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Abstract—This paper proposes to optimize the real time opera-
tion of a microgrid controlled with a two-layer Model Predictive
Controller supervisor. Based on the classical decomposition of
control level, the proposed supervisor tracks long-term economic
references from a classical economic optimization routine. The
optimization problem is formulated as a Mixed Integer Quadratic
Problem and uses the different power references as levers to reach
this optimum and maintain the state of the microgrid within
limitations. In addition, it is able to minimize the grid losses.

I. INTRODUCTION

Microgrids can be defined as a set of distributed generators,
renewables or conventional ones, storage systems and loads
that can operate in a coordinated manner and possibly in
islanded mode. In addition, their aim is to produce locally
what is needed locally, by means of local controllers. Based
on conventional power system representation, the microgrid
community has developed three-level structure control super-
visor (see Figure 1).

Tertiary Control
Economical operation

Secondary Control
Nominal operation

Primary Control
Power sharing

Fig. 1: Micro-grid control architecture

The primary control ensures at the faster layer the power
sharing between all the active generators through well-known
techniques such as classical droop control and its variants [1].
The secondary control aims to restore nominal operations of
the microgrid following any fluctuation of the load or renew-
able sources while minimizing losses or the operating cost.
Finally, the tertiary control mainly focuses on the economical
optimization of the microgrid on a long-term basis. Secondary
and tertiary control are also known as Power and Energy
Management System (PMS and EMS) respectively. In the

latter we refer to microgrid supervisor as the combination of
secondary and tertiary control layers.

There are different tools and methods to achieve the su-
pervisor, depending on whether an optimal solution or an
approached solution is desired. Among the optimal control
techniques, Model Predictive Control (MPC) is one the most
promising. Using two-layer MPC supervisor fits the conven-
tional hierarchical control of microgrids previously described.
On the longer timescale, an economic optimization is achieved
for at least one day ahead. Model and constraints of this
layer only include the slow dynamics of the equipment and
economic performances of each one. On the faster timescale
the cost function embeds a trajectory tracking performance,
and some objectives related to the microgrid operation, such
as the losses minimization or the voltage and frequency devia-
tions. Each layer embeds a detailed model of the dynamics of
interest to optimize specific criteria. However, the convergence
of each objective may not be ensured. Coordinating economic
constraints with real time operations is crucial for microgrid
control. The problem of the cooperation between multi-layer
supervisors has been discussed in [2]. It has been handled by
a two-layer MPC with an intermediate module that computes
reachable states, constraints and target for the lower layer
based on an economical criterion. The authors of [3] proposed
a formulation of a two layer MPC and addressed the problem
by determining a subset of control action feasible at the
higher level. Then, the lower layer solves each of the tracking
problems for each feasible control action and regulate the
actuators. For microgrid application, the main focus is mainly
motivated to provide a solution to stochastic and uncertain
forecasts, as explained in [4] and [5]. The first one is a
survey on three methods to deal with the uncertainties of
the renewable energy by using stochastic MPC. In [5], it is
proposed to consider such stochastic optimization within the
lower level and a deterministic layer at the higher. However,
the models and objective functions remain the same in each
layer that is to say the power balance of the microgrid and
a minimization of the operating costs. In [6], the author
suggested to use a multi-layer structure so that each layer
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includes different model dynamics and objectives. Among the
three proposed architectures, the most promising consists in
a steady state optimization followed by a target correction at
the lower layer side that can handle an additional task. The
novelty in this paper is twofold. First, the Model Predictive
Control (MPC) technique allows the supervisor to include a
trajectory tracking problem into the objective function and thus
to consider economic references. Second, the embedded model
is able to predict the power injections at each node of the
microgrid and, by upgrading the objective function, losses can
be minimized.

The rest of this paper is organized as follows. In section II,
the supervisor and more specifically the secondary control, its
objectives and models will be detailed. To compare the con-
ventional and novel supervisor, two simulations are presented
in section III:

• Case 1: No losses minimization, the supervisor only
follows the economical references,

• Case 2: The supervisor is upgraded to minimize the
losses.

Finally, we will conclude on the possible improvements of this
new supervisor.

II. MPC-BASED SUPERVISOR AND MICROGRID MODEL

A. Global supervisor architecture

The computation of optimal references and economic opti-
mization of the microgrid are out of the scope of this paper,
and we refer the interested reader to optimal control reviews
such as [7] or unit commitment problem under uncertainties
reviews [8], and finally the global architecture of the supervi-
sor is depicted in Figure 2.
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Fig. 2: Micro-grid supervisor synoptic

B. Two-layer MPC-based supervisor

To develop the proposed supervisor, we used the well-
known Model Predictive Control technique which allows to
capture the system future behaviour thanks to a prediction
model and is able to minimize a multi-objective function with
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Fig. 3: Model Predictive Controller synoptic

several dynamics (see Figure 3 [6]). The model embedded
in the supervisor is based on the assumptions that over the
considered time scale the transient and high dynamics are not
of interest, and that the system remains close to its equilibrium
point. Hence, the microgrid system can be linearized and
the resulting model formulated as a discrete incremental state
space as follows:

[
x(k + 1)
u(k)

]
=

[
A B
0 I

] [
x(k)

u(k − 1)

]
+

[
B
I

]
Δu(k)

+

[
D
0

]
Δd(k)

y(k) =
[
C 0

] [ x(k)
u(k − 1)

]
in which x(k) is the state vector at time step k, u(k) the input
vector at timestep k, Δu(k) the change of input references
between (k − 1) and (k), and Δd(k) the disturbance vector.
Matrices A, B, D and C are obtained by the linearization of
the equations of the microgrid system as detailed for the main
equipment in the next section. As detailed in the introductory
paragraph, the objective of the supervisor is to reach as most as
possible the economic performances computed by the tertiary
control. Several performance indexes can be chosen such as
states of charge, produced energy or average power. In the rest
of this paper we assume the upper layer uses state of charges
references, and finally, the global objective function can be
expressed as:

min
Δu

Nc∑
k=1

[
α(ỹ − y∗(k))2 + β(Δu(k))

2
+ λ(Plos)

2
]

(1)

in which α, β, λ are the weighting factors of the trajectory
deviation, the uses of levers and the line losses resp., ỹ (k)
and y∗ (k) are the predicted and reference states for time k. It
can be noticed that an additional objective is added in order
to prevent saturation of the levers. Due to the difference of
timescale between the secondary and tertiary control, a linear
interpolation layer is introduced to define the references for
the lower layer objective function. At last, the different levers
which help to minimize the objective function will be detailed
in the next sections with the modelling of the microgrid
components.
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C. Microgrid network model

The proposed supervisor embeds a modelling of the mi-
crogrid network in order to supervise the voltage nodes
and the microgrid frequency. The traditional technique for
quasi steady-state modelling of the network is based on the
linearization of the power flow equations:

Pi = Vi

∑
j∈N

Vj |Yij | cos(δi − δj − θij)

Qi = Vi

∑
j∈N

Vj |Yij | sin(δi − δj − θij)
(2)

in which, |Vj |, |Vi|, δi, δj are the voltage magnitudes and
angles resp., |Yij | and θij are the admittance matrix magnitude
and angle resp. We recall that based on (3), we can derive and
include the frequency in the linear model (4).

|Yij | = 1√
R2

ij + ω2L2
ij

θij = tan−1

(
ωLij

Rij

) (3)

Thus, after linearization and calculation of the Jacobian matrix
((5), the power flow equations are modelled as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔV1(k + 1)
...

ΔVi(k + 1)
Δδ2(k + 1)

...
Δδi(k + 1)
Δω(k + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= J−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔP ∗
1 (k)
...

ΔPi
∗(k)

ΔQ1
∗(k)

...
ΔQi

∗(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

with

J−1 =

⎡⎣ ∂Pi

dV

∣∣
x(k)

∂Pi

dδ

∣∣
x(k)

∂Pi

dω

∣∣
x(k)

∂Qi

dV

∣∣∣
x(k)

∂Qi

dδ

∣∣∣
x(k)

∂Qi

dω

∣∣∣
x(k)

⎤⎦−1

(5)

and thus, ⎧⎨⎩
Vi(k + 1) = Vi(k) + ΔVi(k)
ωi(k + 1) = ωi(k) + Δωi(k)
δi(k + 1) = δi(k) + Δδi(k)

(6)

The network characteristics are constrained to be within spec-
ified boundaries: {

ω < ω(k + 1) < ω
V < Vi(k + 1) < V

(7)

where X and X , are the maximum and minimum bounds
of the variable X .

D. Power electronics interfaced generation

Based on the considered time scale, it is only relevant to
capture the dynamics of the droop control. The conventional
double-loop control (see [9] for a detailed description) are then
neglected, and we refer to [10] for a complete review of the
droop techniques. The main dynamics of the droop technique

are recalled in (8). We refer the set of droop-controlled nodes
by Nd, and for i ∈ Nd,

{
P gen
i (k + 1)− P gen ref

i (k + 1) = −kpi.(ω(k + 1)− ω∗)
Qgen

i (k + 1)−Qgen ref
i (k + 1) = −kqi.(Vi(k + 1)− Vi

∗)
(8)

Equation (7) directly introduces the levers of the droop-
controlled power electronic devices that are the active and
reactive power references denoted by P genref

i and Qgenref
i ,

respectively. Finally, with

P gen ref
i (k + 1) = P gen ref

i (k) + ΔP gen ref
i (k)

Qgen ref
i (k + 1) = Qgen ref

i (k) + ΔQgen ref
i (k)

(9)

we obtain the following model of the droop-controlled invert-
ers:

P gen
i (k + 1) = P gen ref

i (k) + ΔP gen ref
i (k)

− kpi. (ω(k + 1)− ω∗)

Qgen
i (k + 1) = Qgen ref

i (k) + ΔQgen ref
i (k)

− kqi. (Vi(k + 1)− Vi
∗)

(10)

Although we could also use the voltage magnitude and the
system frequency as lever, in the remainder, we discarded this
possibility. Equation (8) contains an algebraic relation between
two states P gen

i (k + 1) and ω(k + 1) that we can solve by
reinjecting (6) into (10) the same hold for the reactive power
and the voltage node. The last dynamics to include in the
model is related to the storage capability and the state of
charges. The storage devices are considered as ideal and can
be represented as:

SoCi(k + 1) = SoCi(k)− ηch
Pi

gen(k + 1).T s

60
(11a)

SoCi(k + 1) = SoCi(k)− ηdisch
Pi

gen(k + 1).T s

60
(11b)

depending on if Pi(k + 1) < 0 (11a) or Pi(k + 1) > 0 (11b)
with the following constraints:

SoC < SoC(k + 1) < SoC

Pi
gen < Pb(k + 1) < Pi

gen

E. Conventional generation

Conventional generators, such as diesel or gas generators are
modelled as controlled power sources. The output active power
and the apparent power are bounded and can be modelled as:

Pgen(k + 1) = Pgen(k) + ΔPgen(k) (12)

{
Pgen < Pgen(k + 1) < Pgen√

Pgen
2 +Qgen

2 < Smax
gen
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F. Loads and renewable generations

For sake of simplicity, the renewables sources are modelled
as negative loads. The supervisor will deal with the loads
and renewables sources as known disturbances profiles from
a forecast module. Finally, the optimization problem solved
by the supervisor is formulated as a MIQP (Mixed Integer
Quadratic Program):

min
Δu

Nc∑
k=1

[
α(ỹ(k)− y∗(k))2 + β(Δu(k))

2
+ λ(Plos)

2
]

(13)

subject to the microgrid dynamics:

X(k + 1) = A.X(k) +B.ΔU(k) +C.ΔD(k)

Y (k) = C.X(k)
(14)

where the matrices A, B, D and C are obtained based on the
linear model of each equipment, and the vector X(k), ΔU (k)
are defined as follows, and we denote the set of nodes, the set
of droop-controlled nodes, and the set of controlled nodes by
N , N d, Np

X(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[SoCl∈Nd
]
T

ω

[Vi∈N ]
T

[δi∈N ]
T

[Pi∈N ]
T

[Qi∈N ]
T[

P gen ref
j∈Np

]T[
Qgen ref

j∈Np

]T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ΔU(k) =

[
ΔP gen ref

j∈Np
(k)

ΔQgen ref
j∈Np

(k)

]

III. SIMULATION RESULTS

The proposed supervisor has been implemented in MAT-
LAB with the toolbox YALMIP [11]. The solver used for
the optimization problem is Gurobi. The model of the mi-
crogrid is depicted on Figure 10, and the specifications of
the storage devices and PV systems are summarized in Table
2. The renewable and load forecasts for both simulation are
also presented in Appendix. The reference case presents the
microgrid without any physical representation of the microgrid
lines. It represents the raw economic optimization and the state
of Charge at the end of the day will serve as a reference to
compare both supervisors. The results are presented in Figure
4. The final states of charge are 0.22 and 0.59.5 p.u for battery
1 and 2 respectively.

A. Case 1: Classical supervisor

The first simulation case only includes the tracking of the
economical references. This simulation presents the conven-
tional proposition for the microgrid secondary control. In
this case, for every new economical reference, a power flow
routine is computed to define the initial operating point and
the matrices to generate the linear model embedded within the
supervisor. The voltage set point is set to 1 p.u at the node
1. There is no change in references and the microgrid is only
led by the initial set point from the economical optimization,

Fig. 4: Economical optimal SoC trajectory

unless voltage or frequency deviations exceed the limitations.
This supervisor exhibits around 0.007 p.u of mean losses as
shown in Figure 5. For the sake of clarity, we only present the
voltage of the generators (batteries) and of the extremal nodes
(nodes 15, 17, 18, cf. Figure 10). As expected, the voltage at
the node 1 is close to 1 p.u, and the voltage and the extrema
of the microgrid change up to 1.01 p.u when the renewable
produces, and down to 0.97 p.u during the evening peak load.
Figure 6 presents the daily power profile. At first, the batteryFigure 6 presents the daily power profile. At first, the battery

Fig. 5: Losses and voltage profile - case 1

1 is charged with the diesel generator (before 60 min) in order
to store enough reserves in the storage devices for this day.
Before 200 min, the power predictions are accurate enough so
that the profile is very similar to the economical optimization
expected values and only the battery at the node 1 supply the
load. Fast fluctuations of the renewable 1 lead to a reaction
of the droops of battery 1 and 2 as can be seen between 400
and 600 min. Finally, after 800 min, the state of charge of the
battery 1 approaches its minimum and battery 2 is thus more
called for. It can be noticed that the voltage is maintained
within the specified limits (±0.05 p.u) and the frequency
between 0.01 p.u. Finally, with this supervisor, the final states
of charge are 0.218 and 0.563 p.u.
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Fig. 6: Power profile - case 1

Fig. 7: Losses and voltage profile - case 2

B. Case 2: Novel supervisor

The second simulation presents the results of the tracking
of the economical references while minimizing the line losses.
With this supervisor, the losses are reduced to 0.006 p.u. It is
worth noting that the weight of the line losses is relatively
low in this case. As expected, the supervisor tends to increase
the voltage to its upper bound and it can be observed some
rapid changes of the voltage of the nodes 16, 17 and 18 due to
the misleading references from the economical optimization,
and the correction applied by the supervisor. It can be noticed
that the supervisor is able to react to fast fluctuations of the
renewable in order to maintain the voltage within the specified
boundaries. Furthermore, in the microgrid, the ratio X/R is
relatively low, and thus, to reduce the losses, the supervisor
tends to use the active power references, as it can be seen in
Figure 10 with the fluctuations of the output powers of both
batteries. This lead to an opposite effect to the objective which
is desired with the economical references tracking. Finally,
with this supervisor, the final states of charge are 0.201 and
0.610 p.u.

Fig. 8: Power profile - case 2

C. Comparison

Table 1 presents the main results of both supervisors com-
pared to the predicted optimal references. It can be noticed that
in term of total energy the proposed supervisor is closer to the
EMS. This represents a difference of about 9 kWh between
both supervisors, and no differences compared to the purely
economic references. In the first simulation, the position within
the microgrid of the reserves of ESS2 is not respected as, due
to its positioning, the second battery has been used to reduce
the losses. However, with the proposed supervisor, the ESS1
is used to minimize the losses and mitigate to the fluctuations.

TABLE I: Performance comparison

Performances EMS PMS1 PMS2

State of charge [p.u] ESS1 0.220 0.218 0.201

ESS2 0.595 0.563 0.610

Losses [p.u] - 0.007 0.006

Those two simulations demonstrate that the proposed su-
pervisor can efficiently reduce the line losses without deterio-
rating the economic performance of the microgrid supervisor.
This is achieved at the cost of power fluctuations to correct
the misleading economical references. Finally, the proposed
supervisor is improves on the conventional one, but it is
to be noted that the repartition of the available reserves is
incorrect regarding what is expected from the economical point
of view. This point may be a challenge if different storage
devices exhibit different objectives, such as hydrogen storage
for long term and lead-acid battery for instance for intra-day
management. This point could be improved with a sensitivity
analysis of the economical layer to improve the weighting
factors used to minimize the losses.
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IV. CONCLUSION

We proposed an improved supervisor that preserves the
common three-layer structure of microgrid supervisor. It is
able to tracks the economical references and takes advantage
of the model embedded in the MPC to minimize the losses
without performing a non-linear OPF at each time step. The
simulations presented an improvement in the minimization of
the losses at the cost of changes in active power references that
may lead to errors in the economical tracking problem. The
main perspectives are twofold. First, due to the linearization of
the network model, the losses may not be correctly estimated.
A comparison with successive optimal power flows may
confirm this assumption. The computation time required to
solve the non-linear optimal power flows. Secondly, the droop
coefficient may also be used as a third lever to reduce the
losses. It is expected that the closer to the fluctuations the
storage devices, the higher the droop coefficient.
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V. APPENDIX

TABLE II: DER Parameters

Type Node Pnom [kW]

ESS 1 100
ESS 16 100
PV 8 100
PV 11 100
Genset 5 100

Fig. 9: PV and load power Profiles

Fig. 10: Modified CIGRE European LV network testbench
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