) with similar elastic properties and
yield stress as the HEM.

In order to characterize the mechanical contrast within the con-
sidered laminate structure, we need the have some measure of the
distance between the behavior of the two phases. This can be performed
using the so-called log-Euclidean distance for tensors which is invariant
upon inversion and thus is suitable for elasticity tensors (Moakher and
Norris, 2006; Morin et al., 2020). For two isotropic elasticity tensors
(as considered here), it can be shown that the log-Euclidean distance,
denoted by 𝑑ln, reduces to

𝑑ln = ‖

‖

‖

ln
(

C(1)) − ln
(

C(2))‖
‖

‖

=

√

ln2
(

𝜅(1)

𝜅(2)

)

+ 5 ln2
(

𝜇(1)

𝜇(2)

)

. (44)

Interestingly, the distance between the two phases is directly related
to the contrast between the phases 𝜅(1)∕𝜅(2) and 𝜇(1)∕𝜇(2). Several cases
will be investigated, keeping one of the parameters 𝜇 or 𝜅 constant and
varying the other one, and for various contrasts of phases. It must be
noted that we do not consider any contrast in the density 𝜌 nor in the
yield strength 𝜎𝑌 , for sake of simplicity. As for the target behavior, we
consider a behavior similar to a 12Cr steel, following Ballard (1991).
The choice of this material allows the use of Hooke’s law for the elastic
behavior, instead of an equation of state, for applied pressure below
17 GPa. A summary of all the cases considered is given in Table 1. All
the cases listed lead to the same effective elastic behavior defined by
𝜇 = 80.8 GPa and 𝜅 = 175 GPa.

A spatial domain of length 𝐿 = 3.5 mm is considered and it is dis-
cretized with 1800 equidistant cells, the spatial increment is thus about
𝛥𝑥 = 1.94 μm. A CFL equal to 0.9 was considered in all simulations. The
duration of the simulation is set to 𝑇 = 570 ns, so that the stress waves
can propagate long enough to be attenuated and not induce plastic
strains anymore, but also so that there is no reflection at the imposed
free edge at 𝑥1 = 𝐿 (a second passage of the wave with an opposite sign
would possibly modify the plastic strain field). Thus, all the results for
the plastic strain fields will be presented at time 𝑡 = 𝑇 . The boundary
conditions considered are as follows:

𝜎11(0, 𝑡) =
{

𝑃 (𝑡) if 𝑡 ≤ 200 ns
0 if 𝑡 > 200 ns ,

𝜎11(𝐿, 𝑡) = 0,
{

𝑣1(𝑥1, 0) = 0
𝜎11(𝑥1, 0) = 0

for 0 ≤ 𝑥1 ≤ 𝐿, (45)

where 𝑃 (𝑡) is the applied pressure produced by the laser shock whose
profile is represented in Figure 1b. The amplitude chosen will be 5

GPa3 and the temporal duration of this signal at mid-height is about
20 ns. A free edge is enforced at 𝑥1 = 𝐿. The number of layers will be
set to 300 along the domain’s length, i.e. each layer has a thickness
of 11.7 μm. The number of spatial cells per layer is set to 6. This
number of layers will ensure that the stress wave propagates through a
sufficient number of layers. When considering the velocity within the
homogeneous specimen in the axial direction, the stress wave spreads
over 10 layers during the pulse duration. According to Ballard (1991),
the limit value of the applied pressure above which hydrodynamic
effects cannot be neglected is approximated by 0.1𝜅. Therefore, the
hydrodynamic effect can be neglected for all the test cases in Table 1.

4.3. Full-field results for the laminate

Let us first begin with an illustrative example which will be en-
lightening to understand the effect of material heterogeneity on the
mechanical fields. The axial plastic strain profile is represented in
Fig. 3 at the end of the simulation, for the test case 1, as well as
the solutions for two homogeneous specimens, respectively with the
properties of the phases 1 and 2 of the present test case. This last point
aims to illustrate how the response of a heterogeneous microstructure
is different from a homogeneous material. The plastic strain profile for
the layered specimen is typical of what can be obtained with the full
field model. In particular, the profile exhibits sharp variations whose
lengths correspond to the thickness of the layers, corresponding to
discontinuities from one phase to another. This ‘‘oscillatory’’ plastic
strain profile is thus a consequence of the heterogeneous elastic be-
havior of the laminate. When comparing it to the response of the two
homogeneous specimens, it clearly appears that adopting a layered
description drastically changes the behavior of the specimen. Except
for the initial part of the profiles (𝑥1 ≤ 0.4 mm, approximately), the
behaviors of the phases are neither bounds for the variations of the
full field solution, nor a correct match for the affected depth, i.e. the
depth up to which plastic strains are non zero. This is due to the fact
that the shockwave is damped when plastifying the specimen, and to
the fact that a mechanical interaction arises between both phases in
the laminate, modifying the local stress state. However at some point
in the laminate, the value of the stress wave is not high enough to
plastify one of the phase. It is then only damped in only one of them
(the other behaving elastically), allowing it to travel further without
being completely attenuated to the lowest value necessary to plastify
at least one phase. In the homogeneous cases, the wave is continuously
attenuated, hence the shorter affected depth.

Since the response of the heterogeneous specimen shows an oscil-
latory behavior, the study of its mean behavior is also of interest to
characterize the effect of the heterogeneity. This mean behavior can be

3 Though the results will be presented for a positive amplitude, the inter-
pretations are also valid for a negative amplitude, which would correspond
better to LSP applications.



Fig. 3. Comparison of the plastic strain profiles for the heterogeneous case, the homogeneous case with elastic properties (𝜅(1) , 𝜇(1)) and the homogeneous case with elastic
properties (𝜅(2) , 𝜇(2)). (a) Representation in the entire spatial domain and (b) Enlarged view to show the oscillatory nature of the profile in the laminate specimen.

Fig. 4. Distribution of the post-treated mean behavior and amplitude profiles calculated
from the full field solution of the laminate in the test case 1.

easily computed from the full oscillatory profile, as a post-treatment,
by averaging the values at the layers’ interfaces. The amplitude of the
plastic strain variations are also computed from the response shown
in Fig. 3. The associated post-treated mean behavior as well as the
amplitude of the variations are represented in Fig. 4 for illustrative
purposes.

The influence of the material parameters 𝜅(1), 𝜅(2), 𝜇(1) and 𝜇(2) on
the mean behavior of the plastic strain and on the amplitude of its
variations are now investigated and shown in Figs. 5 and 6. In the case
of the mean behavior, the comparisons will include the homogeneous
specimen (with elastic properties 𝜇 = 80.8 GPa and 𝜅 = 175 GPa),
which does not exhibit variations in the solution, to emphasize how
the behaviors deviate from it.

The results of Figs. 5a and 6a show that the mean behavior of all
test cases differs significantly from the homogeneous specimen, even
for a small value of the elastic contrast, indicating the presence of an
apparent hardening. More precisely, in all cases, the mean behaviors
correspond at first to the homogeneous specimen, but some differences
are observed at depths 𝑥1 ≥ 1 mm, resulting in a greater depth affected
by plastic strains. However this new affected depth does not seem to
vary with the elastic parameters. When a plastic stress wave propagates
through the specimen, it is gradually attenuated until its amplitude
is no longer high enough for plasticity to be active. The fact that
the affected depth does not vary with the elastic contrast indicates
that the stress waves reach the same distance before being completely
attenuated down to the lowest value of the axial stress causing the
phases to reach plasticity.

As for the amplitudes of the variations in Figs. 5b and 6b, they
increase with the elastic contrast between the phases. As the latter
increases, the amount of plasticity induced in the layer with the higher
value of 𝜅 or 𝜇 will decrease, since this layer is becoming stiffer, while it
will increase in the other, which results in an increase of the variations
amplitude.

4.4. Local plastic strain heterogeneities predicted by the HEM-based model-
ing

We will now present the results of the HEM-based plasticity model
developed in Section 3.3. As explained in this section, the HEM-based
model contains several internal parameters involved in the definition
of the macroscopic fields. In particular, the local plastic strain field
is known and reduces to the sole variables 𝜀(1)𝑝,11 and 𝜀(2)𝑝,11 since the
local plastic strain field is uniform within the two phases. Thus, in
the simulations performed with the HEM-based model, the local plastic
strain at each node of the domain in the two phases can be estimated.
As shown in Section 3, this estimation relies on the assumption that
the laminate is subjected to macroscopically homogeneous boundary
conditions, at each node of the domain.

We will now compare those plastic strains per phase calculated from
the HEM-based model with the local plastic strain obtained with the
full-field procedure. The plastic strain profiles are compared in Fig. 7
for the test cases 1 and 5, and in Fig. 8 for the test cases 4 and 8.

It is remarkable to note that the plastic strain profiles in the phases,
determined from the HEM-based model, define almost perfectly the
envelope of the oscillatory distribution of plastic strain obtained with
the reference full-field procedure. Such a match is actually observed in
all test cases. A possible explanation is that this HEM model is the exact
solution for a quasi-static loading, and that its extension to a dynamic
loading such as one with a wavelength high enough compared to the
thickness of the layers is still a good approximation. One can also notice
that the plastic strain profiles for phase 1 and 2 do not present the same
behavior when 𝜅 or 𝜇 is taken constant: the phases with the higher
plastic strain values are swapped between the two profiles in Figs. 7b
and 8b once the plastic strain stops saturating (and starts diminishing).
This feature is in agreement with the results of the full-field solution for
which this ‘crossing’ is also observed (see the sudden decrease of the
plastic strain amplitude in Fig. 6b at 𝑥1 ≃ 0.3 mm). Those results imply
that the HEM-based model succeeds in reproducing the amplitude of
the variations.

4.5. Mean plastic strain estimated by the HEM-based model

The HEM-based model allows computing the effective axial plastic
strain 𝜀𝑝,11. However, as addressed in Section 3.3, the effective axial



Fig. 5. Influence of the heterogeneity of the moduli 𝜅(𝑖) (with constant coefficient 𝜇) on the distribution of the plastic strain (cases 1 to 4). (a) Mean plastic strain and (b)
Amplitude of variations of the plastic strain field.

Fig. 6. Influence of the heterogeneity of the moduli 𝜇(𝑖) (with constant coefficient 𝜅) on the distribution of the plastic strain (cases 5 to 8). (a) Mean plastic strain and (b)
Amplitude of variations of the plastic strain field.

Fig. 7. Superposition of the full field plastic strain profile and the local plastic strain obtained using the HEM. (a) Test case 1 and (b) test case 5.

plastic strain 𝜀𝑝,11 is not equal to the mean axial plastic strain defined by
⟨

𝜀𝑝,11
⟩

. On the other hand, in the full field simulations, it is the quantity
⟨

𝜀𝑝,11
⟩

that is computed from the envelope of the variations and
displayed in Figs. 5a and 6a. Thus, to further assess the performance of
the HEM-based model, the mean axial plastic strain will be considered
instead of the effective axial plastic strain for the comparison with the
full-field solution. It can be also remarked that, as an indication, in the
considered cases, the deviation between the mean plastic strain and the

effective plastic strain predicted by the HEM-based model is always less
that 3.7%.

The profiles of mean plastic strain are represented in Fig. 9 for the
cases 1 and 5 (with both 𝑑ln = 0.2) and in Fig. 10 for the cases 4 and 8
(with both 𝑑ln = 0.5).

From Figs. 9 and 10 we can see that there is a good agreement
between the mean plastic strain of the HEM-based model and the
mean plastic strain calculated using the numerical full-field approach.



Fig. 8. Superposition of the full field plastic strain profile and the local plastic strain obtained using the HEM. (a) Test case 4 and (b) test case 8.

Fig. 9. Comparison between the mean plastic strain of the HEM-based model and the mean plastic strain of the full field reference solution for 𝑑ln = 0.2. (a) Test case 1 (a) and
(b) Test case 5.

Fig. 10. Comparison between the mean plastic strain of the HEM-based model and the mean plastic strain of the full-field solution for 𝑑ln = 0.5. (a) Test case 4 (a) and (b) Test
case 8.

When considering the microstructure heterogeneity, the depth affected
by LSP, in which plastic strain occurs, is about twice as large as the
one predicted by the standard approach in which the specimen is
supposed to be homogeneous. The comparison with the homogeneous
behavior illustrates the important impact of the mechanical hetero-
geneities. Figs. 9 and 10 show that the use the HEM-based model,
which is composed of three evolution domains (the two phases are
elastic, one is plastic and both are plastic), each with an associated

incremental law, allows the reproduction, on average, of the correct
solution provided by the full field procedure to a good accuracy. In
particular, the comparison holds particularly well in the case where
𝜅 remains constant between the phases (Figs. 9b and 10b), which is
related to the low level of the variations amplitude as shown in Fig. 6b.

In Figs. 9 and 10, and particularly in Figs. 9a and 10a, the affected
depth predicted by the HEM-based model is slightly lower than the
affected depth predicted by the reference full-field procedure. This



difference can be related to the presence of reflections of the stress 
wave in the laminate specimen due to the impedance mismatch which 
are absent in the HEM-based model. In the full-field solution, after a 
certain time, the stress wave is damped to the lowest value of axial 
stress needed to trigger plasticity in at least one phase. However, 
because of the reflections, this value may be exceeded by a little 
amount, thus inducing a small amount of plastic strain at a depth where 
the stress wave in the HEM model has been attenuated enough not 
to generate plastic strains. Such a difference in the predictions, also 
displayed in Figs. 7 and 8, may have repercussions on the residual 
stresses prediction. However, the plastically affected depth does not a 
priori correspond to the depth to which residual stresses are introduced. 
The residual stresses can be non zero where there is no plastic strain, 
since the material must be at equilibrium. Further work is required to 
investigate deeply the link between the distribution of plastic strain in 
the heterogeneous material and the build up of the residual stress field.

4.6. Comments on the loading conditions

It should be noted that, in the present simulations, the applied
maximum stress was equal to 5 GPa, which is always higher than 2𝜎HEL
with

𝜎HEL = 𝜎𝑌

(

2
3
+ 𝜅

2𝜇

)

. (46)

The quantity 𝜎HEL defined in (46) is called the Hugoniot Elastic Limit.
Thus, for this applied loading, the plastic strain saturates (in the first
part of the domain), as it can be observed in the form of a ‘plateau’
in Figs. 3, 4, 5, 6, 9 and 10. As explained in Ballard (1991), in an
isotropic homogeneous material, the plastic strain in these parts does
not depend of the amplitude 𝑃 of the pressure but only on the material
parameters. The hypotheses leading to the derivation of the expression
of this saturated plastic strain are also valid at the local scale in the full-
field and HEM model, since the local phases are homogeneous isotropic,
with incompressible plasticity. It can thus be notably shown that, if the
pressure has an amplitude greater than 2𝜎HEL (which is the case here),
the value of the saturation plateau in the phases, denoted by 𝜀𝑚𝑎𝑥𝑝 is
given by

𝜀𝑚𝑎𝑥,(𝑖)𝑝 =
2𝐶 (𝑖)

1111𝜎
(𝑖)
𝑌

(

𝐶 (𝑖)
1111 − 𝐶 (𝑖)

1122

)(

𝐶 (𝑖)
1111 + 2𝐶 (𝑖)

1122

) = 1
3

(

1
𝜇(𝑖)

+ 4
3𝜅(𝑖)

)

𝜎(𝑖)𝑌 . (47)

The validity of (47) for the local plastic strain computed by the
HEM-based model can be verified in Figs. 7 and 8. Its validity for a
homogeneous or heterogeneous case is also numerically verified by the
fact that the saturation plateaus are identical between the heteroge-
neous full-field solution, and homogeneous solutions in Fig. 3. Thus
when the value of 𝜅 or 𝜇 increases, the value of 𝜀𝑚𝑎𝑥𝑝 decreases, as
verified in Figs. 8a and 8b. It is also interesting to note that, when 𝜎HEL
decreases, the affected depth increases. The affected depth should thus
increase when 𝜅 decreases or when 𝜇 increases, as it is also verified in
Figs. 8a and 8b.

It must be noted that the choice of the loading amplitude 𝑃 was
arbitrary, and a value under the threshold 2𝜎HEL would have given dif-
ferent plastic strain profiles, without however changing the conclusions
drawn from the present study, concerning the greater affected depth,
the profiles of the mean plastic strain of the full-field solution, and the
increase of the amplitudes with the elastic contrast.

5. Discussion

The numerical simulations of a laser shock propagating in an het-
erogeneous specimen have permitted to show interesting features on
the residual plastic strain related to the elastic heterogeneity between
the phases. Indeed, the plastic strain profile exhibits discontinuities at
the phases’ interfaces. From this profile, the mean plastic strain and the

amplitude of its variations have been extracted in order to characterize
the effect of the contrast in the elastic behavior between the two phases.
An increase of the elastic contrast leads to an increase of the amplitude
of the variations and modify the plastic strain distribution. In LSP, the
plastic strain profile induced by the elasto-plastic wave propagation
results in the emergence of residual stresses which are expected to
increase fatigue resistance. Thus, the heterogeneity of the plastic strain
profile described in this work can have important consequences upon
the fatigue resistance as it induces heterogeneous residual stresses at
the scale of the individual components of the microstructure.

The effect of heterogeneity has also been studied by means of a
HEM-based model accounting for the heterogeneous microstructure. A
quasi-static elasto-plastic homogenization has been performed and lead
to a macroscopic elasto-plastic with internal parameter describing the
local conditions of plasticity of the phase. For each domain, incremental
laws are derived, to allow the computation of the stress wave propa-
gation as well as the update of the internal variables. As a result, the
outcome of the model is the mean plastic behavior of the microstructure
but also an estimate of the localized plastic strains in the phases.
The predictions of the HEM-based model have been compared to the
reference numerical results of provided by the full-field procedure and
a very good agreement was observed: the HEM-based model captures
very accurately the mean plastic profile as well as the envelope of
the variations amplitudes. Such results have promising consequences
in terms of computational costs. Indeed, the main drawback of the
full-field simulations is that they require a very fine spatial discretiza-
tion in order to describe each layer. Thus for large specimen with
small heterogeneities, the computation time can become prohibitive.
In contrast, the HEM-based model does not require particularly fine
mesh and can be an appealing alternative to estimate the fluctuation
of the plastic strain in heterogeneous specimens subjected to a laser
shock. More generally, such an approach will allow accounting for
the specific microstructure of the metallic specimen treated by LSP,
such as the average grain shape and the crystallographic texture, and
the associated anisotropic elasto-visco-plastic behavior. This requires
using a homogenization model adapted to such microstructures, as
in Castelnau et al. (2001), Blackman et al. (2017) and Gu et al. (2019).
It is thus possible to approximate closely the features of the full-field
solution with a HEM-based model requiring far less computation time.
As an indication, for the test case 4 of Table 1, the time required by
the HEM-based model is approximately five times less than the time
required by the full-field simulation to achieve comparable results. A
more thorough study is however necessary to draw definitive conclu-
sions. The minimum computation time required by the full field model
to achieve converged results depends on the number of layers, since
each layer has to be meshed finely enough. Thus the computation time
gained by the use of the HEM-based model depends on the number
of layers of the microstructure, and is expected to increase as the
number of layers increases. The mechanical properties also influence
the computational resources necessary, since Eq. (43) must hold. It
means that for a given 𝛥𝑥 and CFL number, the higher the elastic
velocity, the lower the time increment will be, and the computation
will thus require more increments to finish.

Finally, we also want to emphasize that the results obtained with
the HEM-based model are only valid for heterogeneities with small
characteristic size compared to the wavelength of the dynamic loading,
as explained in Capdeville et al. (2010). Indeed, for thick layers,
replacing the specimen comprising a small number of thick layers by
its HEM is not a valid procedure. To illustrate this, let us consider
again the test case 4 of Table 1, with the same simulation parameters
as in the previous simulations but only 20 layers are considered, so
their thickness is now 0.175 mm. The distribution of the plastic strain,
represented in Fig. 11 shows that the results for the HEM-based model
do not match with the reference full-field solution, due to the low
number of layers. The difficulty arising from such an observation is to



Fig. 11. Plastic strain profiles for the full-field and HEM-based models in the case of 
thick layers.

clearly identify the number of layers, for a given loading and material, 
above which one can safely use the HEM-based model to approximate 
the full-field behavior.

As an indication, different simulations of the test case 4 but with 
different numbers of layers show that the overall difference between 
the mean plastic strain computed with the full-field and HEM-based 
models significantly decreases up to 250 layers, and then seems to reach 
a plateau. We stress that a more thorough study is necessary to draw 
definitive conclusions.

6. Conclusion

The present work aimed at providing an improved modeling of 
a laser impact on a metallic specimen, by taking into account the 
specimen’s microstructure. We considered the simplified case of a 
laminate microstructure subjected to a uniaxial state of strain. The mi-
crostructure was composed of two phases alternating periodically and 
perfectly bonded together. Following those hypotheses, we modeled the 
stress wave propagation via an hyperbolic PDE system, which we solve 
using a high-resolution Godunov scheme. To further describe the effect 
of the laminate microstructure on the stress wave propagation but at 
a lower numerical cost, an elasto-plastic HEM-based model has been 
developed. This HEM-based model is found to be able to reproduce 
accurately the spatial distribution of the mean plastic strain within 
the specimen compared to the reference full-field numerical solution, 
provided the number of layers is high enough. More significantly, this 
HEM-based elasto-plastic model allows to compute the local plastic 
strains in the phases (without however knowing their precise position 
within the sample), which permits to estimate the magnitude of the 
residual plastic strain heterogeneities. The advantage of the HEM-based 
model is that it permits to decrease the computational time since it 
does not require to mesh finely each layer, in contrast with the full-
field approach. With this simplified model, the CPU gain is about a 
factor 6 but we anticipate that it will become significantly larger when 
dealing with 2D or even 3D cases and when considering more complex 
microstructures such as the ones of polycrystalline materials (Quey 
et al., 2011; Eghtesad et al., 2018).

The present results constitute a first step towards the simulation of 
micro-LSP, for which the effect of the microstructure heterogeneity is 
expected to be important. Some further developments are needed in the 
following directions:

• Only two different phases were considered for the laminate spec-
imen. It would be interesting to extend the developments to a
larger number of phases.

• An experimental validation of the results is necessary to properly
assess the effect of the microstructure in the residual plastic

strain. Co-laminated metallic specimens produced by accumula-
tive roll bonding (ARB) would be good candidates to assess the
model as the number and thickness of the layers can be finely
controlled (Verstraete et al., 2018).

• The current works paves the way for further developments includ-
ing a description of the microstructure of a polycrystal aggregates
comprising anisotropic grains with different orientations, result-
ing in different material properties along the direction of the
shock. Contrary to the present work, these microstructures would
also have some degree of randomness in their description.

• The extension of the present work to a 2D or 3D case (e.g. with
a polycrystalline microstructure) is necessary in order to provide
distributions of residual stresses which are ultimately of interest
to study the possible increase of fatigue life after laser shock
peening.

• Only the plastic strain fields in heterogeneous materials have been
investigated in the present work. The prediction of the associated
residual stress field (using e.g. eigenstrain methods) would be of
important practical interest for LSP applications. In that regard,
comparisons with 2D or 3D FEM calculations of residual stresses
will permit to assess the 1D model.
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Appendix A. Effective stiffness tensor 𝐂̃

We give here the details about the derivation of the effective stiff-
ness tensor C̃ for the purely elastic two-phase laminate. The proof is
based on the developments and results of Postma (1955) and Milton
(2002), but given in the more general case of phases with transverse
isotropic behavior:

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐶1111 𝐶1122 𝐶1122 0 0 0
𝐶1122 𝐶2222 𝐶2233 0 0 0
𝐶1122 𝐶2233 𝐶2222 0 0 0
0 0 0 2𝐶2323 0 0
0 0 0 0 2𝐶1313 0
0 0 0 0 0 2𝐶1313

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.1)

with 2𝐶2323 = 𝐶2222−𝐶2233. Let us first express the non-uniform diagonal
components of the mechanical fields:

⎧

⎪

⎨

⎪

⎩

𝜀𝑒,11 =
𝜎11
𝐶1111

−
𝐶1122
𝐶1111

𝜀𝑒,22 −
𝐶1122
𝐶1111

𝜀𝑒,33
𝜎22 = 𝐶1122𝜀𝑒,11 + 𝐶2222𝜀𝑒,22 + 𝐶2233𝜀𝑒,33
𝜎33 = 𝐶1122𝜀𝑒,11 + 𝐶2233𝜀𝑒,22 + 𝐶2222𝜀𝑒,33.

(A.2)

System (A.2) is then written alternatively by injecting the first equation
of the system into the other two, and by identifying the uniform
quantities (given by Eq. (25)):
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(A.3)

By taking the spatial average in system (A.3), one gets:
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(A.4)

This leads to the expressions of the components 𝐶1111, 𝐶2222, 𝐶1122 and
𝐶2233 of the effective stiffness tensor:

𝐶1111 =
⟨

1
𝐶1111

⟩−1
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(A.5)

The determination of the shear coefficients of the effective stiffness
tensor follows a similar reasoning. Let us first express the non-uniform
off-diagonal components of the mechanical fields (in terms of the
uniform components):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜀𝑒,13 =
𝜎13
𝐶1313

𝜀𝑒,12 =
𝜎12
𝐶1313

𝜎23 = 𝐶2323𝜀𝑒,23.

(A.6)

By taking the spatial average in system (A.6), one gets the expressions
of 𝐶1212, 𝐶1313 and 𝐶2323:

𝐶1212 = 𝐶1313 =
⟨

1
𝐶1313

⟩−1
, 𝐶2323 = ⟨𝐶2323⟩ . (A.7)

Since 2𝐶2323 = 𝐶2222 − 𝐶2233, one also has 2𝐶2323 = 𝐶2222 − 𝐶2233.
The isotropic case considered in this work is achieved by using

the results of this appendix with 𝐶2233 = 𝐶1122, 𝐶2222 = 𝐶1111 and
𝐶2323 = 𝐶1313.

Appendix B. Effective plasticity model

We now detail the developments leading to the determination of
the conditions on the macroscopic stress 𝝈 for which the local phases
reach plasticity, given by Eqs. (37)–(41). It must be noted that only
the value of 𝜎11 is required to assess local plasticity, but the conditions
will be given in terms of 𝜎11 − 𝜎22 in order to define a macroscopic
criterion whose structure follows the local plasticity criterion (11).
Those derivations lead to closed-form expressions.

B.1. One phase has reached plasticity

We start by deriving the expressions of the coefficients 𝛽(𝑖) used in
Eqs. (38) and (40). The developments will be made in the case of phase
1 reaching plasticity before phase 2. We start from the definition of 𝜀̇11:

𝜀̇11 = 𝑓1𝜀̇
(1)
11 + 𝑓2𝜀̇

(2)
11 . (B.1)

By taking advantage of the uniformity of the axial stress and the
definition of the coefficient 𝛼 defined in Eq. (17), we can express 𝜀̇(2)11
as a function of 𝜀̇(1)11

𝜀̇(2)11 =
𝐶 (1)
1111

(

1 − 𝛼(1)
)

+ 𝛼(1)𝐶 (1)
1122

𝐶 (2)
1111

𝜀̇(1)11 . (B.2)

Substituting (B.2) in (B.1), one gets
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⎛

⎜

⎜

⎜

⎝

𝑓1 + 𝑓2
𝐶 (1)
1111 +

(

𝐶 (1)
1122 − 𝐶 (1)

1111

)

𝛼(1)

𝐶 (2)
1111

⎞

⎟

⎟

⎟

⎠

−1

𝜀̇11 = 𝛽(1)𝜀̇11. (B.3)

Still considering that phase 1 reaches plasticity before phase 2, the
expression of 𝛽(2) is:

𝛽(2) =

⎛

⎜

⎜

⎜

⎝

𝑓2 + 𝑓1
𝐶 (2)
1111

𝐶 (1)
1111 +

(

𝐶 (1)
1122 − 𝐶 (1)

1111

)

𝛼(1)

⎞

⎟

⎟

⎟

⎠

−1

. (B.4)

Loading path characterized by 𝜀̇11 > 0. In order to assess the macro-
scopic stress state for which the evolution becomes plastic, one needs
to study the local plasticity criterion; the local plasticity criterion (1)4
reduces to:
(

1 −
𝐶1122
𝐶1111

)

𝜎11 +
(

(𝐶1122)2

𝐶1111
−

𝐶2222 + 𝐶2233
2

)

𝜀𝑝,11 = 𝜎𝑌 . (B.5)

Since 𝜎11 is uniform in the laminate (i.e. 𝜎11 = 𝜎11), on can deduce the
value of 𝜎11 for which local plasticity occurs, denoted by 𝜎(+):

𝜎(+) = min
(𝑖)

(

𝐶 (𝑖)
1111

𝐶 (𝑖)
1111 − 𝐶 (𝑖)

1122

[

𝜎(𝑖)𝑌 −

(

(𝐶 (𝑖)
1122)

2

𝐶 (𝑖)
1111

−
𝐶 (𝑖)
2222 + 𝐶 (𝑖)

2233
2

)

𝜀(𝑖)𝑝,11

])

.

(B.6)

The evolution remains elastic as long as 𝜎11 ≤ 𝜎(+), i.e. as long as:

𝜎11 − 𝜎22 ≤

(

1 −
𝐶1122

𝐶1111

)

𝜎(+) + 𝜀𝑝,22

(

𝐶2222 + 𝐶2233 −
2𝐶2

1122

𝐶1111

)

. (B.7)

Loading path characterized by 𝜀̇11 < 0. In that case, the local plasticity
criterion is met when
(

1 −
𝐶1122
𝐶1111

)

𝜎11 +
(

(𝐶1122)2

𝐶1111
−

𝐶2222 + 𝐶2233
2

)

𝜀𝑝,11 = −𝜎𝑌 . (B.8)

The minus sign of the right-hand side indicates a compression evolu-
tion, or an unloading from a tension state of stress. The value of 𝜎11
for which one of the phase reaches plasticity, denoted by 𝜎(−), is given
by:

𝜎(−) = max
(𝑖)

(

𝐶 (𝑖)
1111

𝐶 (𝑖)
1111 − 𝐶 (𝑖)

1122

[

−𝜎(𝑖)
𝑌 −

(

(𝐶 (𝑖)
1122)

2

𝐶 (𝑖)
1111

−
𝐶 (𝑖)
2222 + 𝐶 (𝑖)

2233

2

)

𝜀(𝑖)𝑝,11

])

.

(B.9)

The evolution remains elastic as long as 𝜎11 ≥ 𝜎(−), which translates to
the following condition on 𝜎11 − 𝜎22:

𝜎11 − 𝜎22 ≥

(

1 −
𝐶1122

𝐶1111

)

𝜎(−) + 𝜀𝑝,22

(

𝐶2222 + 𝐶2233 −
2𝐶2

1122

𝐶1111

)

. (B.10)

B.2. All phases have reached plasticity

We start again by deriving the expressions of the 𝛽(𝑖), used this time
in Eq. (41). The developments are similar to the previous case, but here
all the 𝜀̇(𝑖)𝑝,11 are non zero. Since both phases are plastic, the expression
of 𝛽(2) can be found from 𝛽(1) by swapping indexes. Let us first express
𝜀̇(2)11 as a function of 𝜀̇(1)11 :

𝜀̇(2)11 =
𝐶 (1)
1111 +

(

𝐶 (1)
1122 − 𝐶 (1)

1111

)

𝛼(1)

𝐶 (2)
1111 +

(

𝐶 (2)
1122 − 𝐶 (2)

1111

)

𝛼(2)
𝜀̇(1)11 . (B.11)



Fig. C.1. Comparison of the different numerical schemes for a square loading (LW: Lax–Wendroff, LF: Lax–Friedrichs, GHR: Godunov High Resolution). (a) Snapshot 𝑡 = 107 ns
and (b) Snapshot 𝑡 = 190 ns.

This leads to the expression of 𝛽(1):

𝜀̇(1)11 =

⎛

⎜

⎜

⎜

⎝

𝑓1 + 𝑓2
𝐶 (1)
1111 +

(

𝐶 (1)
1122 − 𝐶 (1)

1111

)

𝛼(1)

𝐶 (2)
1111 +

(

𝐶 (2)
1122 − 𝐶 (2)

1111

)

𝛼(2)

⎞

⎟

⎟

⎟

⎠

−1

𝜀̇11 = 𝛽(1)𝜀̇11 (B.12)

Then, we derive the value of |𝜎11 − 𝜎22| when all phases have reached
plasticity. (Here the absolute value is useful since the developments
are valid whether the specimen is in a compression or tension state
of stress). With Eq. (32) and the expression of 𝜀𝑝,22 given in (33),
|𝜎11 − 𝜎22| is given by:

|𝜎11 − 𝜎22| =
|

|

|

|

|

|

(

1 −
𝐶1122

𝐶1111

)

𝜎11 − 𝐶1122𝑀2

|

|

|

|

|

|

. (B.13)

Let 𝜎̂ denote the axial stress 𝜎11 such that all phases have reached
plasticity. The value of the local plastic strain induced by such an axial
stress can be derived from the local plasticity criterion (B.5) in each
phases:

𝜀̂𝑝 =
2𝐶1111

2(𝐶1122)2 − 𝐶1111(𝐶2222 + 𝐶2233)

(

±𝜎𝑌 −
(

1 −
𝐶1122
𝐶1111

)

𝜎̂
)

. (B.14)

The symbol ± denotes the fact that we do not draw a distinction on
whether both phases reach plasticity for a compression or tension state
of stress. Now using Eq. (31), the value of 𝑀2 can be deduced:

𝑀2 =
1

𝐶1122

[

𝑓1

((

1 −
𝐶 (1)
1122

𝐶 (1)
1111

)

𝜎̂ −
(

±𝜎(1)𝑌

)

)

+𝑓2

((

1 −
𝐶 (2)
1122

𝐶 (2)
1111

)

𝜎̂ −
(

±𝜎(2)𝑌

)

)]

. (B.15)

Eq. (B.13) thus reduces to:

|𝜎11 − 𝜎22| =
|

|

|

|

|

|

𝜎̂

(

1 −
𝐶1122

𝐶1111
− 𝑓1

(

1 −
𝐶 (1)
1122

𝐶 (1)
1111

)

− 𝑓2

(

1 −
𝐶 (2)
1122

𝐶 (2)
1111

))

+𝑓1
(

±𝜎(1)𝑌

)

+ 𝑓2
(

±𝜎(2)𝑌

)

|

|

|

|

|

|

. (B.16)

From the definition of 𝐶1111 and 𝐶1122, one has

𝐶1122

𝐶1111
=
⟨

𝐶1122
𝐶1111

⟩

, (B.17)

and, by taking advantage of the relation 𝑓1+𝑓2 = 1, it is straightforward
to see that

1 −
𝐶1122

𝐶1111
− 𝑓1

(

1 −
𝐶 (1)
1122

𝐶 (1)
1111

)

− 𝑓2

(

1 −
𝐶 (2)
1122

𝐶 (2)
1111

)

= 0. (B.18)

The condition on the macroscopic stress is thus given by:

|𝜎11 − 𝜎22| =
|

|

|

|

𝑓1
(

±𝜎(1)𝑌

)

+ 𝑓2
(

±𝜎(2)𝑌

)

|

|

|

|

= ⟨𝜎𝑌 ⟩ . (B.19)

This condition implies that the macroscopic equivalent stress is equal
to the mean yield strength when all the phases have reached plasticity.

Appendix C. Numerical methods comparison

In order to assess the accuracy of Godunov high resolution scheme
considered in this work, we compare its predictions with other standard
schemes of the literature (Lax–Friedrich and Lax–Wendroff) in a model
problem of a square stress loading, with an amplitude of 5 GPa for a
duration of 40 ns, propagating in an homogeneous isotropic material
(with 𝐸 = 210 GPa, 𝜈 = 0.3, 𝜌 = 7800 kg m−3 and 𝜎𝑌 = 870 MPa). This
problem admits an analytical solution which can be easily determined
by the method of characteristics (Ballard, 1991). The spatial domain
considered for the comparison has a length of 𝐿 = 2.2 mm, subdivided
in 1200 elements (enough to reach convergence). The quantity 𝑐𝛥𝑡∕𝛥𝑥
in Eq. (43) is set to 0.9.

The distribution of the axial stress 𝜎11 is represented in Fig. C.1 at
the snapshots at 𝑡 = 107 ns and 𝑡 = 190 ns. One can see that the Lax–
Friedrichs scheme adds too much viscosity to the solution, since the
sharp variations are not well captured. The solution is improved with
the Lax–Wendroff scheme, but some spurious oscillations are present
as well as some artificial viscosity. Among the numerical schemes
considered, the Godunov high resolution scheme appears to be the most
suitable method as it is closer to the analytical solution, which is in
agreement with previous works (Heuzé, 2017).
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