
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/21897

To cite this version :

Donatella PASSIATORE, Paola CINELLA, Pascazio GIUSEPPE, Luca SCIACOVELLI -
Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent
flow simulations - Computers and Fluids - Vol. 230, p.105134 - 2021

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/21897
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


Assessment of a high-order shock-capturing central-difference scheme for
hypersonic turbulent flow simulations
Luca Sciacovelli a,∗, Donatella Passiatore a,b, Paola Cinnella a, Giuseppe Pascazio b

a Arts et Métiers ParisTech, DynFluid Laboratory, 75013 Paris, France
b Politecnico di Bari, DMMM, 70125 Bari, Italy

A B S T R A C T

High-speed turbulent flows are encountered in most space-related applications (including exploration, tourism
and defense fields) and represent a subject of growing interest in the last decades. A major challenge in
performing high-fidelity simulations of such flows resides in the stringent requirements for the numerical
schemes to be used. These must be robust enough to handle strong, unsteady discontinuities, while ensuring low
amounts of intrinsic dissipation in smooth flow regions. Furthermore, the wide range of temporal and spatial
active scales leads to concurrent needs for numerical stabilization and accurate representation of the smallest
resolved flow scales in cases of under-resolved configurations. In this paper, we present a finite-difference
high-order shock-capturing technique based on Jameson’s artificial diffusivity methodology. The resulting
scheme is ninth-order-accurate far from discontinuities and relies on the addition of artificial dissipation close
to large gradient flow regions. The shock detector is slightly revised to enhance its selectivity and avoid
spurious activations of the shock-capturing term. A suite of test cases ranging from 1D to 3D configurations
(namely, perfect-gas and chemically reacting shock tubes, Shu–Osher problem, isentropic vortex advection,
under-expanded jet, compressible Taylor–Green Vortex, supersonic and hypersonic turbulent boundary layers)
is analyzed in order to test the capability of the proposed numerical strategy to handle a large variety of
problems, ranging from calorically-perfect air to multi-species reactive flows. Results obtained on under-
resolved grids are also considered to test the applicability of the proposed strategy in the context of implicit
Large-Eddy Simulations.

1. Introduction

Hypersonic flight has gained renewed attention in recent years,
due to its importance for multiple breakthrough applications in the
defense and military fields, as well as in the areas of spatial tourism and
trans-atmospheric flight [1]. The accurate prediction of hypersonic flow
fields is a challenging task, due to the massive conversion of kinetic
energy from the hypersonic free stream into internal energy as the
fluid approaches the body. The shock waves generated in such flight
conditions produce a sharp increase in the fluid temperature, possibly
causing vibrational excitation and gas dissociation, and resulting in
a nonequilibrium thermochemical state. These processes have major
effects on aerodynamic performance, heat transfer rates, fluid-surface
interaction (e.g., ablation), and hydrodynamic instabilities leading to
boundary layer transition and breakdown to turbulence [2]. Their
accurate prediction is of crucial importance for the design of the
thermal protection system and the prediction of the overall force and
heat transfer coefficients, and requires advanced numerical solvers

and models. In this paper, the focus is put on so-called high-fidelity
numerical schemes for Direct Numerical Simulation (DNS) and Large
Eddy Simulation (LES), two major enablers for a deeper understanding
of out-of-equilibrium flow regions dominated by laminar-to-turbulent
transition and turbulent regimes.

A major difficulty in DNS and LES of high-speed flows is the extreme
sensitivity of small flow scales to numerical approximation errors. The
occurrence of shock waves, with physical thicknesses of the order of
a few mean free paths, leads to unfeasible resolution requirements
for numerical simulations, at least in the strict DNS sense. On the
other hand, velocity fluctuations of the order of the sound speed [3]
may lead to the formation of eddy shocklets, embedded in the tur-
bulent flow. Usually, both kinds of structures are dealt with by using
shock-capturing techniques. These consist in locally injecting controlled
amounts of numerical dissipation to spread shocks over a few mesh
cells wherever the mesh is not sufficiently fine to resolve the shock
thickness. This technique, corresponding to a regularization method,
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contrasts with the need of using low-dissipation schemes not to alter
the fine-scale turbulent motions. These opposite requirements become
even more critical as the Mach and Reynolds numbers increase, because
of the growing difficulty to distinguish strong gradients due to shocks
from those related to turbulent fluctuations. In such a challenging
framework, much effort has been done to devise numerical methods
able to handle strong shock waves, while ensuring minimal amounts of
dissipation elsewhere.

Two great families of discretization method for the non-linear terms
in the Euler and Navier–Stokes equations can be distinguished [4]: the
first one, originally designed to handle inviscid flows with strong dis-
continuities, relies on some form of upwinding along with flux or slope
limiters ensuring non-linear stability; the second one – in principle
more suited for smooth flows – uses central schemes supplemented with
some form of filtering or artificial dissipation or, alternatively, ensuring
discrete conservation of solution invariants such as the overall kinetic
energy. Despite the large number of comparative studies [5–7], a global
consensus on the ‘‘best’’ numerical strategy for high-speed turbulent
flows has not been reached, since each method proposes a different
compromise among concurrent needs: namely, high accuracy, robust-
ness, low computational cost, few tuning parameters and suitability for
different configurations.

A well-known drawback of the first class of schemes is the excess
of numerical viscosity introduced in the solution, leading to spurious
entropy generation and kinetic energy losses in the low Mach number
limit [8]. Weighted essentially non-oscillatory (WENO) schemes are
probably the most popular upwind schemes in the context of LES and
DNS of compressible flows. First introduced by Liu et al. [9] and
later improved by Jiang & Shu [10], they rely on the assembly of
high-order numerical fluxes from linear combination of lower-order
polynomial reconstructions using suitable weighting coefficients. Many
variants have been proposed, e.g., to improve their dispersion and
dissipation properties [11,12] and to reduce the nonlinear dissipa-
tion [13,14]. Coupling with purely central schemes has led to hybrid
methods [15,16] and enhanced weighting strategies and smoothness
sensors [17–20]. Contrary-wise, the family of central schemes gener-
ally introduces very low dissipation, provided that a selective enough
numerical filter or artificial viscosity term is used, but is generally
limited to compressible flows at moderately supersonic Mach numbers,
i.e. with weak shocks. These schemes must be supplemented with selec-
tive nonlinear filtering [21–24], artificial diffusive fluxes [21,25,26],
or localized artificial diffusivity (LAD) under the form of modified
transport coefficients [27–29] for damping grid-to-grid oscillations in
smooth flow regions and to ensure shock capturing. The amount of nu-
merical dissipation introduced at a point of the computational domain
is adjusted by means of properly-devised sensors, allowing to switch
on shock-capturing capabilities where needed. Shock-capturing high-
order central-difference schemes have been successfully applied, for
instance, to overexpanded jet flows with shock cells [30] and high-
speed boundary layers of perfect gases up to Mach 6 [31], as well as
to the direct and large-eddy simulations of high-speed flows of single-
species, molecularly complex gases at thermodynamic conditions close
to the liquid/vapor critical point up to Mach 6 [32–35]. However, their
suitability for the numerical simulation of severe hypersonic, chemi-
cally reacting flows with strong shocks and stiff chemical reactions has
not yet been assessed.

For LES, where only the dynamics of the large scales is computed
while the effects of sub-grid scales (SGS) are modeled, the choice of the
numerical scheme is possibly even more critical than in DNS. Scale sep-
aration is indeed difficult to establish since the cut-off between resolved
and modeled scales is not sharp and arises from a complex combina-
tion of implicit filtering by the grid and the discretization schemes.
The intricate interactions between numerical errors and SGS modeling
errors has been investigated by numerous authors (a recent discussion
can be found in [36]), leading once again to two separate modeling
strategies: one relying on the explicit introduction of a SGS model, and

the other one using the dissipative part of the discretization scheme for
ensuring regularization of the unresolved SGS scales [37–41]. The latter
has become increasingly spread in the scientific community, due to the
good tradeoff between computational cost and accuracy offered for a
wide range of applications, provided that a high-resolution scheme is
used along with sufficiently resolved computational grids [36,42].

The goal of the present study is twofold: (i) to assess the capa-
bility of a high-order shock-capturing central scheme, used in our
previous works [32,35], to robustly predict compressible flows with
shock waves and chemical nonequilibrium effects while accurately
resolving fine-scale turbulent structures; and (ii) to demonstrate the
suitability of the non-linear numerical dissipation of the scheme to act
as a SGS regularization in under-resolved turbulent flow simulations.
The scheme uses tenth-order accurate finite-difference approximations
of the non-linear fluxes, supplemented with a higher-order extension
of Jameson’s adaptive artificial dissipation [25]. The order of accu-
racy of the artificial viscosity term is chosen to obtain an overall
dissipative-dominant truncation error, which reduces the appearance
and amplification of spurious oscillations [43] and limits the activation
of lower-order nonlinear viscosity. The latter is triggered by a highly-
selective shock sensor, built on a combination of the original Ducros’
extension [44] of Jameson’s pressure-based sensor with the Bhagatwala
& Lele [45] modification proposed in the context of LAD methods (more
details are given in Section 3). The scheme is applied to a suite of well-
documented test cases of increasing complexity, ranging from 1D and
2D inviscid flow problems to the 3D simulation of a fully turbulent
boundary layer at Mach 10 in chemical nonequilibrium conditions. The
results are systematically assessed against exact or numerical reference
solutions.

The paper is structured as follows. Section 2 reports the govern-
ing equations under investigation, along with the models used for
thermodynamics, transport properties and chemical source terms. The
high-order shock-capturing scheme is presented in Section 3. Sec-
tions 4 and 5 contain a selection of preliminary validation cases and
multi-dimensional turbulent configurations, respectively. Conclusions
are drawn in Section 6.

2. Governing equations

Our goal is to simulate flows governed by the compressible Navier–
Stokes equations for multicomponent chemically-reacting gases, writ-
ten in differential form:

𝜕𝜌
𝜕𝑡

+
(𝜕𝜌𝑢𝑗 )
𝜕𝑥𝑗

= 0 (1)

𝜕(𝜌𝑢𝑖)
𝜕𝑡

+
𝜕
(

𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗
)

𝜕𝑥𝑗
=
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

(2)

𝜕(𝜌𝐸)
𝜕𝑡

+
𝜕
[

(𝜌𝐸 + 𝑝) 𝑢𝑗
]

𝜕𝑥𝑗
=
𝜕(𝑢𝑖𝜏𝑖𝑗 − 𝑞𝑗 )

𝜕𝑥𝑗
− 𝜕
𝜕𝑥𝑗

( NS
∑

𝑛=1
𝜌𝑛𝑢

𝐷
𝑛𝑗ℎ𝑛

)

(3)

𝜕𝜌𝑛
𝜕𝑡

+
𝜕
(

𝜌𝑛𝑢𝑗
)

𝜕𝑥𝑗
= −

𝜕𝜌𝑛𝑢𝐷𝑛𝑗
𝜕𝑥𝑗

+ 𝜔̇𝑛 (𝑛 = 1,… ,NS − 1) (4)

In the preceding equations, 𝜌𝑛 is the density of the 𝑛th species,
𝜌=

∑NS
𝑛=1 𝜌𝑛 the mixture density, NS the total number of species, 𝑢𝑖 the

velocity vector components in a Cartesian coordinate system, 𝑝 the
pressure, 𝛿𝑖𝑗 the Kronecker symbol and 𝜏𝑖𝑗 the viscous stress tensor.
In Eq. (3), 𝐸 = 𝑒+ 1

2 𝑢𝑖𝑢𝑖 represents the specific total energy (with 𝑒 the
mixture specific internal energy) and 𝑞𝑗 the heat flux; moreover, 𝑢𝐷𝑛𝑗 ,
ℎ𝑛, and 𝜔̇𝑛 denote the 𝑛th species diffusion velocity, specific enthalpy
and rate of production, respectively. For temperature values lower than
9000K, ionization and electronic processes can be usually neglected;
air is then modeled as a five-species mixture of N2, O2, NO, O and N
(NS = 5 [46]). To ensure total mass conservation, we solve for the
mixture density and NS−1 species conservation equations, the NS-th
species being computed as 𝜌NS = 𝜌 −

∑NS−1
𝑛=1 𝜌𝑛. This species is chosen



to be Nitrogen since it is the most abundant species (i.e., having the
largest mass fraction) throughout the computational domain for each
case. The viscous stress tensor is modeled as:

𝜏𝑖𝑗 = 𝜇
(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

− 2
3
𝜇
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 , (5)

with 𝜇 the mixture dynamic viscosity. The heat flux is modeled by
means of Fourier’s law, 𝑞𝑗 = −𝜆 𝜕𝑇

𝜕𝑥𝑗
, 𝜆 being the mixture thermal

conductivity and 𝑇 the temperature. Each species is assumed to behave
as a perfect gas; Dalton’s pressure mixing law leads then to the thermal
equation of state:

𝑝 =
NS
∑

𝑛=1
𝑝𝑛 = 𝜌𝑇

NS
∑

𝑛=1

𝑌𝑛
𝑛

= 𝑇
NS
∑

𝑛=1
𝜌𝑛𝑅𝑛, (6)

𝑌𝑛 = 𝜌𝑛∕𝜌, 𝑅𝑛 and 𝑛 being the mass fraction, gas constant and
molecular weight of the 𝑛th species, respectively, and  = 8.314
J/mol K the universal gas constant. The thermodynamic properties
of high-𝑇 air species are computed considering the contributions of
translational, rotational and vibrational modes (named TRV formula-
tion [47]); specifically, the internal energy reads:

𝑒 =
NS
∑

𝑛=1
𝑌𝑛ℎ𝑛 −

𝑝
𝜌
, with ℎ𝑛 = ℎ0𝑓,𝑛 + ∫

𝑇

𝑇ref

(𝑐tr
𝑝,𝑛 + 𝑐

rot
𝑝,𝑛 ) d𝑇 ′ + 𝑒vib

𝑛 . (7)

Here, ℎ0𝑓,𝑛 is the 𝑛th species enthalpy of formation at the reference tem-
perature (𝑇ref = 298.15K), 𝑐tr

𝑝,𝑛 and 𝑐rot
𝑝,𝑛 the translational and rotational

contributions to the isobaric heat capacity of the 𝑛th species, computed
as

𝑐tr
𝑝,𝑛 =

5
2
𝑅𝑛 and 𝑐rot

𝑝,𝑛 =

{

𝑅𝑛 for diatomic species
0 for monoatomic species,

(8)

and 𝑒vib
𝑛 the vibrational energy of species 𝑛, given by

𝑒vib
𝑛 =

𝜃𝑛𝑅𝑛
exp (𝜃𝑛∕𝑇 ) − 1

, (9)

with 𝜃𝑛 the characteristic vibrational temperature of each molecule
(3393K, 2273K and 2739K for N2, O2 and NO, respectively [46]).
After the numerical integration of the conservation equations, tem-
perature is computed from the specific internal energy by means of
Newton–Raphson iterations.

Pure species’ viscosity and thermal conductivities are computed
using curve-fits by Blottner et al. [48] and Eucken’s relations [49]:

𝜇𝑛 = 0.1 exp[(𝐴𝑛 ln 𝑇 + 𝐵𝑛) ln 𝑇 + 𝐶𝑛], 𝜆𝑛 = 𝜇𝑛
( 5
2
𝑐tr
𝑣,𝑛 + 𝑐

rot
𝑣,𝑛 + 𝑐

vib
𝑣,𝑛

)

(10)

where 𝐴𝑛, 𝐵𝑛 and 𝐶𝑛 are fitted parameters. The corresponding mixture
properties are evaluated by means of Wilke’s mixing rules [50]:

𝜇 =
NS
∑

𝑛=1

𝑋𝑛𝜇𝑛
∑NS
𝑚=1𝑋𝑚𝜙𝑛𝑚

, 𝜆 =
NS
∑

𝑛=1

𝑋𝑛𝜆𝑛
∑NS
𝑚=1𝑋𝑚𝜙𝑛𝑚

(11)

where 𝑋𝑛 =
𝑌𝑛𝑅𝑛

∑NS
𝑚=1 𝑌𝑚𝑅𝑚

denotes the molar fraction of species 𝑛 and

𝜙𝑛𝑚 = 1
√

8

(

1 +
𝑛
𝑚

)− 1
2 ⎡
⎢

⎢

⎣

1 +
(

𝜇𝑛
𝜇𝑚

)− 1
2
(

𝑚
𝑛

)
1
4 ⎤
⎥

⎥

⎦

2

. (12)

Mass diffusion is modeled by means of Fick’s law:

𝜌𝑛𝑢
𝐷
𝑛𝑗 = −𝜌𝐷𝑛

𝜕𝑌𝑛
𝜕𝑥𝑗

+ 𝜌𝑛
NS
∑

𝑛=1
𝐷𝑛

𝜕𝑌𝑛
𝜕𝑥𝑗

, (13)

where the first term on the r.h.s. represents the effective diffusion ve-
locity and the second one is a mass corrector term that should be taken
into account in order to satisfy the continuity equation when dealing
with non-constant species diffusion coefficients [51,52]. Specifically,
𝐷𝑛 is an equivalent diffusion coefficient of species 𝑛 into the mixture,

computed following Hirschfelder’s approximation [53] as

𝐷𝑛 =
1 − 𝑌𝑛

∑NS
𝑚=1
𝑚≠𝑛

𝑋𝑛
𝐷𝑚𝑛

with 𝐷𝑚𝑛 =
1
𝑝
exp (𝐴4,𝑚𝑛)𝑇

[

𝐴1,𝑚𝑛(ln 𝑇 )2+𝐴2,𝑚𝑛 ln 𝑇+𝐴3,𝑚𝑛
]

(14)

where 𝐷𝑚𝑛 is the binary diffusion coefficient of species 𝑚 into species 𝑛,
and 𝐴1,𝑚𝑛,… , 𝐴4,𝑚𝑛 are curve-fitted coefficients computed as in Gupta
et al. [54].

The five species interact with each other through a reaction mech-
anism consisting of five reversible chemical steps, according to Park’s
model [46,55]:

R1 ∶ N2 + M ⟺ 2N + M
R2 ∶ O2 + M ⟺ 2O + M

R3 ∶ NO + M ⟺ N + O + M (15)
R4 ∶ N2 + O ⟺ NO + N
R5 ∶ NO + O ⟺ N + O2

being M the third body (any of the five species considered). Dissociation
and recombination processes are described by reactions R1, R2 and
R3; whereas the shuffle reactions R4 and R5 represent rearrangement
processes. The mass rate of production of the 𝑛th species is governed
by the law of mass action:

𝜔̇𝑛 = 𝑛

NR
∑

𝑟=1

(

𝜈′′𝑛𝑟 − 𝜈
′
𝑛𝑟
)

×

[

𝑘𝑓,𝑟
NS
∏

𝑛=1

(

𝜌𝑌𝑛
𝑛

)𝜈′𝑛𝑟
− 𝑘𝑏,𝑟

NS
∏

𝑛=1

(

𝜌𝑌𝑛
𝑛

)𝜈′′𝑛𝑟
]

, (16)

where 𝜈′𝑛𝑟 and 𝜈′′𝑛𝑟 are the stoichiometric coefficients for reactants and
products in the 𝑟th reaction for the 𝑛th species, respectively, and
NR is the total number of reactions. Lastly, 𝑘𝑓,𝑟 and 𝑘𝑏,𝑟 denote the
forward and backward reaction rates of reaction 𝑟, modeled by means
of Arrhenius’ law.

For configurations in which air is modeled as a single-species
calorically-perfect gas, a constant specific heat ratio is considered
(𝛾 = 1.4), such that 𝑐𝑝 =

𝛾𝑅
𝛾 − 1

. Since NS = 1 and there is no
chemical activity, Eq. (4) is not solved and the diffusion velocity is zero.
Unless otherwise stated, viscosity is computed by means of Sutherland’s
Law, 𝜇(𝑇 ) = 𝐶𝑇 3∕2

𝑇 + 𝑆
, with 𝐶 = 1.457933 × 10−6 kg∕m sK1∕2 and 𝑆 =

110.4K, whereas the thermal conductivity follows a constant-Prandtl
assumption, for which 𝜆 = Pr∕(𝜇𝑐𝑝).

3. Numerical method

In this section we describe the high-order shock-capturing central-
difference numerical scheme under investigation. We first present the
most important ingredient, i.e. the spatial discretization scheme for the
nonlinear terms, for a 1D system of hyperbolic conservation laws:

𝜕𝑤
𝜕𝑡

+
𝜕𝑓 (𝑤)
𝜕𝑥

= 0 (17)

where 𝑤 is the vector of conservative variables and 𝑓 (𝑤) the flux
function, such that 𝐴 = 𝜕𝑓∕𝜕𝑤 is a diagonalizable matrix with real
eigenvalues. Extension to multidimensional cases is straightforwardly
carried out by applying the scheme in each direction. Introducing the
classical difference and cell-average operators over one cell:

(𝛿∙)𝑗 ∶= (∙)𝑗+ 1
2
− (∙)𝑗− 1

2
, (𝜇∙)𝑗+ 1

2
∶= 1

2
[

(∙)𝑗+1 + (∙)𝑗
]

(18)

and considering a regular Cartesian grid with constant mesh spacing
𝛿𝑥 (so that 𝑥𝑗=𝑗 𝛿𝑥), a conservative semi-discrete approximation of the
spatial derivative writes:
( 𝜕𝑤
𝜕𝑡

)

𝑗
+

(𝛿 )𝑗
𝛿𝑥

= 0 (19)



The numerical flux at cell interface 𝑗+ 1
2 , 𝑗+ 1

2
, can be calculated using

a simple upwind scheme, written hereafter as the sum of a central
approximation  and a dissipative term  [56]:

𝑗+ 1
2
=𝑗+ 1

2
−𝑗+ 1

2
(20)

𝑗+ 1
2
=
𝑓𝑗+1 + 𝑓𝑗

2
= (𝜇𝑓 )𝑗+ 1

2
(21)

𝑗+ 1
2
=1
2
|𝑄𝑗+ 1

2
|(𝑤𝑗+1 −𝑤𝑗 ) =

1
2
(|𝑄|𝛿𝑤)𝑗+ 1

2
(22)

with 𝑄 a dissipation matrix. For instance, 𝑄 = 1
2 𝐼 (with 𝐼 the iden-

tity matrix) gives Lax–Friedrichs’ scheme [57], 𝑄 = 𝜌(𝐴)𝐼 Rusanov’s
scheme [58] (𝜌(𝐴) being the spectral radius of the flux Jacobian matrix
𝐴), and 𝑄 = 𝐴𝑅 Roe’s scheme [59] (with 𝐴𝑅 the Roe matrix). All
such schemes are monotonicity preserving according to Godunov’s the-
orem [60], but only first-order-accurate, which makes them unsuitable
for turbulence resolving simulations.

A standard way for increasing accuracy consists in using MUSCL
extrapolations [61]. Here we adopt an alternative approach, first intro-
duced in [56] to construct a third-order scheme and generalized to any
order of accuracy in [62], which consists in recursively correcting the
truncation error of Eqs. (21), (22). For a scheme of order 2𝑃 + 3 with
a stencil of 2(𝑃 + 2) + 1 points, the numerical flux is of the form:

𝑗+ 1
2
=

[(

𝐼 −
𝑃
∑

𝑝=0
𝑎𝑝𝛿

2+2𝑝

)

𝜇𝑓 −
𝑎𝑃
2
|𝑄|𝛿2𝑃+3𝑤

]

𝑗+ 1
2

(23)

The coefficients 𝑎𝑝 have alternate negative and positive signs as 𝑃
increases. The interested reader may refer to [62] for details about their
calculation.

The preceding high-order, constant coefficient schemes are not total
variation diminishing (TVD) nor monotonicity preserving, and slope or
flux limiters should be introduced to avoid the appearance of spurious
oscillations. Note that only schemes of odd order accuracy are included
in the family, with a leading truncation error term given by:

𝜀 =
𝑎𝑃
2
𝛿𝑥2𝑃+3 𝜕

2(𝑃+2)𝑤
𝜕𝑥2(𝑃+2)

(24)

proportional to an even-order derivative, i.e. of dissipative nature.
Explicit odd-order schemes with constant coefficients have been shown
to remain stable in the maximum norm 𝐿∞ under the CFL constraint
for problems with non-smooth initial conditions [43,63]. This implies
that, although the considered schemes do generate spurious oscillations
around discontinuities, such oscillations remain bounded in space and
time. For the sake of clarity, we give hereafter the expressions of the
schemes of order 3 to 9 (i.e. 𝑃 = 0, 1, 2 and 3) of the preceding family:

𝑗+ 1
2
=
[(

𝐼 − 1
6
𝛿2
)

𝜇𝑓 + 1
12

|𝑄|𝛿3𝑤
]

𝑗+ 1
2

(order 3) (25)

𝑗+ 1
2
=
[(

𝐼 − 1
6
𝛿2 + 1

30
𝛿4
)

𝜇𝑓 − 1
60

|𝑄|𝛿5𝑤
]

𝑗+ 1
2

(order 5) (26)

𝑗+ 1
2
=
[(

𝐼 − 1
6
𝛿2 + 1

30
𝛿4 − 1

140
𝛿6
)

𝜇𝑓 + 1
280

|𝑄|𝛿7𝑤
]

𝑗+ 1
2

(order 7)

(27)

𝑗+ 1
2
=
[(

𝐼 − 1
6
𝛿2 + 1

30
𝛿4 − 1

140
𝛿6 + 1

630
𝛿8
)

𝜇𝑓 − 1
1260

|𝑄|𝛿9𝑤
]

𝑗+ 1
2

(order 9) (28)

The same schemes can be derived in the finite volume framework by
applying MUSCL reconstruction to the physical fluxes [62]. Specifically,
for 𝑄 = 𝐴𝑅, one recovers a flux-extrapolation higher-order extension of
Roe’s scheme. This choice has the advantage of introducing the minimal
amount of numerical damping along each characteristic field. However,
the extension of Roe’s average to real-gas flows is not unique and can
introduce significant overcost (see, e.g. [64,65]).

With the purpose of simplifying the application to real-gas flows
and reducing computational cost, a different approach is adopted. We

first observe that the preceding schemes can be considered as standard
central-difference approximations of order 2(𝑃 + 2) on 2(𝑃 + 2) + 1
points of the flux derivative, plus a high-order artificial viscosity of
order 2𝑃 + 3 on the same stencil depending on matrix 𝑄. Afterwards,
we choose 𝑄 = 𝜌(𝐴), as in Rusanov’s scheme, which is less optimal than
Roe’s matrix but avoids complexities associated with the extension of
the approximate Riemann solver to real gases. This leads to a scalar
numerical dissipation term of the form:

𝑗+ 1
2
=
[𝑎𝑃
2
𝜌(𝐴)𝛿2𝑃+3𝑤

]

𝑗+ 1
2

(29)

Finally, we nonlinearly combine the preceding high-order dissipation
with a lower-order term activated in the vicinity of flow discontinuities
by means of a highly selective shock sensor. The dissipation  then
becomes:

𝑗+ 1
2
= 𝜌(𝐴)𝑗+ 1

2

[

𝜀2𝛿𝑤 + (−1)(𝑃+1)𝜀2(𝑃+2)𝛿(2𝑃+3)𝑤
]

𝑗+ 1
2

(30)

with

𝜀2𝑗+ 1
2
= 𝑘2 max(𝜑𝑗 , 𝜑𝑗+1), 𝜀2(𝑃+2)𝑗+ 1

2
= max(0, 𝑘2(𝑃+2) − 𝑘𝜀𝜀2𝑗+ 1

2
),

(31)

where 𝑘2 and 𝑘2(𝑃+2) are adjustable dissipation coefficients and 𝑘𝜀 is
a constant equal to 𝑎0∕𝑎𝑃 , determining the threshold below which the
higher-order dissipation is switched off.

For schemes of order 3 to 9, this gives the following expressions:

𝑗+ 1
2
= 𝜌(𝐴)𝑗+ 1

2

[

𝜀2𝛿𝑤 − 𝜀4𝛿3𝑤
]

𝑗+ 1
2

𝜀4𝑗+ 1
2
= max(0, 𝑘4 − 𝜀2𝑗+ 1

2
) (32)

𝑗+ 1
2
= 𝜌(𝐴)𝑗+ 1

2

[

𝜀2𝛿𝑤 + 𝜀6𝛿5𝑤
]

𝑗+ 1
2

𝜀6𝑗+ 1
2
= max(0, 𝑘6 −

1
5
𝜀2𝑗+ 1

2
) (33)

𝑗+ 1
2
= 𝜌(𝐴)𝑗+ 1

2

[

𝜀2𝛿𝑤 − 𝜀8𝛿7𝑤
]

𝑗+ 1
2

𝜀8𝑗+ 1
2
= max(0, 𝑘8 −

3
70
𝜀2𝑗+ 1

2
)

(34)

𝑗+ 1
2
= 𝜌(𝐴)𝑗+ 1

2

[

𝜀2𝛿𝑤 + 𝜀10𝛿9𝑤
]

𝑗+ 1
2

𝜀10𝑗+ 1
2
= max(0, 𝑘10 −

1
105

𝜀2𝑗+ 1
2
)

(35)

For 𝑘2=0 and 𝑘2(𝑃+2)=
𝑎𝑃
2

one recovers the upwind schemes of Eq. (23).
The activation of the low-order dissipation component rests on the
value of the shock-capturing sensor 𝜑𝑗 , which consists in a combination
of different terms. Specifically, one has:

𝜑𝑗 =
1
2

[

1 − tanh
(

2.5 + 10 𝛿𝑥
𝑐
∇ ⋅ 𝐮

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I

×
(∇ ⋅ 𝐮)2

(∇ ⋅ 𝐮)2 + |∇ × 𝐮|2 + 𝜖
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×
|

|

|

|

|

𝑝𝑗+1 − 2𝑝𝑗 + 𝑝𝑗−1
𝑝𝑗+1 + 2𝑝𝑗 + 𝑝𝑗−1

|

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
III

(36)

The second and third terms denote the classical Ducros’ [44] and
Jameson’s pressure-based [25] shock sensors, respectively, 𝜖 being a
small positive value (𝜖 = 10−16) to avoid division by zero. Their com-
bination palliates to some of the deficiencies related to the stand-alone
application of the Ducros’ sensor, which takes into account only the rel-
ative magnitudes of dilation and vorticity and may result in unwanted
activations of the shock-capturing term in regions where both of these
two quantities are small (e.g., in the irrotational flow outside boundary
layers or mixing layers). To correct this deficiency, the constant 𝜖
can be parametrized by introducing suitable characteristic velocity and
length scales depending on the flow under investigation [4]. The main
drawback of this method resides in the loss of generality, 𝜖 being trans-
formed in a configuration-dependent parameter. The introduction of
the pressure-based sensor allows one to bypass the activation of Ducros’
sensor, strongly reducing the amount of low-order dissipation injected
and leaving the acoustic perturbations crossing the domain much less
affected. The first term of Eq. (36) takes into account the Ducros’



sensor modification of Bhagatwala & Lele [45], initially proposed to
enhance the selectivity of the artificial bulk viscosity in the Localized
Artificial Diffusivity (LAD) technique. In regions of positive dilation 𝜑𝑗
is switched off, whereas its value increases slowly with the magnitude
of the negative dilation. Moreover, the scaling factor 10𝛿𝑥∕𝑐 has the
twofold role of (i) normalizing the grid-dependent numerical dilation
and (ii) making it invariant with the mesh-size. The sensor is (1) in
high-divergence regions and tends to zero in vortex-dominated regions,
allowing the capture of flow discontinuities with minimal damping of
the vortical structures inside the flow.

In the following, we mostly focus on the ninth-order accurate
scheme of the preceding family. Far from flow discontinuities, such
scheme has low phase and dissipation errors. Its leading truncation
error term is of the form 𝑘10𝛿𝑥

9 𝜕10𝑤
𝜕𝑥10

, i.e. it is consistent with a tenth-
order viscosity. Such viscosity term acts differently according to the
wavenumber, dissipating scales characterized by reduced wavenumbers
of about 0.35𝜋 or higher (i.e. wavelengths that are discretized with
less than 6 mesh points), while leaving larger scales almost unaffected.
In Fig. 1 we report the dissipation and phase errors of the ninth-
order scheme for the approximation of a linear advection problem, as
a function of the reduced wavenumber 𝑘𝛿𝑥. Lower-order schemes of
the same family are also reported to illustrate the effect of increasing
accuracy. For all schemes, the dispersion error is exactly the same as for
the standard central scheme of order 2(𝑃+2). Thanks to its selectiveness
in the wavenumber space, the ninth-order dissipation constitutes a
suitable implicit subgrid regularization term for LES simulations [36],
with the capability of seamlessly converging to DNS in smooth flow
regions as the grid is refined. Unless otherwise stated, we set 𝑘2=1 and
𝑘10=

1
1260 for all computations.

In Navier–Stokes calculations, the viscous flux derivatives are ap-
proximated by fourth-order-accurate central formulae, if not specified
differently. Finally, in all of the following calculations time advance-
ment is carried out by means of an explicit third-order TVD Runge–
Kutta scheme [66]. The non-uniformity of the wall-normal mesh spac-
ing is taken into account by a suitable 1-D coordinate transformation.
Near the non-periodic boundaries, the finite-difference stencil for the
convective terms is progressively reduced down to the fourth order
(and, correspondingly, the numerical dissipation term); then, both the
convective and viscous fluxes are evaluated from the interior points by
using fourth-order backward differences.

4. Preliminary validations

The ninth-order shock-capturing central scheme under investigation
is first applied to selected inviscid test cases, in order to verify its con-
vergence order in smooth flow regions and to assess its shock-capturing
capabilities.

4.1. Isentropic vortex advection problem

The accuracy of the discretization scheme in smooth inviscid flow is
quantified for the well-known two-dimensional isentropic vortex advec-
tion problem [67–69], in which an inviscid vortex is superimposed to
an uniform, perfect-gas (𝛾 = 1.4) air flow. The perturbations in velocity
and temperature are given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿𝑢 = −
𝑦
𝑅
𝛺

𝛿𝑣 = 𝑥
𝑅
𝛺

𝛿𝑇 = −
𝛾 − 1
2

𝛺2
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⎧
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⎪

⎨

⎪

⎪

⎩

𝛺 = 𝛽 exp
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[

( 𝑥
𝑅

)2
+
( 𝑦
𝑅

)2
])

𝛽 =𝑀∞
5
√

2
4𝜋

e
1
2

(37)

These allow to define, along with the isentropic relations, the initial
flow conditions of the primitive variables as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌̃0 = (1 + 𝛿𝑇 )
1
𝛾−1

𝑢̃0 =𝑀∞ cos 𝛼 + 𝛿𝑢
𝑣̃0 =𝑀∞ sin 𝛼 + 𝛿𝑣

𝑝̃0 =
1
𝛾 (1 + 𝛿𝑇 )

𝛾
𝛾−1

(38)

where the subscript (∙)0 denotes a quantity given at 𝑡 = 0, and the
symbol (̃∙) indicates a nondimensional quantity (𝜌∞, 𝑇∞ and 𝑎∞ being
the characteristic density, temperature and velocity, respectively). In
the classical case [67], one has 𝑅 = 𝜎 = 1, 𝑀∞ =

√

2
𝛾 and 𝛼 =

45◦. Periodic conditions are applied at the boundaries. The length of
the computational domain has been increased from [𝐿𝑥, 𝐿𝑦] = [−5, 5]
to [−10, 10] in order to reduce the influence of the small artificial
shear layers generated near the boundaries by the non-zero velocity
perturbations, which can pollute the results when considering smaller
domains [70].

The error with respect to the exact solution (pure advection of the
initial vortex) is measured as

𝜀𝜏,ℎ = 𝐿2(𝛹
𝜏,ℎ
(𝑖,𝑗)) =

√

1
ℎ
∑

𝑖,𝑗

(

𝛹 𝜏,ℎ(𝑖,𝑗) − 𝛹
𝑒𝑥
(𝑖,𝑗)

)2
, (39)

with 𝛹 𝜏,ℎ(𝑖,𝑗) and 𝛹 𝑒𝑥(𝑖,𝑗) the computed and exact values of a generic flow
variable at the grid point (𝑖, 𝑗), and ℎ = 𝐿𝑥∕(𝑁 − 1) the spatial grid
size, 𝑁 = 𝑁𝑥 = 𝑁𝑦 being the number of grid points. For an unsteady
problem, the numerical error may be written as 𝜀𝜏,ℎ = 𝐶𝜏𝜏𝑝 + 𝐶ℎℎ𝑞 ,
where 𝐶𝜏 and 𝐶ℎ are some constants, 𝜏 the time-step, ℎ the grid
size, and 𝑝 and 𝑞 the order of the temporal integration and spatial
discretization schemes, respectively. The ratio of error decay between
numerical solutions using time steps 𝜏 and 𝑚𝜏 and grid sizes ℎ and 𝑛ℎ
writes:

𝑟𝑒 =
𝜀𝑚𝜏,𝑛ℎ
𝜀𝜏,ℎ

=
𝐶𝜏 (𝑚𝜏)𝑝 + 𝐶ℎ(𝑛ℎ)𝑞

𝐶𝜏𝜏𝑝 + 𝐶ℎℎ𝑞
= 𝛿𝑚𝑝 + 𝑛𝑞

𝛿 + 1
with 𝛿 =

𝐶𝜏𝜏𝑝

𝐶ℎℎ𝑞
. (40)

Assuming 𝑚, 𝑛 > 1, the overall accuracy ranges between 𝑞 for small 𝛿
(meaning that the temporal error is negligible with respect to spatial
error) and 𝑝 for large 𝛿.

Several runs are carried out by varying the number of grid points
(between 1002 and 5002) and the CFL number (from 0.6 to 0.00625);
the errors measured after one cycle (i.e. when the vortex returns to
the initial position for the first time) are shown in Fig. 2, where each
symbol denotes a run. It is worth pointing out that each simulation
has been performed twice, with and without the shock-capturing term
(𝑘2=1 and 𝑘2=0, respectively). As expected, differences were found to
be negligible, with an influence on the 6th significant digit of the com-
puted error norm. We then report hereafter only the results obtained
for 𝑘2=1. Fig. 2a displays the value of the numerical error as a function
of the CFL number for several grids (color plot). In order to recover the
formal order of accuracy of the spatial discretization scheme for a given
grid, the CFL number should be small enough not to affect 𝜀𝜏,ℎ; i.e., 𝜀𝜏,ℎ
should reach a plateau for sufficiently small values of the CFL number.
This is clearly visible in Fig. 2a, which also highlights that even smaller
CFL numbers should be considered for grids finer than 5002. In Fig. 2b
we report the error as a function of 𝑁 for several CFL numbers. The
order of accuracy of the numerical solution varies as expected between
3 to 9 (formal orders of the time integration and spatial discretization
numerical schemes, respectively) as the CFL number gets smaller. For
CFL numbers of 0.2 or smaller, a more or less extended region with
ninth-order slope is observed; the slope tends to decrease for finer
grids, due to the larger relative importance of the temporal error. The
local slopes are shown in Fig. 2c versus the number of grid points. The
presence of a maximum can be explained by considering the temporal-
to-spatial error ratio, 𝛿. In order to keep a constant 𝛿 when refining the
grid, the timestep should be decreased as 𝜏 ∝ ℎ𝑞∕𝑝 = ℎ9∕3 = ℎ3; whereas
a constant CFL imposes 𝜏 ∝ ℎ (i.e., a varying 𝛿). At CFL = 1.25 × 10−2



Fig. 1. Dispersion and dissipation errors as a function of the reduced wavenumber 𝑘𝛿𝑥 up to the ninth-order scheme. (a) dispersion error 𝛷, (b) dissipation error 𝐷.

Fig. 2. Analysis of the order of convergence of the error norm for the isentropic vortex convection configuration. (a): error of the 𝐿2-norm as a function of the CFL number for
computational grids ranging from 1002 to 5002; (b): error of the 𝐿2-norm as a function of the number of grid points for CFL numbers ranging from 0.6 to 0.00625; (c): overall
spatio-temporal order of accuracy as a function of the number of grid points for CFL numbers ranging from 0.6 to 0.00625.

and 6.25 × 10−3 the formal order of the spatial discretization scheme
is recovered over the whole range of considered grid resolutions; this
confirms previous studies suggesting the use of CFL ≲ 0.01 [71].

A parametric study on the influence of the maximum strength of
the perturbation was also carried out. The value of 𝛽 in Eq. (37) was
increased by a factor in the range [1, 1.9], with the minimum density
value in the vortex core passing from 𝜌min ≈ 0.5 to 𝜌min ≈ 4 × 10−3, as
shown in Fig. 3a. Fig. 3b shows that an increase of the perturbation
strength leads to larger absolute values of the error norm, but does
not alter substantially the formal order of accuracy of the numerical
scheme.

4.2. Ideal-gas shock tube problems

The next test case is a classical benchmark for the assessment of
shock-capturing capabilities. Specifically, we consider the well-known
Sod [72] and Lax [73] 1D shock tube problems, corresponding to the
following Riemann problems:

(𝜌, 𝑢, 𝑝)SOD =

{

(1, 0, 1) 𝑥 < 0
(0.125, 0, 0.1) 𝑥 ≥ 0

;

(𝜌, 𝑢, 𝑝)LAX =

{

(0.445, 0.698, 3.528) 𝑥 < 0
(0.5, 0, 0.571) 𝑥 ≥ 0

(41)



Fig. 3. Analysis of the order of convergence of the error norm for the isentropic vortex convection configuration, for different values of the perturbation amplitude (from 1 to
1.9) at CFL = 0.025 and 𝑘2 = 1. (a): initial density profile at 𝑦=0; (b): error of the 𝐿2-norm as a function of the number of grid points.

Fig. 4. Reference and numerical solutions for Sod’s (left) and Lax’s (right) shock tubes. Triangles: single species, circles: N2-O2 mixture. The gray solid line denotes the reference
solution.

Numerical results are compared to the exact solutions at the nondimen-
sional time 𝑡 = 0.2 (𝛥𝑡 = 5 × 10−4) and 𝑡 = 0.13 (𝛥𝑡=10−3), respectively.
For these test cases, the artificial viscosity coefficients are chosen equal
to 𝑘2 = 2, 𝑘10 = 1∕630. The numerical domain is discretized with
200 evenly-spaced grid points; air is considered either as a single-
species, calorically-perfect gas (𝛾 = 1.4) or as a two-species non-reacting
mixture of Nitrogen (𝑌N2

= 0.79) and Oxygen (𝑌O2
= 0.21). Fig. 4

shows the results for density, velocity and pressure, whose profiles are
compared to the corresponding exact solutions. A good agreement is
shown for both cases and the single-species and multi-species numerical
solutions are perfectly superposed. The slight smearing of the numerical
solution across the contact discontinuity can be attributed to the high-
order dissipation term, the shock-capturing component being switched
off in that region due to the constant value of the pressure. Note that
a similar behavior is observed for other high-order schemes [18].

4.3. Shu-Osher problems

The Shu–Osher problem [74] consists of a 𝑀=3 shock propagating
in a perturbed density field and allows to evaluate the behavior of
the numerical scheme for a simplified shock-turbulence interaction
configuration. The extent of the computational domain is [−5, 5] and
the initial conditions are

(𝜌, 𝑢, 𝑝)SHU =

{

(3.857143, 2.629369, 10.33333) 𝑥 < −4
(1 + 0.2 sin(5𝑥), 0, 1) 𝑥 ≥ −4

(42)

The 1D Euler equations are solved on a uniform mesh with 𝑁 = 200 and
a reference solution is computed with the same numerical scheme on a

mesh with 𝑁 = 2000. Fig. 5 shows results for density, pressure, velocity
and entropy at the final time 𝑡 = 1.8. The profiles of pressure and
velocity are in good agreement with the reference solution, with some
oscillations registered near the shock (which is captured reasonably
well) that remain bounded to small values throughout the simulation.
On the contrary, the density and entropy profiles exhibit a stronger
damping after the shock train passage. This is partly due to the use of a
scalar artificial viscosity, which introduces the same amount of dissipa-
tion for all characteristic fields, whether they be of acoustic or entropic
nature. Present results are in agreement with those of other classical
numerical schemes [5]. Of note, the introduction of the Bhagatwala
& Lele correction to the shock-capturing term strongly enhances the
entropy waves resolution (contrary to the shock tube cases, where no
appreciable differences were found), mitigating the spurious activation
of Jameson’s pressure-based sensor. A possible fix for this overly-
dissipative behavior would be a selective reduction of the numerical
dissipation by using different 𝑘2 values for each equation. However, this
approach would increase the number of tuning parameters, and was
thus discarded in order to keep the numerical strategy as simple and
general as possible. Lastly, it should be pointed out that the core regions
of turbulent flows are intrinsically rotational: the Ducros sensor, which
always degenerates to unity in 1D flows, plays therefore a fundamental
role in minimizing the numerical dissipation outside of shocked-flow
turbulent regions. For the purpose of comparison with other numeri-
cal strategies we also considered a two-dimensional generalization of
the Shu–Osher problem, which consists in a vorticity/entropy wave
interacting with a normal shock [5]. The extents of the computational
domain are 𝑥 ∈ [0, 4𝜋), 𝑦 ∈ [−𝜋, 𝜋), with 𝛥𝑥 = 𝜋∕50 and 𝛥𝑦 = 𝜋∕16;



Fig. 5. Numerical solution for the Shu–Osher problem at 𝑡 = 1.8. Top: profiles of density, pressure, velocity and entropy; bottom: zoom on the post-shock regions. In each subfigure,
the black solid lines denote the reference solution, and the colored solid and dashed lines the present solution, respectively with and without Bhagatwala & Lele’s correction.

periodic boundary conditions are imposed in the 𝑦 direction, whereas
supersonic inflow and subsonic outflow are applied at 𝑥 = 0 and 𝑥 = 4𝜋,
respectively. The initial base flow reads

(𝜌, 𝑢, 𝑝)SHU2D

=

{

(𝜌𝐿, 𝑢𝐿, 𝑝𝐿) = (1, 1.5, 0.714286) 𝑥 < 3𝜋∕2
(𝜌𝑅, 𝑢𝑅, 𝑝𝑅) = (1.862069, 0.8055556, 1.755952) 𝑥 ≥ 3𝜋∕2

(43)

By superposing the combined vorticity/entropy wave, the initial data
then becomes
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌 = 𝜌 + 𝜌𝐿𝐴𝑒 cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦)
𝑢 = 𝑢 + 𝑢𝐿𝐴𝑣 sin𝜓 cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦)
𝑣 = −𝑢𝐿𝐴𝑣 cos𝜓 cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦)
𝑝 = 𝑝

(44)

with 𝐴𝑒 = 𝐴𝑣 = 0.025, 𝜓 = 45◦, 𝑘𝑥 = 𝑘𝑦∕ tan𝜓 and 𝑘𝑦 equal to 1 or 2.
The vorticity content at 𝑡 = 25 is reported in Fig. 6 and compared to
results from the codes ADPDIS3D, Hybrid and Stan, digitalized from
the Ref. [5] (the reader may refer to the original paper for details
about the different shock-capturing approaches). Each test has been
repeated twice, with 𝑘2=0 and 𝑘2=1, to assess the influence of the
shock-capturing term.

Both the instantaneous and mean quantities exhibit profiles of
vorticity (Fig. 6) and kinetic energy (not shown) comparable to the
reference. As expected, the shock-capturing activation reduces the post-
shock oscillations and slightly damps the mean kinetic and vortical
contents, which remain close to the reference linear analysis (LIA)
results [75]. Interestingly, the post-shock mean vorticity profiles shows
the same oscillating trend of the Stan code (which uses a LAD-based
shock capturing), keeping however a better response in each case. We
also note that for such a mild configuration, a lower value of 𝑘2 would
be more appropriate, resulting in a larger response.

4.4. Real-gas shock tube problem

The last inviscid test case consists of a multi-species, high-
temperature shock tube designed by Grossman & Cinnella to study ther-
mochemical effects [76]. For such a configuration, however, thermal
nonequilibrium effects are rather mild and can be neglected, taking into

account only chemical nonequilibrium as shown in previous validation
studies [71]. At 𝑡 = 0, the initial conditions are the following:

(𝑝, 𝑢, 𝑇 )GROSSMAN =

{

1.95256 × 105 Pa, 𝑢𝐿 = 0m∕s, 9000K 𝑥 < 0

104 Pa, 𝑢𝑅 = 0m∕s, 300K 𝑥 ≥ 0

(45)

Chemically-reacting air is modeled by means of Park’s 5-species model
(N2, O2, N, O, NO); the initial values for the species mass fractions cor-
respond to the mixture equilibrium composition at the given pressure
and temperature for the right and left states, respectively. Due to the
stiffness of the chemical source terms, the solution is advanced in time
using a CFL number of 0.02, as suggested in [76] for explicit Runge–
Kutta time integrations. The simulation is stopped when the shock-wave
reaches the location 𝑥 = 0.11m. Given the severe conditions developed
by flow in the present problem, the Bhagatwala & Lele’s modification
of the shock sensor was turned off for better numerical robustness.

Results at the final time are shown in Fig. 7. The numerical scheme
is able to capture correctly the rarefaction wave, the contact discon-
tinuity and the shock; moreover, the distributions of the species mass
fractions agree very well with data from [76].

5. Applications to multiscale turbulent flows

In this section we analyze the performance of the shock-capturing
scheme for viscous compressible flows with shocks and fine-detail
vortical structures. The applications range from a two-dimensional
under-expanded jet flow to a hypersonic turbulent boundary layer in
chemical nonequilibrium.

5.1. Two-dimensional underexpanded jet

A N2-O2 inert, highly underexpanded jet has been first considered to
test the suitability of the numerical scheme to deal with strong discon-
tinuities and vortical layers in multi-species flows. This configuration
represents the starting point for the study of reactive jets and has been
widely analyzed in the past years, both experimentally and numerically.
In addition, it has been shown that 2D simulations are able to capture
reasonably well some detailed features of the problem, such as the



Fig. 6. Results for the shock-vorticity/entropy wave interaction at 𝑡 = 25. (a) Instantaneous vorticity profiles for 𝑦 = 0 (𝑘𝑦 = 1); averaged vorticity content, normalized with respect
to the upstream value, for (b) 𝑘𝑦 = 1 and (c) 𝑘𝑦 = 2. The shock location is 𝑥𝑠 = 3𝜋∕2; the dashed horizontal lines in panels (b) and (c) denote the linear analysis solution [75].

Fig. 7. Profiles of density, pressure, velocity and mass fractions for the reacting, real gas shock tube case. In panels (a), (b) and (c), quantities are made non-dimensional with
respect to the corresponding initial values on the right side of the tube. Lines: current simulation; symbols: reference solution [76].

location and dimension of the Riemann wave, the scale of the jet and
the timewise averages of the thermodynamic variables.

The present setup is similar to the one reported in Martínez Ferrer
et al. [77]. Specifically, the pressure 𝑃0 and temperature 𝑇0 of the
mixture in the injection plane are set to 15 atm and 1000 K, whereas the
ambient values are 1 atm and 300 K, respectively, resulting in a nozzle
pressure ratio (NPR) of 15. The inflow jet Mach number is equal to 1
and a slow coflow at 𝑀 = 0.05 is imposed consistently with previous
studies [77,78]. The height of the injector exit is equal to 𝐷 = 3 cm and
the extent of the computational domain is 𝐿𝑥 ×𝐿𝑦 = 50𝐷× 25𝐷. At the
inflow, the jet velocity is prescribed by means of an hyperbolic-tangent
profile (see ‘‘Profile 2’’ of Michalke [79]):

𝑢(𝑟)
𝑈

= 1
2

{

1 + tanh
[

0.25𝑅
𝜃

(𝑅
𝑟
− 𝑟
𝑅

)]}

(46)

where 𝑈 is the inflow centerline velocity, 𝑅 the inflow half-height, 𝜃 the
initial momentum thickness of the shear layer and 𝑟 the local distance
from the jet axis. The ratio 𝑅∕𝜃 is an important parameter influencing
the jet stability, which is mainly related to the introduction of vorticity
in the jet shear layer. In our study, we consider 𝑅∕𝜃 = 12.5. At the
remaining outflow boundaries, characteristic conditions are imposed,
along with sponge regions and grid stretching to avoid spurious wave
reflections.

Five computational grids were considered, with dimensional mesh
sizes equal to 𝛥𝑥 = 𝛥𝑦 = 4, 2, 1, 0.5 and 0.25mm. Fig. 8 shows
an instantaneous snapshot of several quantities for the most refined
grid used in the current study, revealing the challenging physics of
the problem (for a thorough description of the flow physics of free
underexpanded jets, the reader may refer to Franquet et al. [81]).



Fig. 8. Instantaneous snapshot of an N2-O2 inert underexpanded jet. From left to right, top to bottom: isocontours of density 𝜌, temperature 𝑇 , numerical Schlieren log(∇𝜌∕𝜌𝑗 ),
vorticity 𝜔, Mach number 𝑀 and pressure fluctuations 𝑝∕𝑝𝑗 − 1.

The influence of the grid resolution is shown in Fig. 9, where the
axial profiles of the Mach number (panel a), temperature and density
(panel b) are shown. The location and width of the Mach disk is in
agreement with experimental observations [80], as well as recent nu-
merical results obtained for similar NPR values [78]. Averaged profiles
of the thermodynamic quantities are in accordance with results shown
by Su et al. [78]; the small post-shock discrepancies in density may
be attributed to the slight difference in the inflow N2 and O2 mass
fractions. The r.m.s. temperature values extracted at the vertical line
𝑥∕𝐷 = 20 reveal nearly-converged profiles for the 𝛥𝑥 = 0.5mm grid,
whereas 𝛥𝑥 = 2mm grid is already sufficiently fine to capture correctly
the mean profiles of first-order quantities. In any case, the numerical
scheme is shown to handle satisfactorily under-resolved grids without
the insurgence of numerical instabilities nor non-physical results.

In Section 3, we stressed the importance of using a well-constructed
shock-capturing sensor for the numerical simulation of high-speed tur-
bulent flows. The current 2D jet represents a suitable configuration
for benchmarking such a sensor, due to the concurrent presence of
strong steady shocks, turbulent shear layers and propagation of acoustic
waves. The influence of each one of the three components of the
sensor presented in Eq. (36) is shown in Fig. 10, displaying their
isocontours on an instantaneous snapshot. Values below 10−2 have
been cropped in order to highlight the flow regions marked by each
term as potential shocks. As expected, the Ducros’ sensor (panel a)
is not able to properly identify strong gradients if applied alone; its
values are shown to be close to unity even in smooth-flow regions,
essentially because of the absence of vorticity (shown in Fig. 8). The
Bhagatwala & Lele correction and the Jameson’s pressure-based sensors
(panel b and c, respectively) allow one to obtain a more satisfactory
large-gradients tracing, the latter being slightly more selective. One

may object the utility of using both of them; however, their combined
use palliates each other’s deficiency. Specifically, the Jameson’s sensor
could hardly tell the difference between a shock and a high-vorticity,
purely-solenoidal region; on the other hand, the Bhagatwala & Lele
correction can result in excessive damping of all dilatational motions
when dealing with slightly under-resolved simulations. The combina-
tion of the three sensors (panel d) results in an excellent localization
of the regions in which low-order numerical dissipation should be
injected; that is, along the lateral intercepting shocks, the Mach disk
and the reflected shock waves. A few wave fronts are also marked
downstream of the Riemann wave; however, the sensor magnitude is
almost negligible there (i.e., lower than 0.02 everywhere), and such is
the amount of injected dissipation.

5.2. Two-dimensional viscous shock tubes

A two-dimensional chemically-reacting viscous shock tube is now
investigated. In such a configuration, a complex unsteady interac-
tion is generated between the incident boundary layer and the shock
wave reflected at the end wall. This case was first studied by Daru
& Tenaud [82], who performed numerical simulations for a perfect
gas at different Reynolds numbers by means of a high-resolution
monotonicity-preserving scheme. The computational domain is a
square shock tube with a unit side length and adiabatic walls at each
boundary. The initial conditions for the perfect gas case read:

(𝜌, 𝑢, 𝑣, 𝑝)DARU =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

120, 0, 0, 120
𝛾

)

𝑥 < 0.5
(

1.2, 0, 0, 1.2
𝛾

)

𝑥 ≥ 0.5
(47)



Fig. 9. Influence of the grid resolution on the underexpanded jet. Axial profiles of Mach number (a); axial profiles of normalized temperature and density (b); rms profiles of
temperature along the vertical line 𝑥∕𝐷 = 20 (c). In panel (a), the vertical lines denote the streamwise locations of the Riemann wave observed by Martínez Ferrer et al. [77]
( ), Su et al. [78] ( ) and Sheeran & Dosanjh [80] ( ). In panel (b), black circles represent data extracted from Su et al. [78].

Fig. 10. Isocontours of each component of the shock-capturing sensor. Note that values below 10−2 are cropped in order to ease visualization. (a): Ducros’ sensor, (∇⋅𝐮)2

(∇⋅𝐮)2+|∇×𝐮|2+𝜖
;

(b): correction of Bhagatwala & Lele (L2-norm), 1
2

[

1 − tanh
(

2.5 + 10 𝛿𝑥𝑖
𝑐
∇ ⋅ 𝐮

)]

; (c): Jameson’s pressure-based sensor (L2-norm),
|

|

|

|

𝑝𝑗+1−2𝑝𝑗+𝑝𝑗−1
𝑝𝑗+1+2𝑝𝑗+𝑝𝑗−1

|

|

|

|

, (d): combination of the previous terms.



Fig. 11. Results for the two-dimensional perfect-gas viscous shock tube, for 𝑅𝑒 = 1000 at 𝑡 = 1. (a): density distribution along the bottom adiabatic wall (𝑦 = 0); (b): density
distribution at 𝑦 = 0.05.

with 𝛾 = 1.4. Three different resolutions are analyzed, using respec-
tively 2000, 4000 and 6000 grid points per direction. Reference data
are given for 𝑁 = 4000. Fig. 11 shows the density distribution along
the bottom wall and at 𝑦 = 0.05 for the case 𝑅𝑒 = 1000 at the final time
(𝑡 = 1). Results are in perfect agreement with reference data and grid
convergence is already obtained at 𝑁 = 4000.

Such a configuration was recently extended to chemical nonequi-
librium conditions by Chen et al. [83], who considered a relatively
low initial temperature (𝑇ref = 800K) in order to trigger only oxygen
dissociation-recombination reactions and therefore simulate a simpli-
fied O2/O/N2 mixture. Here, we select 𝑇ref = 2000K such that NO
production is enabled by means of the Zeldovich mechanism. The left
and right pressure values are 12 kPa and 0.12 kPa, respectively, and the
initial mass fractions are 𝑌N2

= 0.767, 𝑌O2
= 0.233. The computational

domain lengths are 𝐿𝑥 = 1m and 𝐿𝑦 = 0.25m; non-catalytic adiabatic
walls are considered at the left, bottom and right boundaries, whereas
purely non-reflective conditions are applied at the top end. Three
computational grids are considered (4000 × 1000, 6000 × 1250 and
8000 × 2000, respectively), with a constant CFL number of 0.04.
Results at the final time 𝑡 = 1ms are shown in Fig. 12. After the shock
reflection on the end wall, a lambda-shock pattern is generated and
extends into the bottom boundary layer, where a separation bubble
entraining hot gases develops. Kelvin–Helmholtz instabilities are also
observed along the slip line originating at the triple point; for a detailed
description of the influence of high-temperature effects one might refer
to Ref. [83]. The large temperature values (𝑇 > 4000K) and small flow
velocity near the end wall promote a strong chemical activity; almost
all molecular oxygen dissociates and the nitric oxide amount is close
to the equilibrium composition at the same 𝑝 and 𝑇 values. Figs. 12e-f
show density and temperature profiles along the bottom wall, where
the footprints of the vortical structures contained inside the separation
bubble are observed; grid-converged results are obtained starting from
the 6000 × 1500 grid.

5.3. Compressible Taylor–Green vortex

We consider a compressible extension of the canonical Taylor–Green
Vortex (TGV) problem in order to assess the behavior of the numerical
scheme when applied to highly under-resolved cases and the suitability
of the non-linear artificial dissipation to act as a regularization term
in the context of low- and high-𝑀 ILES. The first authors to extend
the TGV problem to strongly compressible configurations were Peng
& Yang [84], with the aim of investigating the evolution of vortex-
surface fields at large Mach numbers. They considered Mach numbers
ranging from 0.5 to 2, albeit at a lower Reynolds number with respect
to the one considered in most of the incompressible and low-𝑀 studies
(i.e., 400 instead of 1600). Recently, Lusher & Sandham [7] carried
out TGV simulations up to 𝑀=1.25, in order to evaluate the behavior

of different shock-capturing schemes for high-𝑀 turbulent flows. The
initial conditions for velocity and pressure fields are:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢(𝑥, 𝑦, 𝑧) = sin
( 𝑥
𝐿

)

cos
( 𝑦
𝐿

)

cos
( 𝑧
𝐿

)

𝑣(𝑥, 𝑦, 𝑧) = − cos
( 𝑥
𝐿

)

sin
( 𝑦
𝐿

)

cos
( 𝑧
𝐿

)

𝑤(𝑥, 𝑦, 𝑧) = 0

𝑝(𝑥, 𝑦, 𝑧) = 𝑝∞ +
𝜌∞𝑈2

∞
16

[

cos
( 2𝑥
𝐿

)

+ cos
(

2𝑦
𝐿

)]

[

2 + cos
( 2𝑧
𝐿

)]

(48)

When considering the compressible form of the TGV problem, different
choices are possible to set the initial conditions for the thermodynamic
quantities [84]. We selected a constant density initial condition, for
which the initial density field is equal to 𝜌∞ = 1.291834 kg∕m3 every-
where, whereas the initial temperature is computed from density and
pressure (𝑝∞ = 1 atm) according to the perfect-gas equation of state.
The Reynolds number, Prandtl number and the specific heat ratio are
set to 1600, 0.71 and 1.4, respectively. In our test, computational grids
ranging from 643 to 10243 and Mach numbers equal to 0.1, 0.5 and 1
have been considered, in conjunction with a fixed CFL number of 0.5.
Periodic conditions are applied in all directions. Comparisons are made
by considering the total kinetic energy 𝐾 and the resolved enstrophy
𝛺 integrated over the computational domain:

𝐸𝑘 =
1

𝜌ref ∫
1
2
𝜌𝑢𝑖𝑢𝑖 d , 𝛺 = 1

𝜌ref𝑅𝑒 ∫
𝜇
(

𝜀𝑖𝑗𝑘
𝜕𝑢𝑘
𝜕𝑥𝑗

)2
d .

(49)

Note that the enstrophy correspond to the solenoidal part of the total
viscous dissipation rate; the dilatational component will not be dis-
cussed since its contribution has been shown to be negligible also at
Mach numbers higher than unity [7].

Fig. 13 shows the evolution of the volume-integrated kinetic energy,
solenoidal enstrophy and turbulent kinetic energy spectra at selected
times (arbitrarily chosen after the time at which enstrophy peaks), as a
function of the initial Mach number and of the grid resolution. Several
considerations are in order. First, we observe that the low-𝑀 case is
perfectly superposed to classical spectral results, which confirms the
good behavior of the numerical scheme for low-speed configurations.
The low-order artificial nonlinear dissipation is correctly turned off,
whereas the higher-order one guarantees an amount of dissipation such
that numerical stability is ensured and virtually all active scales are
almost untouched. Increasing the Mach number, the flow dynamics
are heavily altered: in the early stages of the decay, internal energy
is converted into kinetic energy, such that the average pressure-work
can exceed the viscous dissipation rate and the total kinetic energy
does not exhibit any more the classical monotonous decline of the



Fig. 12. Results for the two-dimensional chemically-reacting viscous shock tube at 𝑡 = 1ms. Instantaneous visualizations of (a) normalized density, (b) normalized temperature, (c)
O2 mass fraction and (d) NO mass fraction. Panels (e) and (f) show the normalized density and temperature distributions, respectively, along the bottom adiabatic wall for the
different computational grids considered.

incompressible case. The enstrophy peak slightly moves towards later
times, whereas its magnitude is almost unchanged. The enstrophy is
insufficiently resolved on the 643 and 1283 grids, albeit the largest scales
are correctly captured as displayed by the kinetic energy spectra and
the 𝑄-criterion visualizations (Fig. 14). In any case, no energy pileup
is observed at the smaller scales. The numerical scheme is therefore
able to handle efficiently highly under-resolved configurations, while
ensuring a correct representation of the largest scales. Grid-converged
results are observed for the 5123 grids; whereas the 2563 grids allow
one to observe a clear trend; that is, a faster convergence of results for
larger initial Mach numbers. Enstrophy values are superposed to the
reference solution at 𝑀=1, whereas they are slightly underestimated at
𝑀=0.1. This is coherent with the small-scales representation given by
the turbulent kinetic energy spectra: although the cutoff wavenumber
𝜅𝑐 (i.e., the wavenumber at which the dissipation term of the numerical
scheme starts to have a large influence on the flow field) does not
change for a given grid, the spectral energy contents for 𝜅 > 𝜅𝑐 tend
to be closer to the DNS distributions for larger 𝑀 . This behavior can
be attributed to the time step constraints imposed by acoustic waves in
low-𝑀 configurations: achieving the same final nondimensional time
(𝑡 = 16) requires a larger number of time steps, which also implies
a larger number of applications of the numerical dissipation operator.
This effect (visible only at the smallest, underresolved scales beyond
𝜅𝑐) underlines the satisfactory selectivity properties of the numerical
method.

To illustrate the importance of using a high-order scheme, in Fig. 15
we report enstrophy profiles and kinetic energy spectra for a 2563 grid
obtained by changing the order of the non-linear dissipation term of the

scheme, from 3rd up to 9th one. Results indicate that (1) the 3rd-order
dissipation on the 2563 grid has an accuracy similar to the 9th-order
one on a 643 grid, (2) the 9th-order dissipation allows to obtain
almost grid-converged results, and (3) the gain of further increasing
the dissipation order is almost negligible, even for coarser grids. Of
note, results obtained with 3rd-order dissipation in conjunction with
higher-order discretizations for the convective fluxes (up to 10th-order)
are almost superposed, which confirms the fundamental role of the
nonlinear dissipation strategy in obtaining high-quality data. Finally,
the effect of the order of the numerical scheme for the viscous fluxes
discretization was also assessed; results are reported in Fig. 16 for the
2563 and 1283 grids. Consistently with the analysis in the incompress-
ible limit of DeBonis [85], a negligible influence is observed when
considering discretization orders higher than 4. On the contrary, the
use of a 2nd-order discretization produces excessive amounts of viscous
dissipation, which for the 2563 grid is shown to be larger than the
one predicted by the DNS. Furthermore, the 1283 grid with 2nd-order
viscous fluxes seems to closely follow the DNS profile. This is rather
fortuitous, since the larger enstrophy values come from an incorrect
(overestimated) spectral energy repartition at the smallest scales. These
results should warn about possible misleading interpretations of the
flow physics in case of unsuitable numeric ingredients and/or strongly
under-resolved simulations, as well as the need to resorting to spectral
analyses for the study and characterization of turbulent flows, the
classical volume-integrated quantities being not necessarily accurate
enough.



Fig. 13. Influence of the grid resolution for the Taylor–Green Vortex case. Top: 𝑀=0.1; center: 𝑀=0.5; bottom: 𝑀=1. Left and center columns: timewise evolutions of volume-
integrated kinetic energy 𝐾 and resolved solenoidal enstrophy 𝛺; right column: turbulent kinetic energy spectra 𝐸(𝜅) at selected times (𝑡 = 8.9 for 𝑀=0.1, 9.4 for 𝑀=0.5 and 11.1
for 𝑀=1).

5.4. Turbulent boundary layer flows

A crucial aspect for the numerical simulation of wall-bounded tur-
bulent flows is the ability of the numerical scheme to retain good
dissipation and dispersion properties near the boundaries. In this sec-
tion we consider a compressible, calorically-perfect turbulent boundary
layer and we carry out a grid-sensitivity analysis to compare results
obtained by means of wall-resolved ILES-like grids with respect to
reference DNS data. Next, the same numerical strategy is applied
to the simulation of an hypersonic turbulent boundary layer of a
multi-species, chemically out-of-equilibrium mixture.

5.4.1. Supersonic turbulent boundary layer
The flow conditions for such a configuration are similar to those

investigated by several authors [86–90]; specifically, a nominal Mach
number equal to 2.25, a free-stream temperature of 65K and a free-
stream density of 0.13 kg∕m3. The fluid considered is calorically-perfect
air; Sutherland’s law is used to compute dynamic viscosity, along with a
constant Prandtl number equal to 0.72. The rectangular computational
domain is discretized with even spacing in the streamwise (𝑥) and span-
wise (𝑧) direction, whereas a grid stretching is used in the wall-normal
(𝑦) direction, following the profile:

𝑦(𝑗)
𝐿𝑦

= (1 − 𝛼)
(

𝑗 − 1
𝑁𝑦 − 1

)3
+ 𝛼

𝑗 − 1
𝑁𝑦 − 1

(50)

where 𝐿𝑦 and 𝑁𝑦 denote the domain length and the number of grid
points, respectively; 𝑗 ∈ [1, 𝑁𝑦] and 𝛼=0.08. The total extent of the

domain is 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 1600𝛿∗in × 100𝛿∗in × 20𝜋𝛿∗in, the initial
boundary layer displacement thickness 𝛿∗in being used as length scale.
No-slip and isothermal boundary conditions at a temperature close
to the laminar adiabatic value (𝑇𝑤 = 120.18K) are applied at the
wall, whereas characteristic-based conditions are used for the top and
right boundaries and periodic conditions in the spanwise direction. A
similarity profile is imposed as inlet condition at a distance 𝑥0 from the
leading edge, corresponding to Re𝛿∗ = 1700. Transition to turbulence
is triggered by means of a suction-and-blowing forcing method; this
excitation technique consists in applying a time-and-space-dependent
wall normal velocity disturbance of the form:

𝑣𝑤
𝑢∞

= 𝐴𝑓 (𝑥)𝑔(𝑧) [cos(𝜔𝑡 + 𝛽𝑧) + cos(𝜔𝑡 − 𝛽𝑧)] (51)

where 𝐴, 𝜔=𝜔̃𝛿∗in∕𝑐∞ and 𝛽=𝛽𝛿∗in represent the amplitude, nondimen-
sional pulsation and spanwise wave number, respectively. Here, the
symbol ̃(∙) denotes dimensional values and 𝑐∞ is the free-stream speed
of sound; 𝑓 (𝑥) and 𝑔(𝑧) are two perturbation-modulation functions
defined as in Franko & Lele [31]. The forcing strip is located near
the inlet, at Re𝛿∗=2000; the parameters prescribed for the current set
of simulations are 𝐴=0.025, 𝜔=0.12 and 𝛽=0.2. Of note, the spanwise
extent of the domain has been selected in order to contain exactly
two oblique waves. Statistics are computed by averaging both in time
and in the periodic direction; their collection spans approximately
two turnover times and starts after that the initial transient has been
evacuated and a statistically-steady state is reached. The sampling time
interval is constant and equal to 𝛥𝑡 = 𝛥𝑡𝑐∞∕𝛿∗in ≈ 3.93 × 10−3.



Fig. 14. Isocontours of the 𝑄-criterion colored with local Mach number for computational grids ranging from 643 to 5123 (𝑀 = 1 case).

Fig. 15. Influence of the order of the nonlinear dissipation term for the TGV case at 𝑀=1 for 2563 grid. Left: enstrophy evolution; right: turbulent kinetic energy spectra at 𝑡=11.1
(zoom).

Table 1
List of the computational grids (and associated legend) selected for the supersonic
boundary layer, along with the total number of grid points and resolutions in inner
units. 𝛥𝑦+𝑤 and 𝛥𝑦+𝛿 refer to the wall-normal resolutions at the wall and at the boundary
layer edge, respectively.

Legend 𝑁𝑡𝑜𝑡 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝛥𝑥+ 𝛥𝑦+𝑤 𝛥𝑦+𝛿 𝛥𝑧+

DNS 1.23 × 109 8000 300 512 5.78 0.77 5.23 3.55
ILES-A 3.07 × 108 4000 300 256 11.69 0.78 5.38 7.17
ILES-B 1.54 × 108 4000 300 128 11.58 0.77 4.94 14.17
ILES-C 7.68 × 107 2000 300 128 22.58 0.76 4.66 13.85
ILES-D 1.92 × 107 1000 300 64 43.00 0.71 5.44 26.36

Five different computational grids have been considered and are
listed in Table 1. A reference solution is generated by means of a well-
resolved DNS and is compared to data obtained on coarser, ILES-like
grids, built by progressively halving the total number of points in the
streamwise and spanwise directions. On the contrary, the wall-normal
grid point distribution is kept unaltered such that discrepancies with
respect to DNS data can directly be attributed to excessively coarse
discretizations in the other two directions. The least-refined grid has
less than 20 million grid points; that is, it is 64 times coarser than the
grid used for DNS, which counts more than 1.2 billion grid points. Note
that the (∙)+ quantities listed in Table 1 have been evaluated at the
point where the skin friction coefficient peaks, corresponding to the



Fig. 16. Influence of the order of the numerical scheme for the discretization of the viscous fluxes for the TGV case at 𝑀=1. Left: enstrophy evolution; right: turbulent kinetic
energy spectra at 𝑡=11.1 (zoom). Red color: 2563 grids; blue color: 1283 grids. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 17. Resolutions of the computational grids along the streamwise direction in wall units. Line legend as in Table 1.

most stringent requirements in terms of resolution. The overall stream-
wise evolutions of 𝛥𝑥+ and 𝛥𝑧+ for the five computational meshes,
reported in Fig. 17, clearly show that their values rapidly grow during
transition and become approximately constant in the fully turbulent
region. The influence of resolution can be appreciated from the lateral
and frontal instantaneous views of the 𝑄-criterion shown in Fig. 18
for all cases but ILES-C, which bears a strong resemblance with case
ILES-B. DNS (panels a and e) and ILES-A (panels b and f) are almost
indistinguishable; fine-scale structures are properly resolved and the
streamwise development of the boundary layers is alike in terms of
integral thicknesses. Some visual discrepancies start to appear for case
ILES-B, in which both the transition region and the smallest features of
the flow are shown to be more grainy. Lastly, the coarser grid of case
ILES-D (panels d and h) results in excessive damping of the turbulent
motions: hairpin-like structures are smeared out and the occurrence of
coherent structures becomes much more sporadic.

The streamwise profile of the skin friction coefficient 𝐶𝑓 is dis-
played in Fig. 19, along with a close-up in the fully-turbulent region
of the same quantity as a function of the momentum-thickness-based
Reynolds number 𝑅𝑒𝜃 . DNS and ILES-A results are almost superposed
both in the laminar-to-turbulent transition and fully-developed turbu-
lent regions, confirming that grid resolutions of 𝛥𝑥+ < 15 and 𝛥𝑧+ < 10
are fine enough to capture the main flow features. On the contrary,
ILES-B and ILES-C cases present some discrepancies in the breakdown
to turbulence, the 𝐶𝑓 peak being slightly smaller and moved towards
the domain inlet. A comparison with ILES-A underlines the importance
of keeping 𝛥𝑧+ < 10 for the spanwise resolution, whereas the influence
of doubling the streamwise mesh size (from 𝛥𝑥+ ≈ 11.5 to 𝛥𝑥+ ≈ 22.5)
is shown to be much less pronounced. Lastly, the ILES-D grid results
in wrong predictions of both transitional and fully turbulent regions.
Despite the much coarser resolutions with respect to the DNS, the

fully-turbulent regions tend to match DNS predictions as 𝑅𝑒𝜃 increases,
mainly due to boundary-layer thickening. The 𝐶𝑓 evolution is indeed
in good agreement with values extracted from numerical simulations
of similar configurations available in literature [88–90], the slight
discrepancies being related to different free-stream Mach numbers and
forcing locations. In Fig. 20a, the Van-Driest-transformed velocity pro-
files collapse reasonably well for all the computational meshes except
for ILES-D, in which the log-region values are shown to be largely
overestimated (in accordance with observations of previous studies
about the resolution limits for turbulent boundary layers [91,92]).
Root-main-square values for each component of velocity, temperature
and density are displayed in Figs. 20b, c and d, respectively; here,
the same conclusions hold: all the computational grids predict wall-
normal profiles very close (or superposed) to the DNS solution, the
only exception being ILES-D case which registers large mismatches in
proximity of the inner peak. The current grid resolution assessment
confirms then the reliability of the numerical strategy in a wall-resolved
ILES framework, pointing out that (i) 𝛥𝑥+ < 15 and 𝛥𝑧+ < 10 should
be used to obtain DNS-like results, and (ii) slightly coarser resolutions
may be considered when focusing the analysis only on fully-turbulent
regions.

5.4.2. Hypersonic turbulent boundary layer with finite-rate chemistry
The last test case here considered highlights the capabilities of

the numerical code in reproducing turbulent configurations of high-
temperature flows, by considering a hypersonic, chemically out-of-
equilibrium boundary layer undergoing laminar-to-turbulent transi-
tion. It is worth noting that a similar configuration has been re-
cently analyzed from the physical standpoint [93]. The thermodynamic
conditions are similar to those adopted in several stability studies
(see Refs. [94–99]); specifically, the imposed free-stream values are



Fig. 18. Lateral and frontal views of instantaneous snapshots for the 𝑀 = 2.25 supersonic boundary layer. Isosurfaces of the 𝑄-criterion colored by the distance from the wall. (a,
e): DNS; (b, f): ILES-A; (c, g): ILES-B; (d, h): ILES-D.

𝑀∞=10, 𝑇∞=350K and 𝑝∞=3596 Pa, in conjunction with an adiabatic
wall. These extreme conditions lead to large temperature values at the
wall (of the order of ≈ 5000K), thereby promoting a strong chemical
activity inside the boundary layer. The extent of the computational
domain is 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 8000𝛿∗in × 320𝛿∗in × 100𝜋𝛿∗in, discretized with
𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 = 5520 × 256 × 240 points. The same stretching function
shown in Eq. (50) is used to generate the wall-normal grid distribution,
with 𝛼 = 0.13. Outside the boundary layer, air in equilibrium at
its free-stream conditions is prescribed (namely, 𝑌N2

= 0.767082 and
𝑌O2

= 0.232918, similar to Marxen et al. [98]), whereas a non-catalytic
boundary condition is imposed at the wall. The locally self-similar

profile, computed under finite-rate chemistry assumption, is prescribed
as inlet condition at a distance corresponding to Re𝛿∗ = 6375. Further
details about the computation of the local self-similar solution are
reported in Appendix A. Near the inlet, a sponge layer is applied to
prevent abrupt distortions caused by the high Mach number. Differently
from the supersonic case presented in Section 5.4.1, the forcing is
located at Re𝛿∗ = 13880 and the suction-and-blowing forcing function
reads:

𝑣𝑤
𝑢∞

= 𝑓 (𝑥)𝑔(𝑧)
𝑁mode
∑

𝑚=1
𝐴𝑚 sin(𝜔𝑚𝑡 + 𝛽𝑚𝑧), (52)



Fig. 19. Skin friction coefficient 𝐶𝑓 as a function of (𝑥 − 𝑥0)∕𝛿∗in. Sub-figure: 𝐶𝑓 as a function of 𝑅𝑒𝜃 in the fully turbulent zone. Line legend as in Table 1.

Fig. 20. Wall-normal profiles of the Van-Driest-transformed longitudinal velocity (a), r.m.s. of velocity (b), temperature (c) and density (d), extracted at 𝑅𝑒𝜃 = 3500. Line legend
as in Table 1.

the collection of 𝐴𝑚, 𝜔𝑚 and 𝛽𝑚 for each mode being listed in Table 2.
The forcing strategy adopted, similar to the one described by Franko
& Lele [31], consists in exciting the two dimensional Mack mode with
a strong amplitude. Additional oblique and stationary waves are also
imposed at a lower amplitude to promote secondary instabilities. This
leads to a late breakdown to turbulence with respect to the supersonic
boundary layer case presented in Section 5.4.1, requiring an adequately
large computational domain in the streamwise direction. Fig. 21 shows
the streamwise evolution of molecular oxygen mass fraction YO2

; it
can be clearly seen that the regime is laminar and transitional in
almost one half of the entire domain. Statistics have been collected for
approximately one turnover time, with a sampling time interval equal
to 𝛥𝑡s𝑐∞∕𝛿∗in = 3.45 × 10−2.

Fig. 22 shows the streamwise evolution of the skin friction coef-
ficient 𝐶𝑓 along with the compressible extension of Blasius’ laminar

Table 2
Parameters of the modes excited by the forcing function in Eq. (52): nondimensional
amplitude, frequency and spanwise wave number.

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13

𝐴𝑚 (×10−3) 50 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
𝜔𝑚 1.71 0.855 0 0 0 1.71 0.855 1.71 1.71
𝛽𝑚 0 0 0.2 0.4 0.6 ±0.2 ±0.2 ±0.4 ±0.6

correlation, 𝐶𝑓,𝑙𝑎𝑚 = 0.664
√

𝑅𝑒𝑥

√

𝜌𝑤𝜇𝑤
𝜌∞𝜇∞

, as well as the results predicted by

the locally self-similar theory. After the forcing strip (not visible in the
figure) and despite the presence of chemical reactions, the evolution of
𝐶𝑓 stays close to the laminar correlation up to (𝑥−𝑥0)∕𝛿∗in ≈ 3300, where



Fig. 21. Instantaneous visualization of a 𝑥𝑧-plane extracted at 𝑦∕𝛿∗in = 12, colored by molecular oxygen mass fraction YO2
.

Fig. 22. Streamwise evolutions of skin friction coefficient 𝐶𝑓 together with laminar correlation 𝐶𝑓,lam ( ) and results of the locally self-similar theory at selected stations (∙).

Table 3
Boundary layer properties at a selected station in the fully turbulent region. In the
table, 𝑅𝑒𝜏 = 𝜌𝑤𝑢𝜏𝛿99∕𝜇𝑤 denotes the friction Reynolds number, 𝑀𝜏 = 𝑢𝜏∕𝑐𝑤 stands for
the friction Mach number and 𝐻 = 𝛿∗∕𝜃 is the boundary layer shape factor.
(𝑥 − 𝑥0)∕𝛿∗in 𝑅𝑒𝜃 𝑅𝑒𝛿∗ × 10−4 𝑅𝑒𝜏 𝑀𝜏 𝐻 𝛥𝑥+ 𝛥𝑦+𝑤 𝛥𝑦+𝛿 𝛥𝑧+

7377 10000 29.83 236 0.16 31 4.51 0.51 3.82 4.07

breakdown to turbulence occurs. On the other hand, the similarity so-
lution, which does not take into account the external pressure gradient
created by the viscous/inviscid interaction (see Appendix A), tends
to overestimate the skin friction coefficient. Averaged distributions of
normalized temperature and species mass fractions along the wall are
displayed in Fig. 23a–b, respectively. The extremely high temperature
triggers the O2 dissociation and exchange reactions, and dissociation
of N2 in a smaller amount. As a result, the amount of O2 decreases as
the flows evolves in the laminar region, whereas O and NO increase.
After the breakdown to turbulence, 𝑌 n does not vary significantly due
the asymptotic behavior of wall temperature. It is worth noting the
inversion of the trend in the fully turbulent region with respect to the
laminar evolution, due to the enhanced mixing with the colder, external
layers. Although molecular oxygen dissociation continues downstream,
the overall mixture composition remains far from the equilibrium one.

Wall-normal distributions of selected first- and second-order statis-
tics are also investigated. The profiles are extracted at a streamwise
station close to the domain outlet; the corresponding parameters are
reported in Table 3. In Fig. 24a, the Van-Driest transformation for the
streamwise velocity is displayed; the logarithmic law is well described
by 𝑢+ = 1

0.41 ln(𝑦+) + 6.0 (see Ref. [100]) and a perfect match with
the linear law is found. The wall-normal evolution of averaged mass

fractions, shown in Fig. 24b, reveals that most of the atomic oxygen
is produced within the viscous sublayer, and tends towards zero at
𝑦+ ≈ 250; nitric oxide (mainly produced by shuffle reactions) follows a
similar trend. On the other hand, the mass fraction of atomic nitrogen
is almost two order of magnitude smaller than the other reaction
products, since the temperatures reached do not trigger significant N2
dissociation. The registered amount of N is therefore mainly due to the
recombination reaction between N2 and O. Second-order statistics are
displayed in Fig. 25; panel (a) shows that root-main-square value of
temperature doubles the free-stream value at the peak of production,
whereas density fluctuations stay relatively small. Accordingly, the
fluctuating distributions of species mass fractions (Fig. 25b) exhibit
the largest values where 𝑇rms peaks, although the strongest chemical
activity is concentrated at the wall where the temperature reaches the
largest values.

6. Conclusions

In this study, an efficient methodology for the numerical simulation
of turbulent flows at high speeds has been presented. The main diffi-
culty associated to such flows is related to the amount of numerical
dissipation to be added, which must satisfy the concurrent needs of
obtaining a reliable picture of small-scale turbulent motions, while
being able to handle strong discontinuities.

The proposed numerical scheme represents an high-order extension
of the original artificial-viscosity-based method of Jameson [25]. It
relies on a blending of second- and tenth-order derivatives equipped
with a suitable shock detector, which results in a ninth-order-accurate
scheme in smooth flow regions. Several test cases have been consid-
ered to assess the capability of such technique to deal with shocks,
shock/entropy perturbations and turbulence, both for calorically-



Fig. 23. Streamwise evolutions of (a) normalized wall temperature and (b) mean mass fractions 𝑌 𝑛 along the wall. In panel b, 𝑌 N2
is not shown being outside of the prescribed

range.

Fig. 24. Wall-normal profiles extracted at 𝑅𝑒𝜃 = 10000 of (a) Van-Driest transformed longitudinal velocity, and (b) mass fractions of selected species.

Fig. 25. Wall-normal profiles extracted at 𝑅𝑒𝜃 = 10000 of (a) normalized r.m.s. temperature and density, and (b) r.m.s. species mass fractions.

perfect gases and high-temperature multicomponent flows. Different
grid refinements (representative of typical resolutions used to carry out
implicit Large-Eddy simulations) were analyzed for multi-scale config-
urations; results were systematically compared to DNS data to quantify
the error introduced by the adoption of under-resolved meshes.

A parametric study on the isentropic vortex advection was carried
out and the formal orders of accuracy of the spatial discretization
and temporal integration were correctly retrieved. The four shock tube
configurations considered (Sod, Lax, Grossman–Cinnella and Daru–
Tenaud) confirm that the scheme handles properly strong shocks and

contact discontinuities, even in presence of chemical nonequilibrium
processes. Furthermore, the two-dimensional N2-O2 under-expanded
jet, the compressible Tayor–Green Vortex and the supersonic boundary
layer were used to prove the reliability and robustness of the numerical
method when applied on coarse grids for ILES. It was shown that
results tend seamlessly to DNS predictions as the resolution increases,
and computations were stable also for severely under-resolved simula-
tions. The last configuration investigated, a turbulent boundary layer
at hypersonic speeds, demonstrates the good behavior of the numerical



Fig. A.26. Evolution of normalized velocity and normalized temperature (left) and species mass fractions (right), at the inflow. 𝑌N2
and 𝑌O2

are not shown being outside the range.

scheme also with the concomitant occurrence of shocklets, broadband
turbulence and chemical nonequilibrium processes.

Future works have been planned concerning the extension of the
current scheme to curvilinear meshes, the coupling with skew-
symmetric formulations, and the numerical investigations of high-speed
configurations encompassing thermal relaxation phenomena by means
of multi-temperature models.
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Appendix A. Locally self-similar solution for laminar boundary
layers

The boundary-layer equations for a steady, compressible, multi-
component, reacting, two-dimensional flow without pressure gradient
write:
𝜕(𝜌𝑢)
𝜕𝑥

+
𝜕(𝜌𝑣)
𝜕𝑦

= 0 (A.1)

𝜌𝑢 𝜕𝑢
𝜕𝑥

+ 𝜌𝑣 𝜕𝑢
𝜕𝑦

= 𝜕
𝜕𝑦

(

𝜇 𝜕𝑢
𝜕𝑦

)

(A.2)

𝜌𝑢 𝜕ℎ
𝜕𝑥

+ 𝜌𝑣 𝜕ℎ
𝜕𝑦

= 𝜕
𝜕𝑦

(

𝜆𝜕𝑇
𝜕𝑦

)

+ 𝜕
𝜕𝑦

(

∑

𝑛
𝜌𝑛𝑢

𝐷
𝑛 ℎ𝑛

)

+ 𝜇
(

𝜕𝑢
𝜕𝑦

)2
(A.3)

𝜌𝑢
𝜕𝑌𝑛
𝜕𝑥

+ 𝜌𝑣
𝜕𝑌𝑛
𝜕𝑦

= 𝜕
𝜕𝑦

(

𝜌𝑛𝑢
𝐷
𝑛
)

+ 𝜔̇𝑛 (A.4)

Independent variable transformations are introduced as follows (see,
for instance, Ref. [101]):

𝜉 = 𝜌𝑒𝜇𝑒𝑈𝑒𝑥 = 𝜉(𝑥), 𝜂 =
𝑢𝑒

√

2𝜉 ∫

𝑦

0
𝜌𝑑𝑦 = 𝜂(𝑥, 𝑦). (A.5)

Considering the definition of the stream-function
𝜕𝜓
𝜕𝑦

= 𝜌𝑢
𝜕𝜓
𝜕𝑥

= −𝜌𝑣 (A.6)

and the equivalent expression in terms of transformed variables
𝜕𝜓
𝜕𝜉

= 1
√

2𝜉
𝑓 (𝜂)

𝜕𝜓
𝜕𝜂

=
√

2𝜉𝑓 ′(𝜂), (A.7)

with 𝑓 ′ = 𝑢∕𝑈𝑒, one can manipulate the boundary-layer equations and
obtain their formulation in the self-similar coordinate system:
(

𝐶𝑓 ′′)′ + 𝑓𝑓 ′′ = 0 (A.8)

[

𝜌2𝐷𝑛
𝜌𝑒𝜇𝑒

(

𝑌 ′
𝑛 − 𝑌𝑛

𝑁𝑆
∑

𝑖=1

𝐷𝑖
𝐷𝑛

𝑌 ′
𝑖

)]′

+ 𝑓𝑌 ′
𝑛 +

2𝜉𝜔̇𝑛∕𝜌
𝜌𝑒𝜇𝑒𝑢2𝑒

= 0 (A.9)

𝑇𝑒
ℎ0,𝑒

(

𝐶𝜆
𝜇
𝜃′
)′

+ 𝑓𝑔′ +
𝑢2𝑒
ℎ0,𝑒

𝑓𝑓 ′𝑓 ′′ +
𝑢2𝑒
ℎ0,𝑒

(

𝐶𝑓 ′𝑓 ′′)′

+

[𝑁𝑆
∑

𝑛=1

ℎ𝑛
ℎ0,𝑒

𝜌2𝐷𝑛
𝜌𝑒𝜇𝑒

(

𝑌 ′
𝑛 − 𝑌𝑛

𝑁𝑆
∑

𝑖=1

𝐷𝑖
𝐷𝑛

𝑌 ′
𝑖

)]′

= 0 (A.10)

Here, 𝑔 = ℎ∕ℎ0,𝑒 is the self-similar parameter for the enthalpy, ℎ0,𝑒
being the edge stagnation enthalpy, 𝜃 = 𝑇 ∕𝑇𝑒 and 𝐶 = 𝜌𝜇∕𝜌𝑒𝜇𝑒. For the
sake of clarity, in case of frozen chemistry or chemical equilibrium, the
only 𝜉-dependent term in Eq. (A.9) vanishes and the resulting equations
become globally self-similar. The previous system of equations can be
integrated numerically, subjected to the following boundary conditions:

𝑓 ′ = 𝑓 = 0, 𝑌 ′
𝑛 = 0, 𝑔′ = 0 for 𝜂 = 0 (A.11)

𝑓 ′ = 1, 𝑌𝑛 = 𝑌𝑛,𝑒, 𝑔 = 1 − 1
2
𝑢2𝑒
ℎ0,𝑒

for 𝜂 → ∞ (A.12)

In the specific configuration reported in Section 5.4.2, the prescribed
edge variables are 𝑈𝑒 = 3754m∕s, 𝑇𝑒 = 350K and ℎ0,𝑒 = 7.1MJ∕kg.
Considering a distance from the leading edge equal to 𝑥 = 0.01m,
we obtain the inflow profiles of normalized temperature, normalized
velocity and species mass fractions, shown in Fig. A.26 as a function of
the incompressible similitude variable 𝜂𝑖 = 𝑦

√

𝑅𝑒𝑥∕𝑥.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compfluid.2021.105134.
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