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Continuing invariant solutions
towards the turbulent flow
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A new mathematical framework is proposed for
characterizing the coherent motion of fluctuations
around a mean turbulent channel flow. We search
for statistically invariant coherent solutions of
the unsteady Reynolds-averaged Navier–Stokes
equations written in a perturbative form with
respect to the turbulent mean flow, using a suitable
approximation of the Reynolds stress tensor. This is
achieved by setting up a continuation procedure of
known solutions of the perturbative Navier–Stokes
equations, based on the continuous increase of
the turbulent eddy viscosity towards its turbulent
value. The recovered solutions, being sustained only
in the presence of the Reynolds stress tensor, are
representative of the statistically coherent motion of
turbulent flows. For small friction Reynolds number
and/or domain size, the statistically invariant motion
is almost identical to the corresponding invariant
solution of the Navier–Stokes equations. Whereas, for
sufficiently large friction number and/or domain size,
it considerably departs from the starting invariant
solution of the Navier–Stokes equations, presenting
spatial structures, main wavelengths and scaling
very close to those characterizing both large- and
small-scale motion of turbulent channel flows.

This article is part of the theme issue ‘Mathematical
problems in physical fluid dynamics (part 2)’.

1. Introduction
Understanding the dynamics of wall-bounded turbulent
flows is a formidable challenge yet to be fully achieved,
since turbulence is a complex phenomenon appearing
in a variety of states and patterns which compete
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with the laminar state [1]. In order to derive low-order models of the turbulent dynamics, one
should focus on the coherent part of the turbulent motion [2], which is known to contribute much
more to the momentum of the flow than the chaotic fluctuations at small scales. The most typical
example of coherent motion in turbulent flows are the streaks, which have been first recognized by
Kline et al. [3] as ‘surprisingly well-organized spatially and temporally dependent motions’. These
elongated structures are continuously generated by the lift-up mechanism [4] within the self-
sustained cycle theorized in the nineties [5,6]. Although this self-sustained process was initially
observed in the inner layer region [5–7], a growing body of evidence has recently indicated that
equivalent, mutually independent regeneration cycles are active in the logarithmic and outer
regions as well [8–13], giving rise to large- and very-large-scale motion [14–18]. The statistical and
dynamical features of these self-sustaining motions associated with streaks and quasi-streamwise
vortices at different scales are consistent with Townsend’s attached eddy hypothesis [19].
Moreover, the same three fundamental mechanisms that compose the regeneration cycle of wall
turbulence have been found to sustain several invariant solutions of the Navier–Stokes equations
in the form of equilibria, travelling waves or (relative) periodic orbits [20–37], which compose
the chaotic saddle sustaining transient turbulence [38]. Typical coherent structures populating
transitional and turbulent flows, such as streaks and streamwise vortices, have been successfully
captured by these fully nonlinear, dynamically unstable solutions of the Navier–Stokes equations
which populate state space and support turbulent dynamics with their entangled stable and
unstable manifolds. Trajectories in the state space may approach one of these solutions, remain
in their neighbourhood for a finite time before being pushed away along one of the unstable
directions to approach other solutions through heteroclinic orbits [39], resulting in a chaotic walk
in the state space. Many efforts have been done for deriving low-order models based on these
invariant solutions, allowing one to accurately describe the statistical properties of a turbulent
flow [40]. Recently, Chandler & Kerswell [41] successfully applied the periodic orbit theory to
the case of a two-dimensional Kolmogorov flow at a moderate Reynolds number. However, a
low-order model of a fully developed three-dimensional turbulent flow is yet to be achieved,
and would probably require the discovery of many new invariant solutions at sufficiently high
Reynolds number. Unfortunately, the computation of such invariant solutions at large Reynolds
number is a hard challenge, due to the multiple bifurcations they typically undergo. In the case
of fully turbulent flows at high friction Reynolds number, a valuable approach for computing
invariant solutions is resorting to large-eddy simulations (LES), as proposed by Hwang & Cossu
[9,10]. In particular, choosing filtering widths larger than those typically used for reproducing
results of direct numerical simulations (DNS), allows one to filter out a large range of scales that
could not be resolved within the chosen numerical grid. This approach, relying on ‘overfiltered’
LES, with the Smagorinsky constant Cs controlling the strength of the filtering, is well suited
for investigating the self-sustained nature of coherent large-scale motion, as done at first for
the channel [9,10] and Couette [42,43] flows at relatively low Reynolds numbers and for the
channel and asymptotic suction boundary layer flow at large friction Reynolds numbers [44,45].
Recent studies [9,10,43] have demonstrated that both large-scale and log-layer coherent motions
can be self-sustained, since they survive in both channel and Couette flow, when smaller-scale
active motions are artificially quenched and replaced by purely dissipative structures. However,
this overfiltered approach does not allow one to investigate the nature of the energy transfer
between coherent structures of different scales. Despite the motion at large scales can be sustained
even when the wall cycle is quenched, in high-Reynolds-number turbulent flows multiple and
non-trivial interactions exist between coherent structures at different scales [46,47]. Very recent
works [48] have shown that wall-normal energy is transferred from large to small scales inducing
energy production at the wall via the Orr mechanism, while a non-negligible amount of energy
is transferred from small to large scales [47], possibly due to small-scale sinuous streak instability
[48]. Thus, coherent structures at different scales are intimately connected by direct and inverse
cascade mechanisms by which energy is transmitted scale-by-scale among different regions of the
flow [46].



A deeper understanding of the energetic bond connecting small- and large-scale structure
in turbulent flows can be achieved by the computation of statistically invariant coherent states
which characterize the multiple-scale, coherent part of the motion around the turbulent mean
flow, without any filtering of small-scale structures. Towards this aim, this work provides a new
mathematical framework for the computation of statistically invariant equilibria, travelling waves
or (relative) periodic orbits characterizing the motion of turbulent fluctuations around the mean
flow. This is achieved by seeking for statistically invariant coherent solutions of the unsteady
Reynolds-averaged Navier–Stokes equations written in a perturbative form with respect to the
turbulent mean flow, using a suitable approximation of the Reynolds stress tensor. Unlike the
classical invariant solutions of the Navier–Stokes equations, these solutions are sustained only
in the presence of the Reynolds stress tensor, being representative of the statistically coherent
motion of turbulence. This set of equations has been found efficient for characterizing extreme
events having an energy spectrum very similar to that of the fully turbulent flow [49,50]. We
show in this paper that, continuing in this statistical framework known invariant solutions of
the Navier–Stokes equations at high friction Reynolds numbers, statistically invariant motions
containing both large- and small-scale coherent structures such as streaks and streamwise vortices
are obtained, with main wavelengths corresponding to the typical ones recovered in turbulent
flows. The paper is structured as follows. In §2, the problem formulation is provided. In §3,
the continuation procedure allowing the computation of the statistically invariant solutions is
described. Relevant results are discussed in §4, and conclusions are drawn in §5.

2. Problem formulation
The incompressible flow in a channel is governed by the Navier–Stokes equations, which describe
the dynamics of the instantaneous state variables q = [u, p]T, where u(x, t) is the velocity field and
p(x, t) is the pressure.

When studying the flow dynamics in the vicinity of the laminar state, the state variables
can be decomposed as the sum of the laminar base flow Q = [U, 0, 0, P]T and a perturbation
q′ = [u′, v′, w′, p′], leading to the Perturbative Navier–Stokes (PNS) equations

∇ · u′ = 0

and
∂u′

∂t
= −(u′ · ∇)u′ − (u′ · ∇)U − (U · ∇)u′ − ∇p′ + 1

Re
∇2u′,

⎫⎪⎬
⎪⎭ (2.1)

where Re = 3Ub/2(h/ν) is the Reynolds number, defined on the basis of the bulk velocity Ub =∫1
−1 U(y) dy (where 3Ub/2 corresponds to the value at the centreline of the parabolic laminar flow

with mean velocity Ub), the half channel height h and the kinematic viscosity ν. Several invariant
solutions of these equations, such as (relative) equilibria or periodic orbits, have been computed
in the past decades [20–37].

Conversely, when studying the dynamics of coherent structures characterizing the turbulent
flow, it can be appropriate to move the point of view in the vicinity of the turbulent mean flow.
This is achieved by using a Reynolds decomposition approach similar to that used by Eitel-Amor
et al. [51] and Farano et al. [49], where the flow vector is expressed as the sum of a mean flow Q =
[U, P]T = [U, 0, 0, P]T (where • denotes long-time and space averaging along the streamwise and
spanwise directions) and a fluctuation q̃ = [ũ, p̃]T, comprising the coherent and incoherent part of
the perturbations of the mean flow. Time- and space-averaging along the wall-parallel directions
the Navier–Stokes equations, and subtracting these averaged equations from the Navier–Stokes
equations leads to the perturbative Reynolds-averaged Navier–Stokes (PRANS) equations, which
describe in a statistical way the nonlinear evolution of fluctuations of the mean turbulent flow as

∇ · ũ = 0

and
∂ũ
∂t

= −(ũ · ∇)ũ − (ũ · ∇)U − (U · ∇)ũ − ∇̃p + 1
Re

∇2ũ + ∇ · ũũ,

⎫⎪⎬
⎪⎭ (2.2)



where the term ũũ is the Reynolds stress tensor τ . Note that steady solutions of the PRANS
equations, as well as the mean flow itself, are sustained by the Reynolds stress term, which is in
turn sustained by the coherent and incoherent part of the fluctuations. The mean velocity profile
for channel flow is well approximated by the analytical expression proposed by Reynolds &
Tiedermann [52]

dU
+

dy
= − Reτ y

ν+
T (y)

, (2.3)

Reτ = uτ h/ν being the friction Reynolds number based on the friction velocity uτ = √
τw/ρ, where

τw is the wall shear stress, and ν+
T = νT/ν is the ratio between the total viscosity νT = ν + νt and the

kinematic viscosity ν, νt being the turbulent eddy viscosity. The total eddy viscosity is modelled
using Cess analytic approximation [53], as assumed in previous works [54–56]. Since this mean
velocity profile is not solution of the Navier–Stokes equations, in order to close the problem, the
divergence of the Reynolds stress tensor τ in equation (2.2) needs to be modelled. A common
way to write this term is using the Boussinesq’s Eddy Viscosity hypothesis τij = −ũiũj = νtSij [57],
where S is the shear stress tensor. Considering a fully developed channel flow whose statistics are
averaged in the streamwise and spanwise direction, the divergence of the Reynolds stress tensor
has only two non-zero components, i.e. dτ12(y)/dy and dτ22(y)/dy (note that the latter term cannot
be incorporated in the pressure term since the other isotropic components have derivative equal
to zero). The former term is approximated using the above mentioned eddy viscosity hypothesis,
while the latter is modelled by using the rescaling proposed by Chen et al. [58], as

ũṽ = −νt
dU
dy

and ṽṽ
+=ũṽ

+
(

l+22

l+12

)2

, (2.4)

l+12, l+22 being the Reynolds stress lengths defined as

l+i2 = ci2y+(i+2)/2

⎛
⎝1 +

(
y+

y+
sub

)4
⎞
⎠

1/8 ⎛
⎝1 +

(
y+

y+
buf

)4
⎞
⎠

−(1+i)/4
1 − r4

4(1 − r)

(
1 +

( rcorei2

r

)2
)i/4

, (2.5)

where i = 1, 2, r = 1 − y is the distance from the centreline, y+
sub = 9.7 is the sublayer thickness,

y+
buf = 41 is the buffer layer thickness, rcore12 = 0.27 and rcore22 = 0.3 are the central core layers, and

the parameters c12, c22 are function of these quantities (see [58] for further details). This analytical
formulation has been validated by comparing the mean turbulent flow and the Reynolds stress
tensor components with those obtained by DNS at Re = 3300 (Reτ = 180) [59] and at Re = 12 450
(Reτ = 590) [60]. The results obtained are computed in this range of Reynolds numbers, for which
turbulence is fully developed (not spatially patterned) and both the mean flow and the Reynolds
stress are accurately described by the chosen analytical approximation.

3. Continuation from the PNS to the PRANS framework
Statistically invariant travelling waves solutions of the PRANS equations are sought for by
continuation of known invariant solutions of the PNS equations. In particular, as sketched in
figure 1, a homotopy procedure is used for continuously passing from equations (2.1) to (2.2),
which have an almost identical structure, except for the steady flow used as reference and for the
presence of the Reynolds stress tensor. Since these quantities depend directly on the turbulent
eddy viscosity, the continuation is performed by continuously increasing this quantity from zero
to its characteristic turbulent value expressed by the Cess model [53]. Towards this purpose, we
define an effective turbulent eddy viscosity, ενt, where ε is a real positive number in the range
[0, 1], and νt is expressed as

νt = ν

2

{
1 +

(
κ2Re2

τ

9

)
(2η̂ − η̂2)2(3 − 4η̂ + 2η̂2)2

{
1 − exp

[
(|η̂ − 1| − 1)Reτ

A

]}2
} 1

2

− 1
2

. (3.1)
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Figure 1. Schematic visualization of the continuation procedure from the Perturbative Navier–Stokes equations (ε = 0) to the
Perturbative Unsteady Reynolds-averaged Navier–Stokes equations (ε = 1).

with η̂ = η + 1 defined in the domain [0, 2], κ = 0.426 and A = 25.4, as assumed in previous works
[55,56,61]. Continuation from the PNS to the PRANS equations is achieved by increasing the
coefficient ε from 0 to 1, and using the effective turbulent eddy viscosity ενt in the analytical
expression of the Reynolds stress tensor components τ11, τ12 in equation (2.4) and in the mean
flow profile in equation (2.3), where ν+

T = 1 + ενt/ν. The procedure consists in selecting a known
travelling wave solution of the Navier–Stokes equations, subtracting the laminar flow solution for
defining the corresponding perturbation, which is a travelling wave solution of equations (2.1),
and continuing it in ε using the following equations:

∇ · ũ = 0

− C
∂ũ
∂x

= −(ũ · ∇)ũ − (ũ · ∇)U − (U · ∇)ũ − ∇̃p + 1
Re

∇2ũ − ∇ · ενtS(U)

U(y) =
[

1 −
∫

Re2
τ y

Re(1 + ε(νt/ν))
dy, 0, 0

]T

,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

where C is the phase velocity of the Galilean frame in which the solution is steady.
When ε = 0, Re2

τ = 2Re and one recovers U = 1 − y2 = U, the Reynolds stress tensor
components being null. In this limit, equations (3.2) coincide with the PNS equations (2.1) and
consequently ũ coincides with u′. When ε = 1, one gets the turbulent expression of νt given
in equation (3.1), so that the turbulent mean velocity profile and the Reynolds stress tensor
components in equations (2.4) are obtained. Note that, similarly to a homotopy procedure, the
solutions obtained for ε =]0, 1[ have no physical sense. Moreover, for ε �= 1, ũ can have a non-zero
mean, since U represents the mean flow only in turbulent conditions, which are achieved only for
ε = 1. The whole procedure, which is sketched in figure 1, is implemented within the open-source
software Channelflow (channelflow.ch) [62].

channelflow.ch


Continuation from the PNS to the PRANS equations is performed enforcing a constant volume
flux and consequently fixing the bulk velocity. Thus, while ε increases from 0 to 1, the friction
Reynolds number grows from the laminar (ReL

τ ) towards the turbulent (ReT
τ ) value as

Reτ = (1 − ε)ReL
τ + εReT

τ = [(1 − ε)uL
τ + εuT

τ ]
h
ν

, (3.3)

where uL
τ =√

3Ubν/h is the friction velocity of the laminar flow and uT
τ is the friction velocity of

the turbulent flow, which, using Dean’s approximation for the skin friction in fully turbulent flow
[63], can be expressed as

uT
τ =

√
0.073

2
U2

b

(
2Ubh

ν

)−0.025
. (3.4)

4. Results
As a first attempt aiming at validating the approach, we take as a starting point for the
continuation procedure the travelling wave solution TW2 obtained by Gibson & Brandt [33] in
a small domain at low Reynolds number. This invariant solution of the NS equations is computed
at Re = 2300 in a domain of extension 2π × 2 × π , with 32 × 97 × 64 points in the streamwise (x),
wall-normal (y) and spanwise (z) direction, respectively. As shown in figure 2a, the TW2 solution
is continued with respect to the Reynolds number up to Re = 3800, which is sufficiently high
for displaying featureless (not patterned) turbulence. As shown in figure 3a, the TW2 solution
at this value of Re consists of two layers of counter-rotating vortices and slightly modulated
streaks along the lower wall, and one layer of counter-rotating vortices along the upper wall (not
shown). This solution is continued to the PRANS formulation by increasing the eddy viscosity
as explained in section (3). Continuation is performed at fixed Reynolds number Re = 3800,
enforcing a constant volume flux. The variation of the streamwise velocity norm during this
continuation procedure is shown in figure 2b. After an initial drop, the streamwise velocity norm
increases with ε, reaching for ε = 1 a value about 60% larger with respect to its initial value.
Moreover, when ε = 1, the friction Reynolds number reaches Reτ = 134.521, and the statistically
invariant solution TW2T, shown in figure 3b, is obtained. Note that this friction Reynolds number
is rather low for a fully developed turbulent flow, we thus expect the solution to slightly change
when continued towards the PRANS framework. Comparing this statistically steady solution
with the starting travelling wave, one can observe that the quasi-streamwise vortices (blue and
red isosurfaces) are almost unchanged, while strong differences can be noticed on the velocity
streaks, which are less fragmented, more streamwise-aligned and shifted towards the wall. This
shift of the streaks towards the wall can presumably be due to the wall-normal variation of the
eddy viscosity used in the PRANS equations. As discussed in [56], since in the near-wall region
and lower part of the logarithmic region, the eddy viscosity grows linearly with y, coherent
structures are allowed to reach larger amplitudes, so they protrude towards the wall. Whereas,
they weaken in the upper part of the logarithmic region and outer region, due to the large value
of νt. Moreover, the streaks considerably increase their size in the spanwise direction, and show
a peculiar triangular shape. This peculiar shape compares very well with the streaky mean flow
obtained by optimally forcing a turbulent channel flow, while the vortical structures remember
closely the most energetic DMD mode recovered on top of this streaky flow [64]. The streaks
reach down towards the wall, where they are almost streamwise aligned, while they present some
wiggles close to the streamwise vortices. Moreover, their structures becomes almost identical on
the two walls, despite in the upper wall much weaker vortices are found (not shown).

These unexpected differences with respect to the starting TW2 solution might arise from the
fact that, when continuing the PNS equations (2.1) towards the PRANS ones (2.2), invariant
perturbations of the laminar base flow transform into statistically coherent fluctuations of the
mean flow. Thus, the observed structural change of the travelling wave solution can be simply due
to the change of reference from the base to the mean flow, rather than to an intrinsic modification
of the coherent motion. An answer to this important point can be found by directly comparing
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version in colour.)

the instantaneous flow fields of TW2 and TW2T, obtained by summing up the perturbations
(fluctuations) provided in the left (right) frame of figure 3 to the base (mean) flow, respectively.
The difference between these two flow field is found to be of O(10−4), three orders of magnitude
smaller than the perturbation maximum amplitude, thus validating our procedure at such a low
friction Reynolds, for which the dynamics of fluctuations of the mean flow should not strongly
differ to that of perturbations of the base flow after a mere change of reference.

Once our approach has been validated, we attempt to increase the friction Reynolds number
for reaching values typical of fully turbulent flows. First, we tried to continue the TW2T solution
further in Re, but the convergence of higher-Re solutions was very slow and time-consuming.
Conjecturing that the domain might be too small for capturing statistically steady coherent
structures typical of higher-Reynolds number flows, we have continued TW2T in the streamwise
direction up to Lx = 9.54, while keeping Ub fixed. This solution, provided in figure 4a, is very
similar to that previously shown, showing coherent, large-scale streaks with smaller vortices on
top of them. One can again note the strong similarity of this solution with the main energetic
structures found in a forced DNS of turbulent channel flow [64]. However, this solution is again
characterized by a rather low Reτ = 134.5, thus the difference between the relative instantaneous
flow fields, shown in figure 4b, is again very small. This TW is then continued in Reynolds
number up to Re = 5945, corresponding to Reτ = 199.0, which is only slightly higher than that
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0.1) coloured by the streamwise vorticity (dark grey in the printed version, red for positive, blue for negative online). (a) ε = 0,
Reτ = 99.5, (b) ε = 1, Reτ = 210.0. (Online version in colour.)

characterizing the TW2T solution at Re = 3800. Further continuation of this invariant solution of
the PRANS equation with respect to Re was again very slow and time-consuming.

Motivated by these results, we have chosen a new starting point of the continuation procedure,
namely, a spanwise-localized travelling wave solution called TW2 − 1 [33], whose similarity
to flow structures characterizing the near-wall cycle has been reported in the literature. This
travelling wave solution, which has been obtained by continuation of TW2 after windowing on a
larger spanwise domain [33], is similar in structure to TW2, although being mostly concentrated
towards one wall. We have first obtained the TW2 − 1 solution at Re = 3300 in the domain of size
2π × 2 × 6π , with 32 × 97 × 324 points in the streamwise, wall-normal and spanwise direction,
respectively. The TW2 − 1 solution is continued at first with respect to the bulk velocity, in order
to increase its friction Reynolds number. The resulting travelling wave is shown in figure 5a
for Re = 3300. This spanwise-localized solution consists of slightly modulated streaks flanked by
streamwise-inclined vortices, which are weaker on the upper wall, where only one streaks pair is
observed, and stronger on the bottom wall, where two pairs of streaks are recovered.

This TW2 − 1 solution is then continued to the PRANS equations varying the parameter ε from
0 to 1, at fixed Re = 3300 and Ub. Figure 5b provides this solution at Re = 3300, corresponding to
Reτ = 210. The lateral streaks on the bottom wall and that on the upper wall considerably increase
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their size in the spanwise direction, reaching a width which appears to be close to that typical of
large-scale motion, λz ≈ 1.5h [65]. For reaching higher values of Reτ , continuation with respect
to Re of TW2 − 1 is performed, keeping Ub fixed. The variation of the norm of the streamwise
velocity of TW2 − 1 during the Re-continuation is found in figure 6a, showing a continuous
increase of this quantity, while the wall-normal velocity considerably decreases with Re (not
shown). Several solutions at increasing values of Re have been then continued in ε towards



the PRANS framework, as shown in figure 6b. Figure 7a,c,e provides the TW2 − 1T solutions at
different values of the Reynolds number up to 6500 (corresponding to Reτ = 380.03). The whole
structure of the travelling wave remains similar to that recovered at Re = 3300, although the
streaks become stronger while the counter-rotating vortices slightly weaken. More importantly, as
shown in figure 7b,d,f, the difference between the instantaneous flow fields of the corresponding
TW solutions of the PNS and PRANS equations consistently increases, now reaching the same
order of magnitude of the perturbation itself. This means that the structural modifications of
TW2 − 1T with respect to TW2 − 1 at high Reτ , do not depend only on the change of reference
from the laminar base flow to the mean turbulent flow, but to an intrinsic difference in the coherent
disturbances dynamics. Figure 7b,d,f shows a cross-section of the low- and high-speed streaks
of TW2-1 (black and white lines) at different Reynolds numbers, together with the difference
between the instantaneous flow fields of TW2 − 1 and TW2 − 1T at the same values of Re (shaded
contours). One can note that the largest modifications are observed on the lateral low-speed
streaks, which increase their spanwise size and move towards the wall, and on the high-speed
ones at the wall, which appear to be change their spanwise size too (not shown). However, while
the streamwise velocity is modified in a large part of the domain, the counter-rotating vortices
change exclusively in a very narrow zone between the low- and high-speed streaks. The result of
these modification is a consistent increase of the spanwise size of most of the streaks, which reach
a length comparable to the channel half-height, typical of large scale motion [11,17,65]. A smaller-
size streak is observed as well, having spanwise size O(100) (in inner units), close to that typical of
wall streaks. However, this smaller-scale coherent structure does not appear directly linked to the
wall cycle, since, as shown in figure 8a, its streamwise-averaged velocity profile extracted at z = 9
and scaled with respect to the inner units, appears not to be independent of Reτ , as one would
expect for wall-cycle related structures. In particular, its peak scales approximately with Re1/2

τ ,
as one would expect for large-scale structures [56]. It is worth to note that the same scaling with
respect to Reτ characterizes the lateral large-scale streaks, whose inner-scaled velocity profiles
are shown in figure 9a. However, comparing figures 8b and 9b, one can also note that, while the
lateral streaks present a robust outer scaling, confirming their large-scale nature, for the small-
scale central streak the velocity profiles at different Reτ do not collapse at large values of y. Thus,
the small-scale central streak cannot directly be related with the wall cycle, but neither to the
large-scale structures, probably being linked to the secondary motion induced by the vortical
structures placed at the centre of the domain. These counter rotating vortices placed in the region
between the large-scale streaks, reaching much higher distances from the wall, remember the
typical vortical structures recovered in large-scale motion (also called bulges).

A quantitative analysis of the main spanwise wavelengths of TW2 − 1T has been carried out
by computing the premultiplied energy spectra of the streamwise, wall-normal and spanwise
velocities of this solution at Re = 4500 (corresponding to Reτ = 275.47), which are shown in
figure 10a,b,c, respectively. Concerning the streamwise velocity, the lowest-wavenumber peak
(k+

z = 0.00127 or kz = 0.35 in outer units) corresponds to the size of the TW envelope, being close
to the spanwise domain size. Two other peaks are recovered for k+

z = 0.0065 and k+
z = 0.0155,

corresponding to wavelengths λz = 3.5 and λz = 1.47 in outer units, respectively, lying in the
range of the typical spanwise size of large-scale motion (reported to be λz = 1 − 3 in outer units).
A higher-frequency, weaker peak is found for k+

z = 0.047, corresponding to λ+
z = 135, which is

rather close to the typical spanwise size of wall-streaks. Whereas, the wall-normal and spanwise
spectra are both characterized by one peak only, at k+

z = 0.048 (corresponding to λ+
z = 130.08) and

k+
z = 0.026 (λ+

z = 235.32), respectively. Notice that these wavelengths are much lower than the
dominant ones of the streamwise velocity spectra, being closer to those typical of the wall cycle.
Very similar spectra are recovered at Re = 5500 and Re = 6500 (corresponding to Reτ = 328.35 and
Reτ = 380.03, respectively), indicating that the structure of TW2 − 1T remains robust when the
Reynolds number increases. Moreover, it is interesting to evaluate the scaling of the relevant
structures of these solutions with respect to those of the single self-sustaining attached eddy [11],
which is composed of a long streaky motion reaching the near-wall region, self-similar along
y = 0.1λz and a shorter vortical structure carrying all the velocity components, self-similar along



y = 0.5 − 0.7λz. A very similar scaling is found in the TW2 − 1T solution, with the two dominant
peaks in the streamwise velocity spectrum having y ≈ 0.1 − 0.15λz while a scaling of y ≈ 0.58λz,
y ≈ λz is found in the spanwise and wall-normal spectra, respectively. The statistically steady
solution presented here, composed of large streaky structures and short vortical ones carrying all
velocity components, is thus similar in shape and wavelengths to the self-sustaining structures
of the attached eddy theory [11]. However, in this solution, large- and small-scale structures are
not torn apart, but tied together in a non-trivial way, representing one potential first brick for the
development of a low-order model of turbulence dynamics.

5. Conclusion
In this work, we propose a new mathematical framework for characterizing the coherent motion
of turbulent fluctuations around the mean flow in a turbulent channel, using a statistical point
of view. In particular, we search for statistically invariant coherent solutions of the unsteady
Reynolds-averaged Navier–Stokes equations written in a perturbative form with respect to
the turbulent mean flow, using a suitable approximation of the Reynolds stress tensor. For
doing so, we set up a continuation procedure of known invariant solutions of the perturbative
Navier–Stokes equations, based on the continuous increase of the eddy viscosity towards its
turbulent value. The recovered solutions are sustained only in the presence of the Reynolds
stress, thus being representative of the coherent motion of turbulent flows. The travelling wave
TW2 has been first used as a starting point of the continuation procedure, and continued to the
turbulent framework up to friction Reynolds number Reτ ≈ 134.52. Although structural changes
are found in the solution, when resorting to instantaneous quantities the statistically invariant
motion results to be only marginally different to the corresponding invariant solution of the
Navier–Stokes equations. This was expected, since turbulence is not fully sustained at such low
values of the friction Reynolds number, so that the dynamics of statistically coherent motion
of fully turbulent flows remains close to that of transient turbulence and transition. However,
by taking the spanwise-localized solution TW2 − 1 as a new starting point, and continuing it
to the statistically turbulent framework at sufficiently large friction number (Reτ ≈ 380.03), the
statistically invariant motion considerably departs from the starting solution. This solution is
characterized by large-scale and small-scale streaks reaching the wall, accompanied by rather
small vortical structures further from the wall. These structures, as well as the main wavelengths
and scaling of this statistically invariant solution are very close to those typical of the coherent
motion in turbulent channel flows. In particular, the dominant wavelengths of the streamwise
velocity premultiplied energy spectrum correspond to the typical spanwise size of large-scale
structures (1.5 − 3.5 times the half channel height) and are characterized by a scaling y ≈ 0.1 −
0.15λz, consistent with the attached eddy hypothesis. Whereas, spanwise lengths typical of
the wall cycle and a scaling of y ≈ 0.58λz, y ≈ λz are found in the spanwise and wall-normal
spectra, respectively. Thus, the statistically steady solution presented here, constituted by large
streaky structures and short vortical ones carrying all velocity components, is similar in shape
and wavelengths to the self-sustaining structures of the attached eddy theory [11], although
composed by large- and small-scale structures tied together in a non-trivial way. This statistically
invariant solution may potentially represent one brick for the development of a low-order model
of turbulence dynamics. It should be remarked that the comparison of the main wavelengths and
scalings of this statistically invariant solution with those of the attached eddy has been limited to
the spanwise direction, since the present solution has been obtained in a rather small streamwise
domain. Future work will aim at continuing this or other solutions towards larger streamwise
domains, as well as towards much higher friction Reynolds numbers. Moreover, new statistically
invariant solutions might be obtained using as a starting point filtered snapshots of the turbulent
flows, instead of continuing known invariant solutions of the Navier–Stokes equations. Finally,
statistically periodic solutions can be recovered as well, providing relevant information about the
temporal dynamics of the coherent part of the fluctuations in the considered statistical framework.



This might be a considerable step forward towards the development of reduced-order models of
turbulent flows.
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29. Gibson JF, Halcrow J, Cvitanović P. 2009 Equilibrium and traveling-wave solutions of plane
Couette flow. J. Fluid Mech. 638, 243. (doi:10.1017/S0022112009990863)

30. Schneider TM, Gibson JF, Burke J. 2010 Snakes and ladders: localized solutions of plane
Couette flow. Phys. Rev. Lett. 104, 104501. (doi:10.1103/PhysRevLett.104.104501)
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