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Real‑time prediction by data‑driven models applied to induction 
heating process

Khouloud Derouiche1,2  · Monzer Daoud2 · Khalil Traidi3 · Francisco Chinesta4

Abstract
Data-driven modeling approach constitutes an appealing alternative to the finite element method for optimizing 
complex multiphysics parametrized problems. In this context, this paper aims at proposing a parametric solution for the 
temperature-time evolution during the multiphysics induction heating process by using a data-driven non-intrusive 
modeling approach. To achieve this goal, firstly, a set of synthetic solutions was collected, at some sparse sensors in the 
space domain and for properly selected process parameters, by solving the full-order finite element models using 
FORGE® software. Then, the gappy proper orthogonal decomposition method was used to complete the missing data. 
Next, the proper orthogonal decomposition method coupled with the nonlinear sparse proper generalized decomposition 
regression method was applied to find a low-dimensional space onto which the original solutions were projected and a 
model for the low-dimensional representations was, therefore, created. Hence, a real-time prediction of the 
temperature-time evolution and for any new process parameters could be efficiently computed at the predefined 
positions (sensors) in the space domain. Finally, spatial interpolation was carried out to extend the solutions everywhere 
in the spatial domain by applying a strategy based on the nonlinear dimensionality reduction by locally linear embedding 
method and the proper orthogonal decomposition method with radial basis functions interpolation. It was shown that the 
results are promising and the applied approaches provide good approximations in the low-data limit case.

Keywords Data-driven modeling · Induction heating process · Finite element method · Proper orthogonal decomposition · 
Gappy proper orthogonal decomposition · Nonlinear regression · Interpolation

Introduction

Most optimization problems in science and engineering 
require an abundant number of experiments to evaluate cer-
tain quantities of interest as a function of predefined pro-
cess parameters. Besides, generating data is often regarded 
as a complex and a very expensive task that requires some 
expertise. In mechanics, for example, the optimization and 
the development of industrial processes are in continuous 
progress in order to enhance the fatigue behavior of many 
critically loaded mechanical parts.

In particular, induction hardening (IH) is one of the 
most appealing heat treatment processes widely employed 
in automotive and aerospace industries to provide optimal 
mechanical and microstructural material properties, corre-
sponding to different predefined performance criteria [1, 2]. 
Basically, it consists of a rapid electromagnetic induction 
heating and a subsequent quenching phase. It has the advan-
tage of providing a very short surface heat-up time, a precise 
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control of the treated zone, a good fatigue performance, a 
good reproducibility, and a more respectful operating mode 
to environmental requirements, compared to thermochemi-
cal treatments such as carbonitriding and carburizing [3]. 
However, the multidisciplinarity of the IH process in terms 
of its multiphysics property (electromagnetism, mechani-
cal, metallurgical, and thermal fields) as well as the large 
number of involved process parameters, make it complex 
and difficult to handle.

Many works based on analytical and numerical methods 
have been reported in the literature in order to understand 
the involved physical mechanisms for better controlling 
of the influencing parameters and to ensure optimization 
in time and costs [4–7]. Among those methods, the finite 
element modeling (FEM) has shown a big success to deal 
with multiphysics-based parametrized problems thanks to 
the advanced numerical simulation codes [8]. However, the 
multi-query simulation approach becomes ineffective as far 
as the optimization procedure is concerned.

In order to overcome such issues, a data-driven paramet-
ric metamodeling approach coupled with a reduced-order 
modeling (ROM) technique for IH process constitutes an 
appealing alternative to the FEM approach. This is because 
this approach enables to compress the sampled data, by 
extracting the most “energetic” features that best describe 
the behavior of the system, and to achieve accurate paramet-
ric-based solutions at very low computational costs.

However, several problems may appear when dealing 
with data collected across space, time, or both of them and 
representing missing values. Such gaps can give rise to 
issues in terms of time series analysis, modal decomposi-
tion, or other data mining techniques requiring continuous 
data. Many researchers have been working on “gappy” data 
problems for many decades and many statistical approaches 
[9, 10] and non-statistical ones based on modal decomposi-
tion [11] have been used to provide an accurate reconstruc-
tion of the missing data.

Besides, another important issue when dealing with data-
driven approaches is the quantity of sampling points needed 
to create the metamodel that lies the response to the input 
parameters. In fact, a large amount of data will provide a 
better approximation. However, the data generation is often 
expensive and consequently building a robust metamodel with 
a reduced amount of data is regarded as a challenging goal.

Furthermore, when a parametric solution is only known at 
few positions in a complex-shaped workpiece, extending the 
solution to more spatial points by interpolation is regarded 
as another key issue, especially when nonlinear structures 
are considered. To overcome such issue, dimensionality 
reduction approaches could be applied to the spatial data 
points in order to map their high-dimensional coordinates, in 
a global nonlinear structure, into a lower-dimensional space 
where a good interpolation of the solution could be obtained 

as a function of the new embedded coordinates. In the lit-
erature, different dimensionality reduction approaches have 
been developed which can be classified into linear (principal 
component analysis (PCA) [12] and linear discriminant anal-
ysis (LDA) [13]) and nonlinear (kernel PCA [14], locally 
linear embedding (LLE) [15], isometric mapping (ISOMAP) 
[16], etc.) techniques.

All of the above-mentioned difficulties were considered 
in the current work and appropriate approaches were applied 
to deal with them. This work aims at proposing a parametric 
metamodel that enables a real-time prediction of the tem-
perature-time evolution in a spur gear of C45 steel during 
the induction heating process and under the effect of the 
process parameters. To achieve such a study, a data-driven 
non-intrusive ROM was applied.

Firstly, a set of synthetic solutions (called snapshots), 
representing the temperature-time evolution, was collected 
by using the multiphysics finite element (FE) simulations 
at some sparse points in the space domain and for different 
values of input process parameters associated with the latin 
hypercube sampling (LHS) design of experiments. Then, the 
gappy proper orthogonal decomposition (GPOD), which is 
an extension of the well-known proper orthogonal decompo-
sition (POD) method, was applied to reconstruct an approxi-
mate solution for the missing data obtained from the FE sim-
ulations. Next, the POD with interpolation (PODI) method 
was applied as follows. The POD method was first applied 
on the repaired solutions to extract the reduced basis mini-
mizing the error between the original snapshots and their 
orthogonal projections. The POD was then coupled with the 
nonlinear sparse proper generalized decomposition (sPGD) 
regression method, based on the separated representation 
approach, to fit the low-dimensional representation of the 
snapshot data, the so-called POD modal coefficients. Finally, 
extending the solution for more spatial data points in the 
heat-affected zones of the workpiece was carried out based 
on the nonlinear dimensionality reduction by LLE coupled 
with PODI for both surface and volume interpolation.

The applied methodology is summarized in Fig. 1, where 
it follows an offline–online strategy such that all the work 
was almost done at the offline phase while rapid computa-
tions were achieved on the online phase by using the con-
structed metamodels and the spatial interpolations.

The rest of the paper was organized as follows: Section 
“Dimensionality reduction and gappy data reconstruction” 
presents an overview on the applied methods starting with 
the POD and its extensions, then the nonlinear dimensional-
ity reduction by LLE. Section “Problem statement: process 
and data” presents the studied induction heating process and 
the data generation. Section “Numerical results” illustrates 
the results of the created metamodel and the spatial interpo-
lation for surface and volume cases, and section “Conclu-
sions” addresses the main conclusions.



Dimensionality reduction and gappy data 
reconstruction

Proper orthogonal decomposition (POD): 
fundamentals and extensions

POD

The POD is a method that enables to compute a reduced 
basis that provides a low-dimensional representation of a 
high-dimensional system state [17]. The reduced-order POD 
basis vectors are obtained thanks to the method of snapshots 
developed by Sirovich [18].

Consider a set of N field solutions or “snapshots”, {Ti}
N
i=1

 , 
where Ti ∈ ℝ

D is a vector containing the temperature field 
at D time steps of the discretized time intervals, and assum-
ing that each snapshot is computed by solving the full-order 
model describing the problem for different values of the 
input parameters μi = (μi1, …, μis), where μi is the vector 
containing the s parameters associated to the ith snapshot.

In order to find the reduced basis, minimizing the error 
between the original snapshots and their reconstructed solu-
tions, the singular value decomposition (SVD) is applied on 
the snapshot matrix T ∈ ℝ

D×N , defined by T = [T
1
T
2
… TN] , 

as follows:

where U ∈ ℝ
D×D and V ∈ ℝ

N×N are unitary matrices con-
taining the left and right singular vectors of T , respectively. 
� ∈ ℝ

D×N is a rectangular diagonal matrix containing the
singular values σi of T, sorted in a decreasing order.

The reduced POD basis vectors, {�k}
R
k=1

 , is defined as the 
first R left singular vectors of T (i.e. first R columns of U) 
corresponding to the R largest singular values. Therefore, the 
singular values provide a quantitative guidance for choosing 
the size of the POD basis, and a typical criterion to choose R 

(1)T = U�VT

is to find the cumulative energy captured by the POD basis 
vectors, also known as POD modes, that satisfies:

where ε is a certain threshold specified by the user, typically 
taken to be 99% or higher. Hence, an efficient representa-
tion of the snapshot data in a low-dimensional subspace of 
dimension R (R ≪ N) can now be provided by a linear com-
bination of the POD modes

where αki are called POD modal coefficients.

POD with interpolation (PODI)

While the POD-Galerkin model reduction, widely 
employed in different studies [19–22], intends to project 
the full-order problem, defined by partial differential equa-
tions (PDE), onto the POD reduced space to obtain a low-
dimensional representation of the original operators, the 
PODI is a data-driven approach that relies only on data 
and does not require the original equations describing the 
system [23]. It enables a fast evaluation of the full-field 
solution for any value of the input parameters μ by inter-
polating the reduced output representations defined by the 
POD coefficients with respect to μ.

This type of modeling is also referred as “Galerkin-free” 
reduced-order models [24], “Non-intrusive” POD [25, 26], 
or “surrogate” POD [27]. Different applications of PODI can 
be found in literature for automotive and aeronautic applica-
tions [28, 29] as well as for naval application [30].

(2)

∑R

i=1
𝜎
2

i

∑min(N,D)

i=1
𝜎
2

i

> 𝜀

(3)Ti = T(t,�i) ≈

R
∑

k=1

�ki�k(t) for i = 1,… ,N

Fig. 1   Offline–online strategy for the temperature-time evolution during the induction heating process



The PODI proceeds in the same way as POD where 
the original snapshots are projected onto the subspace 
defined by the POD basis vectors in order to reduce their 
dimensionality then the POD modal coefficients αki are 
calculated using the inner product:

Then, an interpolation technique is applied to the set 
of POD modal coefficients {�ki}Ni=1 and for each k, a sur-
rogate model is constructed using a regression method 
such as sparse proper generalized decomposition (sPGD) 
[31–33], support vector regressions (SVRs) [34], gaussian 
processes (GPs) [35], etc.

Hence, the POD coefficients can be predicted for new 
values of μ that are not included in the original set, and the 
prediction of the high-dimensional solution is achieved by 
reconstruction using Eq. 3.

In this work, the sPGD regression method was applied. 
For ease of explanation, a scalar function u that depends 
on a couple of parameters (μ1, μ2), with ui ≡ u(μ1i, μ2i) 
known at N sampling points is considered in what fol-
lows, such that u(𝜇1,𝜇2) ∶ Ω ⊂ ℝ

2
→ ℝ . The sPGD tries 

to find the approximate solution of u using a low-rank 
separated representation. By following the proper general-
ized decomposition (PGD) rationale [36], an approximated 
function of u(μ1, μ2), denoted by ũM(𝜇1,𝜇2) , is expressed 
as a finite sum of M terms:

where P1
j
 and P2

j
 are one-dimensional functions depending 

on μ1 and μ2 respectively. The determination of the functions 
P1
j
(�1) and P2

j
(�2) is done by first approximating them using 

a set of basis functions as follows:

where N�1

j
 represents the basis considered for approximat-

ing the jth mode depending on the μ1 parameter, while aj 
represents the associated weights, and similarly for the sec-
ond direction (parameter μ2). The choice of the set of basis 
functions, in which the one-dimensional functions is 
expressed, is made based on the studied problem. For exam-
ple, a polynomial basis or a kriging basis can be selected.

Then, a minimization problem is considered to find ũM:

where N is the number of sampling points for training 
models. The determination of the one-dimensional functions 

(4)�ki = (�k,Ti)

(5)u(𝜇1,𝜇2) ≈ ũM(𝜇1,𝜇2) =

M
∑

j=1

P1

j
(𝜇1) P

2

j
(𝜇2)

(6)
P1
j
(�1) = (N

�1

j
)T aj

P2
j
(�2) = (N

�2

j
)T bj

(7)ũM = argmin
u∗

N
∑

i=1

(

ui − u∗(𝜇1i,𝜇2i)
)2

at each mode j = 1,...,M is achieved by using a greedy algo-
rithm such that the M th order term is calculated once the 
approximation up to order M − 1 is known:

A nonlinear system of equations is derived, due to 
products of terms. Hence, an iterative scheme based on an 
alternating direction strategy is usually used to linearize 
the problem and to solve it [36].

In order to tackle more complex problems in the low-
data limit case, where high oscillations may appear out of 
the training points because of the increased risk of overfit-
ting, the sPGD uses the modal adaptivity strategy (MAS) 
[31]. The idea is to minimize spurious oscillations out of 
the training set by starting the PGD algorithm looking 
for functions with low degree. When it is observed that 
the residual decreases slowly or stagnates, higher order 
approximation functions are introduced. Therefore, oscil-
lations are reduced, since a higher-order basis will try to 
capture what remains in the residual.

Gappy POD (GPOD)

The GPOD is an extension of POD to handle with incom-
plete data sets and to reconstruct an approximate solu-
tion for gappy data. It was first developed by Everson and 
Sirovich in the context of image reconstruction, such as 
human faces, from incomplete data [11] and was then 
applied successfully for reconstruction of PDE solutions 
in aerodynamics [23, 37, 38]. The GPOD has also used in 
the nonlinear model reduction methods of missing point 
estimation [39].

Consider the same set of snapshots {Ti}
N
i=1

 presenting the 
parametric temperature field and suppose that snapshots are 
not completely known and contain a certain percentage of 
gappiness, and consider their associated set of masks {ni}Ni=1 
defined as follows:

where Tj

i
 denotes the jth element of the vector T

i
 . 

The core of the GPOD technique consists of an itera-
tive implementation of POD, where the missing data for 
each snapshot are filled by an initial guess. The POD is 
then applied such that the guess for the data in the gaps 
is updated based on a POD approximation using a par-
ticular number of modes. The process is iterated until a 
convergence criterion is reached. The Everson-Sirovich 
procedure is described as follows:

(8)ũM(𝜇1,𝜇2) =

M−1
∑

j=1

P1
j
(𝜇1) P

2
j
(𝜇2) + P1

M
(𝜇1) P

2
M
(𝜇2)

(9)n
j

i
=

{

1 if T
j

i
is known

0 if T
j

i
is missing



– Step 1: fill in the missing elements of each snapshot T
i
 ,

corresponding to nj
i
= 0 , with an initial guess resulting

in an initial complete field T(0)

i
 such that:

– Step 2: the POD analysis is performed on the snapshot
set {T(l)

i
}N
i=1

 (l = 0 for the first iteration) using P modes, 
{�k}

P
k=1

 , resulting in an intermediate repaired data for the 
current iteration l:

such that the POD modal coefficients �(l)
ki

 are computed by 
minimizing the error between the original and repaired 
vectors using the gappy norm where only elements for 
which data are available in Ti are compared. The error 
is defined as:

This minimization leads to the linear system of algebraic 
equations:

where K(l)
pq

= (�(l)
p
,�(l)

q
)ni , f

(l)
p

= (Ti,�
(l)
p
)ni , and (., .)ni is 

the gappy inner product.
– Step 3: each snapshot Ti is reconstructed by replacing its

missing elements by the corresponding repaired elements
in T̃

(l)

i
 , and the previous guesses are overwritten for the

next iteration as follows:

– Step 4: repeat step 2 and 3 until convergence while con-
sidering the reconstructed fields in step 3 as the new ini-
tial guesses for the next iteration.

As described above, the GPOD method attempts to
improve an initial guess at the missing data using P POD 
modes for the reconstructions. However, the optimum num-
ber of modes, for which the error is the smallest among all 
possible converged reconstructions, depends on the initial 
guess. In order to avoid this dependency, an extension of 
the Everson–Sirovich procedure was developed in [40] 
where the GPOD was applied iteratively with an increasing 
number of modes, improving the accuracy of the full-field 
reconstruction. The steps of the extended procedure are sum-
marized as follows:

(10)T
j(0)

i
=

{

T
j

i
if n

j

i
= 1

T̄
j

i
if n

j

i
= 0

(11)T̃
(l)

i
≈

P
∑

k=1

�
(l)

ki
𝝓
(l)

k
for i = 1,… ,N

(12)E =
|

|

|

|

|

|

|

|

Ti − T̃
(l)

i

|

|

|

|

|

|

|

|

2

ni

(13)K(l)� (l) = f (l)

(14)T
j(l+1)

i
=

{

T
j

i
if n

j

i
= 1

T̃
j(l)

i
if n

j

i
= 0

– Step 1: perform the standard Everson–Sirovich procedure
with a low value of modes in the reconstruction (P0 = 1 
for example).

– Step 2: the converged result from the previous step is
used as a new initial guess and the Everson–Sirovich pro-
cedure is then reapplied, but with P1 = P0 + 1 modes in
the reconstruction.

– Step 3: proceed similarly until a convergence criterion is
reached.

Therefore, the final approximate solution will only depend 
on the degree of gappiness and not on the initial guesses of 
the gappy regions. It is worth noting that if the percentage of 
missing data per snapshot is very high, the GPOD technique 
might fail to provide an accurate approximation.

A suitable convergence criterion for the selection of the 
optimum number of modes P is important. This is because 
the reconstruction error does not monotonically decrease 
with P. Among the proposed criteria listed in [40, 41], the 
one based on the total energy of the POD reconstruction 
is presented here, where the optimal number of modes is 
defined as:

Here �2
i,P

 is the ith POD eigenvalue of the P-modes recon-
structed data, knowing that the eigenvalues are given by the 
squares of the singular values. EP is the total energy for the 
converged reconstruction using P modes and E0 is the total 
energy associated with a fixed reference value. It is worth 
noting that the sum of eigenvalues is calculated over all the 
modes, not just the P modes used for reconstruction.

Nonlinear manifold learning by LLE

LLE is a nonlinear dimensionality reduction method pro-
posed by Roweis and Saul [15]. It is defined as an unsu-
pervised manifold learning algorithm that computes a low-
dimensional embedding manifold of high-dimensional data 
by mapping the inputs into a single global coordinate system 
of lower dimensionality while preserving their neighbor-
hood. In other words, the close points in the high-dimen-
sional space should also be close in the low-dimensional 
embedding space, and the same for the far points.

The basic idea of LLE is to recover global nonlinear 
structure from locally linear fits [42–44]. Hence, nonlinear 
dimensionality reduction can be simplified into local lin-
ear dimensionality reduction where each data in the high-
dimensional space can be expressed by a linear combination 
of its nearest neighbors, and then it can be reconstructed on 
the low-dimensional embedding manifold by minimizing a 
cost function.

(15)

Choose P such that: |E
P
− E0| is maximum, where E

P
=

N
∑

i=1

�
2

i,P



Consider a set of N real-valued input points of D dimen-
sional vectors, X = {xi}

N
i=1

 . It is assumed that sufficient well-
sampled data are provided such that these data points lie on 
or near a smooth nonlinear manifold of lower dimensionality 
d (d < D). The LLE algorithm has three steps, as illustrated 
in Fig. 2:

– Step 1: assign k nearest neighbors to each data point xi
(Fig. 2(a)). The k nearest neighbors are identified using
pairwise euclidean distance between the data points.
When data points are widely separated, a large value of
k is needed, and a small k is required when the density of
the data is high.

– Step 2: compute the weights wij that provide the best lin-
ear reconstruction of each point xi from its neighbors
(Fig. 2(b)). The weights wij identify the contribution of
the jth data point to the ith one. The optimal reconstruc-
tion weights are computed by minimizing reconstruction
errors measured by the cost function:

where W ∈ ℝ
N×N is the weight matrix that includes the 

weights of linear reconstruction of all data points using 
their neighbors.
	  The minimization problem should satisfy two con-
straints: (1) the weights of linear reconstruction for each 
point satisfy 

∑

jwij = 1 for i = 1,...,N; (2) each data point 
xi is reconstructed by its neighbors such that wij = 0 if xj 
does not belong to xi neighbors set.

– Step 3: compute the low-dimensional embedding vec-
tors, Y = {yi}

N
i=1

 , based on the idea that LLE preserves
the local linearity from neighbors and the corresponding
reconstruction weights (Fig. 2(c)). Therefore, the same
weights computed in step 2 for the linear reconstruction

(16)�(W) =

N
∑

i=1

|

|

|

|

|

|

|

|

|

|

|

|

xi −

N
∑

j=1

wijxj

|

|

|

|

|

|

|

|

|

|

|

|

2

of data points in the D dimensional space are used. The 
global internal coordinates on the embedding manifold 
are computed by minimizing the following embedding 
cost function:

subject to two constraints: 1

N

∑N

i=1
yiy

T
i
= Id×d  and 

∑N

i=1
yi = 0 , where y

i
∈ ℝ

d (d < D) is the ith embedded 
data point.

For more details about the resolution of minimization prob-
lems, the reader can refer to [45]. Compared with other non-
linear dimensionality reduction methods, LLE has only one 
hyperparameter, which is the number of neighbors k. Hence, 
the algorithm implementation is quite simple.

Problem statement: process and data

In the present work, the induction heating simulation was 
carried out on a C45 steel spur gear of module 2.5 and 22 
teeth. The gear of 10 mm width was surrounded by a copper 
coil having a 65 mm inner diameter and a rectangular section 
of 8 × 5 mm. During heating, electromagnetic and thermal 
fields in addition to the phase transformation are combined. 
In this study, two process parameters were considered as 
listed in Table 1.

(17)�(Y) =

N
∑

i=1

|

|
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|
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|
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|

|

|

yi −

N
∑

j=1

wijyj

|

|

|

|

|

|

|

|

|

|

|

|

2

Fig. 2   Steps of locally linear 
embedding: (a) assign k nearest 
neighbors, (b) reconstruct with 
linear weights, and (c) map to 
embedded coordinates

Table 1   Input parameters and their lower and upper limits

Input Parameters Lower Limit Upper Limit

Frequency (kHz) 10 250
Power (kW) 50 600



Changing these input parameters could highly impact the 
process outputs. Hence, a parametric metamodel for the tem-
perature-time evolution was constructed in order to evaluate 
this effect. To this end, a set of precomputed high-fidelity 
solutions was collected by solving the original full-order 
FE models for different values of input parameters using the 
commercial FE software FORGE®.

Heating simulation was carried out using two coupled solv-
ers available in FORGE®. The first one is the electromagnetic 
solver to solve Maxwell’s equations based on the electromag-
netic period, which is divided into a series of 60-time incre-
ments, to give rise to a heating power. The second one is the 
thermal solver to compute the temperature field by solving the 
heat equation using the calculated heating power. The time 
step in this latter is managed by FORGE® such that a coarse 
time step could be found for simulations having low values of 
input parameters and a dense one for those with high values of 
input parameters. More details about the numerical simulation 
could be found in [46].

It is worth noting that only one half of the gear tooth was 
modeled, and two symmetry planes were imposed in order 
to improve the computational efficiency. The implemented 
material properties of C45 steel were taken from the litera-
ture [47–51]. According to the LHS design of experiments 
(DoE) [52], a total of 20 FE simulations were generated, 
as shown in Fig. 3. The temperature-time evolution was 
extracted at 14 specific points, obtained by implementing 
sensors on the studied geometry, as shown in Fig. 4, and a 
model for each sensor was then constructed.

All simulations were supposed to finish at the same 
time instant, initially chosen to be equal to 1 sec, which is 

sufficient for such a rapid heating process. However, some 
simulations cannot reach this time, generating hence incom-
plete data sets which can highly affect the data analysis.

To overcome this issue, reconstructing the missing data 
and modeling the temperature as a function of time were 
carried out because it seems to be more suitable and more 
general for spatial interpolation.

Numerical results

Modeling the temperature‑time evolution

In fact, the missing data appeared at the last reached time 
instant such that the percentage of missingness, defined by the 
number of temporal data points that are missing with respect 
to the total number of time instants, was different from one 
simulation to another. Among the total number of simulations, 
55% of them had a completely known data vectors because 
they reached the end of computation and the other ones had 
a gappiness percentage varying between 25% and 75%. In 
order to reconstruct an approximate solution for the incom-
plete data, the extended Everson-Sirovich procedure described 
in section “Gappy POD (GPOD)” was applied.

The number of modes was initialized to P = 1 and 
increased iteratively, enabling an improved full-field 
reconstruction accuracy, and the gappy values per snap-
shot were initially filled by a constant value equal to the 
last calculated temperature. An example of the initial 
temperature field evolutions (complete and gappy) and 
their reconstruction using GPOD are shown in Fig. 5 for 

Fig. 3   LHS design of experiments
Fig. 4   Sensors positions. Blue points represent the surface sensors 
while the red ones represent those located at a certain depth



Fig. 5  Original and recon-
structed gappy data at 4 sensors



6 different simulations. It is worth pointing out that only 
results for sensors (#1, #5, #9, and #2.2) in reference to 
Fig. 4 are shown for the sake of clarity.

Since the gappy fields are completely unknown, 
comparing the approximated gappy values with the “true” 
ones can not be achieved. It is worth mentioning that the 
reconstructed missing data of temperature are unreachable 
in reality since they exceed the melting temperature of C45 
steel. However, having solutions with the same discretization 
in time was needed to get a well-posed problem for applying 
the POD. In this work, a time interval composed by 201-time 
steps was considered for the post-processing of the data. 
Since the temperature-time evolution is monotonic and 
doesn’t show any local phenomena, a coarser discretization 
will not affect the predicted results.

Once the gappy data reconstruction were established for 
each sensor, simulations were split into two subsets. Simu-
lations 2, 9, 11, 12, and 16 inside the DoE were used as an 
error indicator. While the other 15 simulations were taken 
into account to construct the parametric solution. In other 
words, 75% of data were used to build the models and 25% 
to evaluate their prediction accuracy.

The PODI was then performed on the 15 simulations 
(snapshots) and for each sensor. The average of the tem-
perature was first computed over the snapshot set and the 
mean value was subtracted from each snapshot in order to 
improve the numerical conditioning and avoid the magnitude 

of the first singular value numerically dominating all others. 
The Eq. 3 becomes:

By applying the POD, the left singular vectors of the 
snapshot matrices were truncated to the two or three first 
singular vectors, depending on the sensor reconstructed 
snapshots. This choice was made such that more than 99.9% 
of the cumulative energy was recovered, as shown in Fig. 6 
at 4 different sensors.

Following the steps defined in section “POD with inter-
polation (PODI)”, the original snapshots per sensor were 
projected on their corresponding reduced basis and the POD 
modal coefficients were computed. A surrogate model for 
the POD modal coefficients and for each sensor was then 
constructed by using the sPGD regression method, and by 
considering the frequency and power as input parameters 
for the model. Fig. 7 shows the temperature-time evolution 
obtained by the full-order FE model and the sPGD regres-
sion model (i.e. using Eq. 18 to reconstruct the approximate 
solution using the predicted values of the modal coefficients 
as a function of the frequency and power) for training and 
testing data, respectively. It can be seen that the predicted 
temperature-time profiles obtained by sPGD model (dashed 
red curves) were in good agreement with the FE ones (blue 

(18)Ti = T(t,�i) ≈ T̄ +

R
∑

k=1

𝛼ki�k(t) for i = 1,… ,N

Fig. 6   Cumulative energy 
computed from 15 snapshots of 
the thermal field at 4 different 
sensors



curves) even with different levels of temperature under the 
imposed values of input parameters. This shows that the 
applied methodology provides good parametric solutions 
even with a small amount of data.

The relative error to measure the prediction accuracy for 
training and testing data sets is presented in Table 2.  The 
computed error is defined by:
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× 100

where n, TFEM
i

 , Tpred

i
 are the number of data points (simula-

tions), the vectors of the FEM solutions, and the predicted 
solutions, respectively. As shown in Table 2, the obtained 
errors do not exceed 3% for testing data at the 4 considered 

Fig. 7   Comparison between 
the reference FEM and the 
sPGD regression model of the 
temperature-time evolution at 
4 sensors: simulations 4 and 19 
were used to create the regres-
sion model and simulations 2 
and 11 were used to verify the 
regression model accuracy

Table 2   Relative errors of temperature-time evolution using sPGD 
model

Error (%) sensor #1 sensor #5 sensor #9 sensor #2.2

Errortrain 1.1% 0.9% 1.1% 1.2%
Errortest 2.9% 2.8% 3.0% 2.5%



sensors. These results indicate that the sPGD model gives a 
quite good prediction.

Spatial interpolation

A model for the temperature-time evolution was constructed 
for each sensor (illustrated in Fig. 4). Extending the approxi-
mate solutions for more spatial points in the heat-affected 
zones of the gear tooth was required. Interpolation at the 
extreme surface of the workpiece was first studied. Then, 
volume interpolation was carried out at a certain depth.

Surface interpolation

As shown in Fig. 4, only 9 sensors are considered at the gear 
tooth surface, and hence the approximate solution is only 
known at those sensors. The lack of data at other points in 
addition to the nonlinear geometry of the studied half-gear 
tooth make the interpolation difficult to achieve. To over-
come such problem, a nonlinear dimensionality reduction 
by LLE was applied on the scattered data, representing the 
mesh of the half-tooth surface, in order to map the 3D spatial 
coordinates into a 2D embedding manifold while preserving 

the neighborhood. Therefore, the interpolation becomes 
much easier to handle.

The applied methodology for surface interpola-
tion is defined as follows. The surface was first isolated 
from the rest of the workpiece as shown in Fig. 8(a). 
The mesh of the surface was then extracted as shown in 
Fig. 8(b) where the scattered points represent the mesh 
nodes (2092 points). LLE was next applied, as described 
in section “Nonlinear manifold learning by LLE”, where 
the nearest neighbors (k = 15) were determined by euclid-
ean distance. This number of neighbors k was chosen in 
accordance with the density of data points, and it was 
assumed to be enough to approximate each data point.

The result of LLE is illustrated in Fig. 8(c). It can be seen 
that the three-dimensional data were mapped into a single 
global coordinate system of two dimensions, where the color 
coding illustrates the neighborhood preserving mapping.

The next step was to apply the PODI, beginning by con-
sidering a snapshot matrix where each column represents 
the temperature-time evolution per sensor (the 9 available 
sensors). In fact, those snapshots should be obtained at the 
online step for new selected values of input parameters 
(frequency and power). However, two simulations from the 
existed DoE, presented in section “Problem statement: pro-
cess and data’, were considered for validation. All the results 

Fig. 8   LLE approach: (a) 
isolated surface geometry (b) 
mesh nodes in 3D coordinates 
(c) embedded coordinates in the
2D manifold

Fig. 9   Cumulative energy 
computed from 9 snapshots of 
the thermal field for 2 different 
simulations



will be shown for simulation 1 and 14 where the medium 
and high frequency values were used.

By applying the POD on the snapshot matrices, reduced 
bases composed by three POD modes, for both simulations 1 
and 14, were retained to recover the 99% of cumulative energy 
and to produce accurate reconstructions, as shown in Fig. 9.

Then, the POD modal coefficients were approximated 
by using interpolation with radial basis functions (RBF) 
which provide a general and flexible way of interpolation 
in multidimensional spaces, even for unstructured data 
where polynomial or spline interpolations are difficult to 
apply [53–55]. The RBF interpolation with a multiquadric 
basis function was applied to the POD modal coefficients 
as a function of the global internal coordinates in the low-
dimensional space obtained by LLE.

The available sensor positions in the three-dimensional 
space and their corresponding coordinates in the embed-
ded manifold, used for interpolation, are illustrated with 
blue points in Fig. 10(a) and (b), respectively. The valida-
tion of the applied methodology was provided at 4 new 
positions (orange points) as shown in Fig. 10.

A comparison between the FEM and the PODI approxi-
mation of the temperature-time evolution is shown in Fig. 11 
for the test points illustrated in Fig. 10. It can be seen that 
the two curves were almost overlapped for all test points.

In addition, the relative error defined by Eq. 20 was 
used to determine the estimation accuracy for the test 
points and for the two simulations.

As shown in Table 3, the obtained relative errors were less 
than 3% at the 4 test points. These results indicate that the 
applied methodology for surface interpolation was robust 
and provided accurate results.

(20)Error(%) =

√

∫ (Tpred − TFEM)2dt

max(TFEM)
× 100

This methodology can successfully be applied to other 
geometries. However, it is worth noting that the position 
of the considered sensors is very important and directly 
affect the interpolation accuracy and a good choice of the 
position is highly recommended.

Volume interpolation

According to Fig. 4, only few sensors are located in volume, 
and all of them have the same z coordinate. Therefore, more 
sensor solutions should be provided in order to carry out the 
interpolation at different zones within the gear tooth. The 
applied methodology have several steps, beginning with col-
lecting data in sensors by a post-processing on the simulation 
result files such that no new computations are required. The 
considered sensors are illustrated in Fig. 12 with red points.

Since the solution is currently known for all sensors 
in Fig. 12, an interpolation function for the temper-
ature-time evolution over each surface sensor and its 
corresponding internal ones as a function of the dis-
tance from the surface point was created. A total of 
9 interpolations were performed using the POD with 
linear interpolation. Hence, the temperature-time evolu-
tion can be computed by reconstruction (i.e. using the 
predicted POD modal coefficients) at any new point on 
the gray lines that pass over the red points (see Fig. 12).

Then, for any new point located in the domain lim-
ited by the existing sensors into which the prediction 
of temperature is required, multiple steps were applied. 
Therefore,  to evaluate the performance of the meth-
odology, 4 test points located at certain depths and at 
different Z coordinates were considered, as shown in 
Fig. 13(a). Figure 13(b) shows the projection of the test 
points onto the plane Z = 0 for a better visualization.

For each test point, its associated points in the 9 gray lines 
in Fig. 12 satisfying the equality of the minimum distance 
from the surface were determined. For the sake of clarity, an 
illustration of this step is shown in Fig. 14 at the 4 test points 
and at mid-width of the tooth because the X and Y coordinates 
of the three orange crosses, extracted at mid-width, remain the 
same for the other gray lines with other Z coordinates.

Basically, the real important information to be extracted 
from the test points is the shortest distance to the black 
curve, representing their orthogonal projection onto the 
gear tooth surface. Otherwise, for each test point, the orange Fig. 10   Sensors in 3D surface (a) and their corresponding coordi-

nates in the embedded manifold (b)

Table 3   Relative errors of the temperature-time evolution using POD 
with RBF interpolation - surface interpolation

Error (%) point #1 point #2 point #3 point #4

Simulation 1 1.5% 2.0% 2.2% 2.4%
Simulation 14 1.0% 1.3% 3.0% 1.4%
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crosses on the gray lines (Fig. 14) were determined such 
that the distance between those points and their orthogonal 
projections onto the tooth surface (green crosses) should 
be equal to the known distance between the test point and 
its orthogonal projection onto the same surface (i.e. equal 
dashed segments). Then, the prediction of the temperature-
time evolution on the orange crosses were computed by 
using the previously created interpolation functions.

The coordinates of the orthogonal projection of all orange 
crosses in Fig. 14 onto the surface, represented by the green 
crosses, were extracted. A total of 9 points coordinates were 
provided for each test point, corresponding to the projec-
tion of each extracted point in gray lines of Fig. 12 onto the 
surface. Those 3D surface coordinates were then mapped 
into the 2D embedding manifold previously generated by 
LLE for surface interpolation, as shown in section “Surface 
interpolation”. The representation of the mapped crosses for 

Fig. 11   Comparison between 
the FEM and the PODI approxi-
mation of the temperature-time 
evolution at 4 test positions and 
for simulations 1 and 14

Fig. 12   Position of sensors for volume interpolation
Fig. 13   Test points: (a) in the 3D coordinate system (b) projected 
onto the plane Z = 0



the 4 test points is illustrated in Fig. 15, where the projec-
tion of the test points on the surface were also mapped, and 
represented in the 2D space by green points.

Now, following the same rationale as the surface 
interpolation, the PODI was applied on the snapshot matrices 
containing, as columns, the just predicted temperature-time 
evolution at the orange cross points in Fig.  14 for each 
test point, where the applied strategy was again tested for 
simulation 1 and 14 from the DoE. Similarly to the surface 
interpolation, the applied POD on the snapshot matrices 
resulted in a reduced basis having three POD modes, for 
both simulations and for each test point, to recover 99% of 
cumulative energy. Then, the POD modal coefficients were 
approximated by using RBF interpolation with a multiquadric 
basis function, as a function of the coordinates in the 2D space 
obtained by LLE.

After reconstruction, a comparison between the FEM 
and the PODI approximation of the temperature-time 
evolution is shown in Fig. 16, for simulation 1 (Fig. 16(a)) 
and simulation 14 (Fig. 16(b)) and at the 4 test points. It can 
be seen that all the curves show the same trend and a good 
correlation was obtained. However, a small gap between 
curves was observed for points #3 and #4. This could be 
explained by the position of the green points relative to the 
green crosses. However, such difference can be tolerated in 
the industrial application.

The relative error defined by Eq. 20 was also calculated 
to determine the estimation accuracy. The obtained errors, 
listed in Table 4, do not exceed 7% for simulation 14, and 5% 
for simulation 1. These results prove that the applied strat-
egy for volume interpolation was very efficient and provided 
good approximations.

Fig. 14   Test points and their associated ones on the lines containing the available sensors

Fig. 15   Embedded coordinates in the 2D manifold



Conclusions

In this work, the multiphysics parametrized induction heat-
ing process was studied and parametric metamodels were 
developed, for 14 sparse sensors located at different posi-
tions in the gear tooth, to predict the temperature-time evo-
lution under different process parameters chosen from the 
predefined intervals.

To achieve this goal, firstly, a data-driven approach was 
applied on a set of synthetic data provided by the FE simula-
tions for different values of frequency and power. Then, the 
GPOD method was applied in order to complete the missing 
values for certain simulations. Next, dimensionality reduc-
tion by POD coupled with sPGD regression method was 
applied to fit a model to the POD modal coefficients, pro-
viding the low dimensional representation of the original 
snapshots. The proposed approach was successfully applied, 
and a good approximation was provided using the sPGD 
regression model even with a small amount of data.

Since these models were built for some sparse points in 
the space domain, the solutions were extended to address 
the heat-affected zones in the space domain. Therefore, 
an interpolation over the gear tooth surface was first 
addressed by applying LLE method in order to map the 
three-dimensional coordinates into a two-dimensional 
manifold while preserving the neighborhood and hence 
recover the global nonlinear structure of the gear tooth 
from locally linear fits. The LLE was followed by POD 
with RBF interpolation on the snapshot matrix containing 
the temperature-time evolution on the available surface 
sensors, where interpolation was achieved with respect to 
the embedded coordinates in the lower-dimensional space. 
This approach was tested and approved for new points in 
the space domain.

Finally, internal spatial points were addressed for volume 
interpolation. Therefore, local interpolations with respect to 
the distance from the surface were first applied at different 
zones over a set of points by using POD coupled with linear 
interpolation. For any new point located within a certain 
depth at which the prediction of temperature is required, 
multiple steps were then applied including an intelligent 
search algorithm, a linear interpolation, an orthogonal pro-
jection onto the surface, a mapping by LLE, and a POD with 
RBF interpolation. This approach for volume interpolation 
resulted in good approximations as well.

The developed approach has the advantage of an almost 
real-time prediction that is highly suitable for active control 

Fig. 16   Comparison between 
the FEM and the PODI approxi-
mation of the temperature-time 
evolution at 4 test points and for 
simulations 1 and 14

Table 4   Relative errors of the temperature-time evolution using POD 
with RBF interpolation - volume interpolation

Error (%) point #1 point #2 point #3 point #4

Simulation 1 2.2% 0.8% 4.8% 3.8%
Simulation 14 2.6% 2.3% 6.2% 6.4%



of the process parameters. In the light of the obtained results, 
the proposed approach can be extended to consider geomet-
rical parameters such as dimensions of the workpiece and 
the inductor.
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