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Abstract
Additive manufacturing is an appealing solution to produce geometrically complex parts, difficult to manufacture using
traditional technologies. The extreme process conditions, in particular the high temperature, complex interactions and
couplings, rich metallurgical transformations and combinatorial deposition trajectories, induce numerous process defects
and in particular porosity. Simulating numerically porosity appearance remains extremely complex because of the multiple
physics induced by the laser-material interaction, the multiple space and time scales, with a strong impact on the simulation
efficiency and performances. Moreover, when analyzing parts build-up by using the wire laser metal deposition —wLMD—
technology it can be noticed a significant variability in the porosity size and distribution even when process parameters
remain unchanged. For these reasons the present paper aims at proposing an alternative modeling approach based on the
use of neural networks to express the porosity as a function of different process parameters that will be extracted from the
process analysis.

Keywords Additive manufacturing · Wire laser metal deposition (wLMD) · Defects · Machine learning · Regressions ·
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Introduction

Additive manufacturing –AM– with all its variants is
widely used for manufacturing complex parts and more
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particularly, for enhancing materials and structures by
integrating many functionalities. Architectured materials
and metamaterials, empowering structures, are nowadays
present in all the domains of science and engineering.

However, AM processes involve nowadays many chal-
lenges related to the modeling, simulation and process
control. These difficulties come from the multiple and cou-
pled physical phenomena, highly localized in space and
time, affecting different scales, from the one of the metal-
lurgy and porosity, to the one of the part in which residual
stresses induce the part distortion.

The resulting structural performances are strongly
dependent on the process parameters, that affect the local
properties that as just mentioned affect the global scale.
Between the local scale (at which laser and material
interact) and the one of the part, another scale is of major
relevance, the one of the deposition trajectory that links
the local and the global scales, and that constitutes a real
challenge from the computational point of view, not only
because of the fact that simulating a printing operation is
very expensive (due to the big difference between the local
scale and the characteristic length of the printing trajectory).
The main difficulty remains expressing the final properties



as a function of the processing parameters. Parametrizing
trajectories remains nowadays an open issue.

Thus, structural distortion becomes a consequence of
the induced residual stresses and has an impact on
structural tolerances. Metallurgy, strongly dependent on the
local thermal history, affects the mechanical properties of
the formed part. Local defects, as porosity, have major
consequences on the mechanical performances, in particular
on fatigue [1].

Even if valuable modeling approaches exist in what
concerns the evaluation of the induced thermal history and
the residual stresses induced in the part, the modeling of
defects appearance needs a fine multi-physics approach able
to address the numerous coupled and localized mechanisms:
laser-matter interaction, phase transformation, induced free
surface flows involving surface tension, heat transfer
(involving convection, diffusion and radiation), thermo-
mechanical couplings, inelastic solid behaviors, ...

Moreover, from an experimental point of view, the
defects appearance cannot be predicted in a deterministic
way from the local process parameters (the ones at the
point where the defect appears), certainly due to the fact
that the smaller scales exhibiting an inherent stochasticity,
unresolved by the models, have an impact on the defects
appearance. For this reason, a statistical analysis is retained,
trying to express the average of the porosity with the average
of the process parameters, within a representative volume
enabling such a statistical analysis.

Artificial intelligence, and more particularly machine
learning techniques, able to produce accurate regressions as
soon as an enough amount of data is available, constitute an
appealing route for correlating the defects distribution with
the process parameters.

Several works exist addressing defects in AM. Some of
them concern experimental approaches, others are based on
mechanistic models and finally some other follow the route
based on data-driven approaches.

In particular, [2] provides a full review about addi-
tive manufacturing and the challenges that it implies, both
technical, environmental and economical. In [3, 4] authors
give an overview on Direct Laser Deposition –DLD– tech-
niques. A special concern is given on process parameters,
physical phenomena, high fidelity modeling, defects and
their sources and the resulting mechanical properties of
the printed part. Other reviews now addressing Wire and
Arc Additive Manufacturing –WAAM– are addressed in
[5, 6]. One of the main challenges in additive manufactur-
ing remains of predicting the mechanical properties of the
printed parts.

Therefore, some experimental studies focus on the
characterization of micro and meso structures of printed
parts and, in particular pores, that originate cracks in fatigue
[7–10]. For Ti6Al4V alloy, also the material used in the

present study, results in [11] argue that porosity increases
with injected mass flow rate and decreases by reducing
overlapping distance while [12] concludes that increasing
scanning speed and laser power can be beneficial.

In addition, in order to predict the quality of printed
parts, some studies address the finite element modeling of
AM processes. Most of them focus on the final geometry
of the printed parts, affected by the installed residual
stresses, while minimizing porosity with well chosen
process parameters [13, 14], porosity that many times is
assumed homogeneously distributed in the whole part [15,
16]. High fidelity models to predict porosity in printed
parts remain an active field of research. Thus, [17] predicts
porosity in powder bed process and [18] predicts the most
probable locations of porosity in the printed part in the
case of LMD processes. Another physics-based analytical
model to predict lack-of-fusion porosity can be found in
[19] for a powder-bed based AM process.The approach
considers a moving heat source solution. Parallel hatching
is studied, with overlapping and layer thickness as the
input parameters. More complex multi-physics models,
such as [20–22] rely on finite volume methods (FVM) with
interface tracking and complex laser - matter interaction.

To overcome the computational cost induced by the
intense physical mechanisms couplings (laser-matter inter-
action, phase transformation,...), machine learning can rep-
resent a great opportunity [23]. Garg et al. [24] proposes
a data-driven model to predict the total amount of porosity
in a Selective Laser Manufactured –SLM– part. For LMD
processes, [25] develops an in-situ monitoring based on
the employ of artificial intelligence that predicts online the
apparition of porosity. [26] uses a similar approach to pre-
dict porosity with a database of images of printed surfaces,
a physics-driven model and a deep-learning convolutional
neural network.

The present paper aims at proposing an alternative
modeling approach based on the use of neural networks
to express the porosity as a function of different process
parameters that will be extracted from the process analysis.

Finer approaches will be considered in future works
in progress where the Neural Networks –NN– based
regressions will include also data coming from simulations,
as for example the local temperature history and its time and
space gradients, as well as the associated stress fields.

Experiments and collected data

A set of experiments, using wLMD technology, was carried
out to evaluate the effect of process parameters and
trajectory settings on defectology, namely lack of fusion
and porosity. Aeronautical grade Ti6Al4V alloy was used
both for the substrate and deposited material. The filling



strategy consisted on zig-zag tracks, with 90◦ alternating
directions in consecutive layers, plus a contour at the
perimeter. A design of experiments (DoE) consisting of 18
different combinations was proposed, using a simple wall-
like geometry, 5 of which failed to provide the required data.
The remaining 13 parts were examined for defects by using
x-ray computed tomography (CT) scans, by means of a
450kV system, providing an approximate spatial resolution
of 100μm. The process conditions of the parts that were
successfully printed are reported in Table 1.

Regarding the experimental set-up, a fibre laser generator
(active media: Ytterbium) with a maximum power of 4 kW
was used as the energy source. The laser beam was guided
to the interaction area by a 600 μm diameter optical fibre,
coupled to a three-beam coaxial head, attached in turn to
a 6-axis robot. To avoid oxidation during the Ti-6Al-4V
deposition process, a controlled atmosphere chamber was
used, where oxygen is evacuated by injecting pressurized
argon.

The tool centre point (TCP) position, as evaluated by
the robot controller, was logged during the deposition,
alongside a binary parameter to register whether the laser
was on or off. CT scans were then extracted and referenced
to the same system as the robot. Processed results include
void volume, centroid coordinates, and projected size
alongside the three spatial coordinates, as illustrated in
Fig. 1.

Data analysis

Data processing

The present study considers 13 manufactured parts. Each of
them was processed by considering a different deposition

Fig. 1 Tomography results showing void volume and location

trajectory, that will induce a variety of data-points with
different states (local velocity, acceleration, ...) to be
correlated with the local measured fraction of porosity, the
last obtained as previously indicated by using tomography
scanning. Among the other process parameters reported in
Table 1 only the laser power will be introduced later in
the proposed modeling approach. In the proposed modeling
approach, the layer thickness was considered instead of
the injected mass, the extracted local velocities from the
trajectory data instead of the robot speed, and the density
of turns instead of the overlapping distances because of the
fact that the porosity in the internal regions of the domain
seems quite insensible to that overlapping distance.

Pores will be described by using their bounding boxes,
and more concretely as sketched in Fig. 2, the boxes center
and size.

Concerning the processing data, it consists of:

– Laser activation state at each time: On/Off;

Table 1 DoE reporting the process conditions

Test reference Injected mass (g/min) Laser power (W) Robot speed (mm/min) Overlapping distance (mm)

1 9 1700 20 2,5

2 11 1950 20 1,8

3 13 2450 20 2,0

4 7 1200 30 1,3

5 9 1500 30 2,9

6 9 1800 30 1,2

7 11 2100 30 1,5

8 13 2400 30 1,6

9 15 2700 30 1,8

10 15 3000 30 2,0

11 7 1500 40 2,8

12 11 2100 40 2,4

13 13 2400 40 2,5



Fig. 2 Representing a pore from
its bounding box

– Laser coordinates at each time ti , i = 1, ..., T : X(ti) =
[x(ti), y(ti), z(ti)];

– Number of printed layers.

Concerning the porosity, it is given by a set of P
bounding boxes, each characterized by the following
information:

– Geometrical center: Cp = [
xp, yp, zp

]
, p = 1, ...,P;

– Volume of the pore: Vp, p = 1, ...,P;
– Box size in the three coordinate axes: {sp

x , s
p
y , s

p
z }, p =

1, ...,P .

The knowledge of the laser position at each time step,
allowed calculating the velocity at each time, making use
of a standard finite difference scheme. The computed
velocities were then filtered by averaging them in a moving

window covering a number of time steps (20 in the cases
here treated) and moving with the laser. Figure 3 compares
the computed and averaged (filtered) velocities, the last
exhibiting a much smaller fluctuation.

The parts will be decomposed in a number of boxes
where averages of the different parameters will be
calculated to be then correlated with the volume fraction of
porosity inside those boxes. More details on the construction
of these computational boxes will be given later. If N

velocities are known inside a computational box, noted by−→v i = [
vi
X, vi

Y , vi
Z

]
, i = 1, ..., N , the planar averaged

velocity reads

V XY = 1

N

N∑

i=1

∥∥∥vi
X
−→
x + vi

Y
−→
y

∥∥∥ , (1)

Fig. 3 Computed versus
averaged velocities



Fig. 4 Turns (green dots)
extracted from the trajectory
data (blue line)

whereas the averaged directional velocity, along the
direction defined by the unit vector −→

u reads

V u = 1

N

N∑

i=1

−→v i · −→
u . (2)

The trajectories could also affect the porosity, and more
particularly the locations where the deposition direction
changes. Thus, the number of trajectory turns occurring
in a computational box could exhibit a correlation with

the observed porosity. An appropriate algorithm was
implemented for identifying the changes in trajectory
direction, based on the variation of the tangent vector
calculated along the laser trajectory. Figure 4 depicts the
identified turns. As it can be seen in this figure successive
layers have a different printing strategy, implying a different
location of the trajectory turns.

Concerning porosities previously discussed, considering
that a pore belongs to the computational box in which the
pore bounding box center is located, represents a too crude
approximation, as depicted in Fig. 5.

Fig. 5 Porosity bounding boxes



Fig. 6 Refined porosity bounding boxes

In order to refine the porosity description, the bounding
box representing a pore is decomposed in a number of
smaller boxes of a given size (able to represent the smaller
porosity), in our case the size of these sub-boxes are 0.5 ×
0.5 × 0.5 mm3). The new porosity description is illustrated
in Fig. 6.

To correlate process parameters with the induced
porosity, we must define, as previously introduced, a

computational box (representative volume) large enough
for computing the average value of the parameters inside
the box (velocities, trajectory turns, ...), but not too
large, to ensure that these averages are a right statistical
representation of the quantities into the box.

In the considered cases, the domain was decomposed
1 × 5 × 4 boxes (referring respectively to the coordinate
axes x, y and z), as depicted in Fig. 7. As can be seen in

Fig. 7 Computational boxes
covering a printed part



this image, each box concerns many layers, and then many
different trajectories (along the x-direction and along the
y-direction).

Proposal and analysis of parameters affecting the
local porosity

Different parameters are expected to have a potential impact
on the observed porosity. This porosity, as described before,
is observed preferentially in the periphery of the part (lateral
surfaces) as well as in the neighborhood of the interface
between the part and the substrate.

Among the potential parameters expected to affect the
porosity, the first candidates are: the velocity along the x and
y directions, the magnitude of the average planar velocity,
the laser power, the box index that serves to locate the box
(internal or located on the part periphery), the box location
with respect to the substrate, the layer thickness and the
density of trajectory turns (number of turns divided by the
box volume).

With the average of all these variables calculated in each
computational box, the available data (20 boxes for each
of the 13 formed parts) is used to evaluate the correlation
between the fraction of porosity (volume of pores in each
computational box divided by the box volume).

In the representations that follow, that aims at comparing
the tendencies to the existing technical expertise, the x-axis
will report the considered parameter whereas the y-axis will
report the volume fraction of porosity. In some cases, the
zero value of the considered parameter will be emphasized

by adding a vertical red line at the zero value of the
considered parameter (in particular when considering the
averaged velocities). The diagrams will include the medians
(horizontal red segments), the lower and upper quartiles
(the representation boxes), the whiskers extend to the last
value lower than 2.5Q3 − 1.5Q1 and greater than 2.5Q1 −
1.5Q3, where Q1 and Q3 are respectively the lower and the
upper quartiles, as well as the outlier data (points outside).
The total number of pores (in the refined representation
discussed before) is also indicated in the top of the
figures.

1. Average velocity in the x-direction.
Figure 8 represents the porosity versus the average

velocity along the x-direction. If we consider the
five computational boxes along the y-direction, when
printing along the x-direction the average velocity in
the x-direction almost vanishes, with an amount of
porosity located at the minimum and maximum values
of the x-coordinate, locations related to the trajectory
turns. Thus, some amount of porosity is expected
when the average velocity in the x-direction vanishes.
Then, for the layers where printing occurs along the
y-direction, the average velocity in the x-direction is
expected vanishing in the internal boxes. However, in
the ones located on the border (minimum and maximum
values of the y-coordinate) the average velocity in
the x-direction does not vanish due to the turns, as
illustrated in Fig. 9, and consequently some amount
of porosity is also expected for positive and negative

Fig. 8 Porosity versus averaged velocity along the x-direction



Fig. 9 On the distribution of the averaged velocity along the x-
direction

averaged velocities in the x-direction, distributed non
symmetrically as illustrated in Fig. 9.

2. Average velocity in the y-direction.
The same rationale applies now when addressing the

average velocity in the y-direction. In this case, when
printing in the y-direction, the averaged velocity along
the y-direction vanishes, and some amount of porosity
is expected localizing around the trajectory turns. Then,
when trajectories follow the x-direction, a significant
velocity along the y-direction is noticed at the trajectory
turns, as sketched in Fig. 10. Thus, in the present case
the maximum velocity is expected at non-zero values of

Fig. 10 Averaged velocity along
the y-direction when: (a)
Printing along the y-direction;
and (b) Printing along the
x-direction

the averaged velocity along the y-direction (in a non-
symmetrical way), expectation that is confirmed by the
available data represented in Fig. 11.

3. Average planar velocity.
The previous discussions confirm the fact that the

maximum porosity is expected occurring at the places
where the velocity norm vanishes, that corresponds with
the locations at which the laser turns. This expectation
is confirmed when representing the porosity versus the
average planar velocity, as reported in Fig. 12.

4. Box index referring to its location along the y-
direction.

Figure 13 reports the value of the porosity for the
different indexes, 1 to 5, identifying the five locations of
the computational boxes along the y-direction. As it can
be noticed, and as was expected, the ones located at the
borders, the first and fifth, exhibit the higher porosity
with respect to the central ones. This fact motivates
replacing the boxes index by a new index indicating the
relative position of the box, taking the value one for the
boxes on the domain edges (first and fifth), two for the
intermediate ones (second and fourth) and one for those
located in the center. This new index will be noted by
typ, and the new representation of the porosity with
respect to this new parameter is presented in Fig. 14.

5. Box location along the z-direction.
It was observed that porosity locates on the

neighborhood of the domain boundary, as well as in



Fig. 11 Porosity versus averaged velocity along the y-direction

the neighborhood on the interface between the part
and the substrate. Thus, the dependence of the porosity
with respect to the z-coordinate of the computational
box was analyzed and the results depicted in Fig. 15,
that confirms that porosity increases when the box
approaches the substrate.

6. Layer thickness.

Figure 16 shows the dependence of the porosity
with respect to that parameter, and the porosity
increasing for the maximum and minimum values of
the layer thickness, very certainly because of the greater
difficulty to reach an homogeneous melting when
thickness becomes too big or too small.

7. Turns density.

Fig. 12 Porosity versus averaged planar velocity



Fig. 13 Porosity versus location of the computational box along the y-direction

When trajectory turns the spatial filling is compro-
mised. It is well known that squares can perfectly cover
a surface, however the couverture when using circles
remains partial. Here, it is expected that regions where
the density of turn is high, this one quantified by the
number of turns by unit of volume (cm3), will exhibit

larger porosity. Figure 17 confirms this expectation.
Moreover, as the number of turns and the wire diameter
(from which the layer thickness depends) are corre-
lated, a similar tendency to the one just discussed is
expected.

8. Laser Power.

Fig. 14 Porosity versus relative position of the computational bow



Fig. 15 Porosity with respect to the distance to the substrate (z-coordinate)

The influence of the power, as illustrated in Fig. 18,
seems having a less regular behavior, possibly due to
the strong couplings and correlation with all the other

parameters just discussed. The most physical parameter
is the provided heat, and the last depends on the laser
power and the velocity.

Fig. 16 Porosity versus number layer thickness



Fig. 17 Porosity versus density of trajectory turns

Statistical model

Now, for all the computational boxes Nb (thirteen parts
consisting of 1 × 5 × 4 = 20 boxes) the quantity of interest
–QoI– Y (the porosity volume fraction), is being related to
the process parameters grouped in vector X.

Thus, for each box, i = 1, ..., Nb, the parameters vector
Xi and the associated QoI, Y i , are assumed known and

a regression linking both is searched in the generic form
Y = f (X), while knowing

Y i = f (Xi), i = 1, ..., Nb. (3)

Vector Xi contains all the parameters just introduced and
discussed:

Xi =
[
V

i

X V
i

Y V
i

XY ηi
layers δi

turns iiZ typi Pi
]
, (4)

Fig. 18 Porosity versus reference laser power



referring respectively to: the averaged velocity along the
x and y-coordinates, the average planar velocity that
incorporates the effect of the velocity magnitude, the layer
thickness, the turns density, the z-coordinate referring to

the distance to the substrate, the box type (peripheral or
internal) and the laser power.

It is important to note that the learned models explain
the average porosity with respect to the average of the local

Fig. 19 Reference versus regression predictions. Each subfigure contains 20 red dots, corresponding to the 20 boxes that each experiment contains,
even if in some cases it is difficult to appreciate them because of the fact that sometimes different red points are almost superposed



parameters in a box (each part is composed by 20 disjoint
boxes). Thus, each experiment provides 20 data that allows
covering a large interval of the parameters ensuring the
construction of the models.

The regression was constructed by considering all the
experiments (printed parts) except one. The remaining
part was used for testing the computed regression. The
choice of performing such a cross validation was motivated
by the reduced amount of experiments, in order to
quantify the accuracy and robustness of the proposed
procedure.

Neural Network based regression

To evaluate the functional relation expressed by Y = f (X)

a Multi-Layer Perceptron –MLP– is considered. There is
not novelty concerning the regression choice and its use.
To set the MLP hyper-parameters, the algorithm iterated
until obtaining results good enough in the approximation
function. The MLP is defined by:

– An input and an output layers, respectively constituted
of 8 and 1 neurons

– 8 hidden layers consisting of respectively
27, 25, 23, 21, 20, 17 & 36 neurons;

– Adam algorithm [27];
– Relu activation function: relu(x) = max(0, x);
– Regularization term α = 0.5;
– The optimization process stops when the score is

not improving anymore, according to the scikit-learn
documentation [28].

The implementation was done with the class MLPRe-
gressor available in the scikit-learn package in Python.

The proposed NN seems oversized, however, as dis-
cussed later, it was able to ensure accuracy while limiting
overfitting. Its size is certainly impacted by the data vari-
ability. In all cases, even if the NN is not compact, it is not
complex.

Results

Predictions made with the NN-based regression were
compared with the existing data, for both, the data in the
training and the test sets, blue and red dots respectively.
Results are shown in Fig. 19.

The results prove that the training data is well represented
while avoiding overfitting, that is, the predictions seem an
acceptable compromise between the accuracy obtained in
the training and test data-sets. Due to the fact that the
available data is not so abundant, we opted for performing a
cross validation, whose results are grouped in Fig. 19 where
one case is excluded when obtaining the model with the
others, and then tested on the one that was excluded. As

it can be seen, the regressions seem general accurate and
robust.

It can be noticed that predictions are quite accurate
despited the high fluctuations and variability that this
process entails. The just referred figure also includes the R2

score of the regression, which is computed with both the
training and the testing data sets, and the %MAE (defined
here to avoid the impact of the negligible values of the
porosity):

R2 = 1 −

Nb∑

i=1

(
Y i

ref − Y i
pred

)2

Nb∑

i=1

(
Y i

ref − Yref

)2
, (5)

%MAE = 100

Nb

Nb∑

i=1
|Y i

ref − Y i
pred |

∣∣max(Yref ) − min(Yref )
∣∣ , (6)

with Y i
ref and Y i

pred respectively the reference and the

predicted porosity density of the ith box and yref the mean
value of all the true porosity.

In view of the obtained values, the proposed neural
network seems quite optimal for the current analysis.
Indeed, the R2 score is always more than 0.90 and the
%MAE percentage is always less than 8%, emphasizing the
regression ability for predicting the porosity.

Conclusion

The present paper addressed an alternative modeling
approach for predicting the porosity volume fraction in
wire laser metal deposition based printed parts. Due to the
difficulty of using physics-based models for the reasons
discussed in the introduction section, this paper proposed
the use of a NN-based nonlinear regression for predicting
the amount of porosity as a function of seven local process
parameters and the laser power.

First, the parameters to be used in the regression
construction were proposed and their effect on the observed
and measured porosity analyzed. As soon as the correlation
was confirmed, they were retained to be part of the input
parameters for the regression. A MLP Neural Network was
constructed and trained with a part of the available data.
Then, the regression performances were evaluated on both
data-sets, the one used in the training and the one reserved
to test the prediction capabilities on new process conditions.

The results reported all along this works proved the
ability of the selected parameters to explain and predict
the observed porosity. Thus, future works will consider
the knowledge encapsulated in this regression for better



define the process itself, in order to minimize the amount of
porosity, and also for online control purposes.
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