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ABSTRACT
The key purpose of robust design and tolerancing approaches is the
management of uncertainty. Against this background, it is not sur-
prising that there is a large overlap between the basic ideas and
concepts in both fields. However, while sharing the same objective,
the focus of the corresponding development phases is quite differ-
ent; that is (i) the determination of solutions that react insensitive, in
other words robust, to n oise factors – Robust parametric design; and
(ii) the limitation of the effects of manufacturing imprecision by the
specification of optimal tolerances – Tolerancing. As a consequence,
there also is a significant gap between both concepts. Focusing on
the improvement of design solutions, robustness is often related to
uncertainty of not known designs or manufacturing processes. Due
to the complexity of a largelymatured solution, tolerancing tasks are
usually based on previously specified, key characteristics or behavior
models that are supposed perfect. Therefore, an overview of robust
design and tolerancing is used to highlight the deficiencies, and
to formalize a new classification of tolerance analysis issues based
on the type of uncertainty considered. The proposed framework is
based on Dempster-Shafer evidence theory and allows to efficiently
perform statistical tolerance analyses under model imprecision.
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1. Introduction

Uncertainty is ubiquitous in engineering design, as a design team usually faces the chal-
lenge of accurately predicting the behavior and identifying design parameters of the
designed systems. This challenge results from different aspects, including the nature of
design as gradual development of solutions, the ever-increasing complexity of products,
lack of knowledge about the environment, manufacturing imprecision, etc., and is fre-
quently discussed as ‘uncertainty’ in design (Dantan et al. 2013; Malmiry et al. 2016). For the
overall development process, these uncertainties lead to risks (Morse et al. 2018) includ-
ing performance risk (due to uncertainty about desired quality criteria), schedule and
development cost risk (due to uncertainty about lead time and costs), technology risk
(due to uncertainty about realizable performance benefits), as well asmarket risk (due to
uncertainty of market acceptance).
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Figure 1. Uncertainty in Development.

Given that uncertainty is an unavoidable reality of engineeringdesign, a coherent frame-
work formanaging the different types of uncertainty is consequently of utmost importance
for a successful development process. There are various classifications of uncertainties in
literature (Thunnissen 2003; Wang et al. 2019), classically distinguishing betweenAleatory
uncertainty,describing the inherent randomnessof aphenomenon; andEpistemicuncer-
tainty due to a lack of knowledge. As exemplified in Figure 1 with a generic design process
(Pahl et al. 2007), thesedifferent types of uncertainty exist in all stages of thedesignprocess,
and should be identified and managed accordingly.

In light of the above, a significant amount of research has been devoted to the uncer-
tainty management during the design process. One aspect of particular interest is hereby
Taguchi’s concept of off-line quality. As a pioneer in this field, Taguchi (1987) suggests a
three-stage process: system design, parameter design, and tolerance design.

System Design is the conceptualization and synthesis of a product. During this
stage, the design team determines the new concepts, the right combination of struc-
ture/configuration of the product that will satisfy functional and economical specifications.

In the Parameter Design phase, the system variables are experimentally or numerically
analyzed to determine how the product behaves to ‘noise’ in the system. Parameter design
is related to finding the appropriate design factor levels to make the system less sensitive
to uncertainty and variation in noise factors, i.e. to make the system behavior more robust.

The final step is ToleranceDesign, that is a set of activities to allocate suitable tolerances
levels around the optimized parameter settings based on the available manufacturing
processes.

While seemingly offering a comprehensive approach that roughly follows the generic
development phases above, most authors agree that the Parameter Design phase is the
main thrust of Taguchi’s approach (Jugulum and Frey 2007). This implies a relatively narrow
focus on one single, even though important, task in embodiment design, which is the effi-
cient optimization of parameter settings for a previously defined product configuration. As
the considered parameter settings also provide the basis for the allocation of tolerances in
the final ToleranceDesign step, the approach furthermore excludes numerous other related
Tolerancing considerations such as geometric tolerances, tolerance specifications, etc.



This research seeks to analyze the practices of uncertainty management during param-
eter design, in order to investigate which concepts can be adopted to bridge the currently
existing gap towards all subsequent tolerancing activities. On this basis, a newly proposed
tolerancing framework integrates the assessment of the impact of several uncertainties
(model imprecision,model parameter uncertainty) on the accuracyof the tolerance analysis
(one of the most important step of the Tolerance design).

The remainder of the paper is structured as follows: section 2 reviews existing work in
the field of Robust Parameter Design, focusing on the corresponding strategies for uncer-
tainty management. The analysis of these practices allows to identify: which uncertainties
are considered? And how? On this basis, section 3 presents a critical analysis of toler-
ancing practices. In order to address the identified white spots in available frameworks,
section 4 then proposes a new/extended framework and the corresponding techniques
to manage model uncertainty and model parameter imprecision during the tolerance
analysis phase.

2. Robust design – parameter design and uncertainty management

The basic ideas and principles of Robust Design (RD) originate fromGenichi Taguchi’s work
in the late 1950s and focus on improving quality by ensuring the ‘insensitivity of products
and processes against different sources of variation’ without eliminating the sources of vari-
ation themselves (Taguchi 1987). RD consequently aims at designing products that show a
consistently high quality and performance despite noise factors, including production vari-
ation in form of tolerances, not (fully) specified load scenarios and unexpected stress levels,
ambient conditions of use such as temperature or humidity, as well as varying degradation
effects. And given the fact that the uncertainty of corresponding variation influences in the
lifecycle were, and still are, widely accommodated by quality control measures and safety
factors, RD also allows for significant cost reductions (Ebro and Howard 2016).

2.1. Basic concepts and fundamental classification

As already laid out above, Taguchi’s fundamental Quality Engineering framework suggest
three different phases of a RD process, that is (1) System Design, (2) Parameter Design, and
(3) Tolerance Design. And while research on RD has developed into a variety of different
research areas over time1, Taguchi’s work on phase (2), the optimization of a given solution
by means of suitable experimentation strategies and the corresponding statistical analy-
ses, has received most of the attention by academics and practitioners (Jugulum and Frey
2007). Best illustrated by the P diagram in Figure 2, Parameter Design advocates the use of
crossed-array experiments as well as Signal to Noise ratios (SNR) for an efficient assessment
of interactions between control and uncertain noise factors. In other words, the possibility
of increasing the product’s robustness by deliberately choosing suitable parameter com-
binations for a set of control factors that reduce the effect of potential variation of the
non-controllable noise factors.

• Signal factors (M) are theparameters set by theuser or operator of theproduct to express
the target value for the response of the product.



Figure 2. P_Diagram.

• Noise factors (Z) are the potential sources of variation and cannot be controlled by the
designer.

• Control factors (X) are those parameters that can be specified freely by the designer.

In the following, the current practices for treating uncertainty in the context of Taguchi’s
Parameter Design phase are reviewed in order to provide a coherent basis for establishing a
corresponding tolerancing framework. The review is referring to the first three categories of
the fundamental classification suggested by Choi (2005), see Figure 3. The framework dis-
tinguishes four types of RD tasks according to the level of uncertainty of the conducted
analysis. While providing an understanding which types of uncertainty are relevant for
achieving robustness, the framework consequently also implies that it is usually neither
useful, nor desired to perform all types of analyses. For the choice of suitable approaches, it
should insteadbewell understood, inwhich of the categories belowadevelopment project
operates in. Examples are the typical parametric exploration of solutions in virtual or physi-
cal experiments (Type I), the optimization towards a robust control factor rangebasedonan
available, sufficiently accurate analytical description (Type II), or the structuring decisions
along an hierarchical design process (Type IV) that usually goes across different groups,
department, and engineering disciplines.

• In Type I robust design, design variable values are identified to satisfy a set of per-
formance requirement targets regardless of noise factors. Noise factors are not under
a designer’s control.

• In Type II robust design, design variable values are determined that satisfy a set of
performance requirement targets regardless of anticipated variations in those design
variables.

• In Type III robust design, design variable values are determined which satisfy a set of
performance requirements regardless of variations in the mathematical models used to
describe that performance.

• In Type IV robust design, design variable values are determined which satisfy a set of
performance requirements in spite of variability introduced by a hierarchical, multiscale
or multidisciplinary formulation of the product (not considered in the following).



Figure 3. Classification of Robust design.

2.2. Current practices of robust parametric design

2.2.1. Type 1 robust analysis – choosing parameter combinations
The first category in Choi’s (2005) framework summarizes the fundamental RD idea as
advocated for example by Taguchi (1987) or Phadke (1995). The corresponding identifica-
tion and choice of suitable design parameter combinations for a set of non-controllable
noise influences is usually threefold: (1) definition of design matrices for crossed-array
experiments [uncertaintymodelling], (2) calculation/experimentation for eachdesignpoint
[uncertainty propagation], and (3) choice of suitable parameter combinations [data analy-
sis]. While also criticized for its simplified statistical considerations, e.g. in Nair et al. (1992),
the basic assumptions of this parameter design phase provide an important foundation for
all further uncertainty management considerations in the remainder of this paper.



Fundamentally, the variation of noise factors can be considered a largely aleatoric uncer-
tainty, i.e. as the natural variability of ambient conditions, of machine tolerances, etc.
Theoretically, the degree of uncertainty is therefore primarily depending on the sampling
size and the efficiency of calculating the uncertainty propagation (Choi 2005). However, the
concrete relation between non-controllable Noise Factors (NF) and Control Factors (CF), as
well as their influence on the signal-response relationship, is usually considered unknown,
too expensive to evaluate respectively. For this reason, and despite the aleatoric nature
of noise factors, a parameter study traditionally relies on evaluating a limited number of
design points, and a simplified evaluation of resulting performance and variation based
on Signal to Noise Ratios (SNR), exemplarily provided for a nominal-is-best characteristic
below:

SNR = 10log
(

ȳ

σ 2

)

The traditional Taguchi approach consequently focusses ona cost and timeefficient evalua-
tion of pre-definedparameter combinations, and appreciates the fact that largely uncertain
andnon-controllable noise factors cannot, respectively shouldnot, bedescribed at all costs.
In other words, for an efficient analysis it is necessary to accept a certain level of epis-
temic uncertainty. Shin Taguchi for example states that ‘the goal in parameter design is not
to characterize the system but to achieve robust function’ (Nair et al. 1992).

2.2.2. Type II robust analysis – optimisation of control factors
Despite the indisputable contributions of traditional Parameter Design, a largely simplified
description of the system under consideration naturally comes with disadvantages. This
holds particularly truewhen looking at thepossibilities ofmodern simulation-baseddesign,
offering an enormous potential for a reduction of uncertainty, efficient analyses as well as
robustness improvements. For this reason, the first category of RD approaches is extended
by Type II Robust Design ‘used to design systems that are robust to possible variation in system
parameters as a design evolves’ (Choi 2005).

The essence of Type II robustness is that the simplified consideration of largely unknown
control-by-noise interactions is complemented by a detailed analysis and optimization of
the control factors themselves. Instead of at single design points, the effect of control fac-
tors is evaluatedbasedonavailablemodels for theproductbehaviormodel. Usually given in
formof a simulation, this behaviormodel f (x) allows for significantly reducing theepistemic
uncertainty of control factors as well as the corresponding tolerances. As also illustrated in
Figure 3, the aim is to search the entire design range for finding flat, hence robust, regions
of the behavior model instead of an optimal performance, as the latter frequently results in
significant losses in case of the slightest variation around the design point. Given the cor-
responding trade-off between the performance and its variation, also shown by the mean
μ(x)and the standard deviation σ(x) in the usual objective function of a Robust Design
Optimisation (RDO) task, Type II robustness, however, implies the additional challenge of
finding the right compromise between these objectives.

min f (x) = αμ(x) + (1 − α)σ(x)

Literature suggests several strategies for studying the given trade-off beyond just iden-
tifying the actual Pareto Set. Besides examples such as aggressive/conservative trade-off



strategies (Otto and Antonsson 1991) or the formulation as compromise design sup-
port problem (Mistree et al. 1990), work on preference modelling under uncertainty
(Quirante, Sebastian, and Ledoux 2013; Mourelatos and Liang 2005) is the most relevant
in the context of this work. As decision support, Quirante, Sebastian, and Ledoux (2013)
choose to qualify the degree of customer satisfaction based on desirability functions. In this
way, the presented approach complements a strictly stochastic, hence aleatoric, descrip-
tion of control factors by a suitable strategy to treat epistemic uncertainty for aspects that
cannot be described in more detail.

2.2.3. Type III robust analysis –model uncertainty
In general, simulation-driven design implies epistemic uncertainty given by the used com-
putationalmodels (Oberkampf et al. 2002;Walter, Storch, andWartzack 2014) as the behav-
ior model from Type II Robustness is unknown and needs to be constructed, e.g. based on
numerical simulations. Choi (2005), therefore, describes Type III robustness as the identifica-
tion of ‘ranges for control factors, that satisfy a set of performance requirement targets and/or
performance requirement ranges and are insensitive to the variability within themodel.’

Addressing the involved computational costs of Type III robustness, particularly in case
of an increasing parameter space, literature provides both, suitable experimental designs
for computer experiments (Lehman, Santner, and Notz 2004; Joseph et al. 2019), as well
as different surrogate-modelling techniques on the approximation accuracy of the used
model (Chen et al. 1996; Chatterjee et al. 2019). Furthermore, several authors present
possibilities to quantify the corresponding model uncertainty based on statistical uncer-
tainty propagation techniques (Apley, Liu, and Chen 2005, Du and Chen 2000). As Choi
(2005) states, a statistical treatment has a natural limit though, and can only be applied
for relatively simple problems, particularly during design exploration.

In light of the ever-increasing complexity of engineering systems, and following the
fundamental ideaof anefficient robustness analysis fromType I, it is hence critical for aneffi-
cient analysis to clearly differentiate between the different types of uncertaintywhen using
model-based predictions. Parameters can either be constant but not (fully) known (e.g.
due to model discrepancy, limited samples for fitting model parameters, etc.), or just vary-
ing randomly (e.g. the aleatory variation of produced component dimensions). In robust
parameter design, this difference has for example been considered based on the concept
of so-called P(robability)-Boxes (Rumpfkeil 2013), see also Figure 4. Providing a suitable
visualization for the upper and lower bounds of the resulting output distribution, the effect
of the corresponding epistemic variables are derived by amaximization and aminimization

Figure 4. Representation of aleatory and epistemic uncertainty in P-Boxes.



problem instead of a sampling-based uncertainty propagation method. Furthermore, cor-
responding analysis were extended based on the characterization of epistemic uncertainty
by means of the Evidence (Dempster-Shafer) theory (Filippi et al. 2018, Helton et al. 2010).
A generalization of the Bayesian theory, the resulting uncertainty propagation is calculated
and represented by an interval of lower bound (called believe) and an upper bound (called
plausibility).

3. Tolerancing and uncertainty management

Following the basic idea of the classification of uncertainty management techniques in the
context of robust parameter design, the aim of this chapter is to introduce and present a
similar framework for Tolerancing. While Hong and Chang (2002) distinguished tolerance-
related research into seven distinct categories: Tolerance modeling and representation,
Tolerance schemes, Tolerance specification, Tolerance analysis, Tolerance synthesis or allo-
cation, Tolerance transfer, Tolerance evaluation, the suggested framework focuses specifi-
cally on Tolerance analysis. Essential in the tolerancing process, the analysis provides the
basis for Tolerance synthesis, Tolerance transfer and Tolerance evaluation, and, similar
to the parameter design phase, includes questions of uncertainty modeling, uncertainty
propagation, and the corresponding data analysis.

Shen, Aameta, and Shah J (2005) said: ‘The objective of tolerance analysis is to check the
extent and nature of the variation of an analyzed dimension or geometric feature of interest
for a given GD&T scheme. The variation of the analyzed dimension arises from the accumu-
lation of dimensional and/or geometrical variations in the tolerance chain’. The extended
definition used in the following is ‘propagation of geometrical imperfections & gaps to
check the respect of functional requirements’ (Dantan et al. 2012a). The purpose of this
extension is to extended definition include the multi-physics aspect of tolerance analy-
sis, i.e. the computation how geometrical imperfections influence themechanical behavior
or/and multiple simultaneous physical phenomena in a multiphysical system. This section
deals with the current practices in tolerance analysis: tolerances chain and the toler-
ance analysis of non-rigid mechanisms; and with some extended practices with various
uncertainties.

3.1. Basic concepts and fundamental classification

There are various classifications of tolerance analysis in literature. The classically used cri-
teria are the type and technique of the analysis, the type of mathematical model for the
product behavior, and the granularity of the geometrical modelling.

The most known classification is the distinction of worst-case and statistical tolerancing
(Dantan et al. 2012b): Worst-case tolerance analysis involves establishing the tolerances
such that any possible combination produces a functional assembly, i.e. the probability
of non-assembly is equal to zero. It considers the worst possible combinations of individ-
ual tolerances on the basis of a previously identified geometrical characteristic relevant
for ensuring the product function. On this very same basis, Statistical tolerancing involves
establishing the tolerances such that a small fraction of assemblies is not assemblable or
does not function as required (Chase and Parkinson 1991; Evans 1974; Morse et al. 2018;
Nigam and Turner 1995).



Based on the mathematical point of view, the classification of the tolerance analysis
techniques is displacement accumulation or tolerance accumulation (Dantan et al. 2012b;
Dumas and Dantan 2015): The displacement accumulation simulates the influences of all
deviations on the geometrical behavior of the mechanism. The tolerance accumulation
simulates the composition of tolerances i.e. linear tolerance accumulation, 3D tolerance
accumulation.

Based on the impact on the mathematical formulation for the problem of toler-
ance analysis, Ballu, Plantec, and Mathieu (2009) furthermore propose to distinguish
two main mechanism categories in terms of degree of freedom: Iso-constrained mecha-
nisms, and over-constrained mechanisms. The authors justify this classification by the fact
that:‘Isoconstrained mechanisms are quite easy to grasp. Geometrical deviations within such
products do not lead to assembly problems; the deviations are independent and the degrees of
freedom catch the deviations. When considering small deviations, functional deviations may
be expressed by linear functions of the deviations.’ and ‘Considering overconstrained mecha-
nisms is much more complex. Assembly problems occur and the expression of the functional
deviations is no more linear. Depending on the value of the manufacturing deviations: the
assembly is feasibleornotand theworst configurationof contacts is notunique foragiven func-
tionaldeviation. Foreachoverconstrained loop, eventson thedeviationshave tobedetermined:
events ensuring assembly and events corresponding to the different worst configurations of
contacts. As therearedifferent configurations, theexpressionof the functionaldeviationcannot
be linear.’

In the same way, Dantan et al. (2012b) develop a classification based on the mathe-
matical issue and the type of response function f. The result of this classification is the
aggregation of the three previous ones and the identification of the scope of application
of all techniques: In the case of a nonlinear response function, the tolerance accumula-
tion technique must not be used. For worst-case analyses, the tolerance accumulation
technique should be preferably used.

In an additional direction, Schleich et al. (2014; Schleich andWartzack 2016) analyze the
impact of the granularity when modelling geometric deviations on the result of the toler-
ance analysis. They distinguish several granularities: 1D, 2D, 3D, 3D with form defect; and
they illustrate the relationship between accuracy and granularity.

Following the above review, and combining it with the idea of the Parameter Design
classification above, we propose to classify the different types of tolerance analyses based
on the potential uncertainty. This leads to the following three categories:

• Type I: Verify Tolerance values that satisfy a set of geometrical requirement targets
despite variation in noise factors (only geometrical imperfections or clearances).

• Type II:Verify Tolerance values that satisfy a set of performance requirements (geometri-
cal ormultiphysics) targets despite variation in noise factors (geometrical imperfections,
deformations, clearances, . . . ).

• Type III: Verify Tolerance values that satisfy a set of performance requirements (geo-
metrical or multiphysics) targets despite variation in noise factors (geometrical imper-
fections, deformations, clearances, . . . ) and variability within the model.

Correspondingly, the suggested framework complements current tolerancing practices,
which mostly focus on aleatory uncertainty (Type I & II), by a distinct consideration of



Figure 5. Classification of Tolerance analysis issue.

epistemic uncertainty in the calculation model used (Type III). The made extension conse-
quently accounts for the increasing possibilities of multiphysical simulations, which make
the evaluation of tolerances computationally costly and time-intensive when addressed
based on the usual, stochastic description of production variation around previously fixed
control factor settings (Figure 5).



3.2. Available tolerancing approaches

3.2.1. Type 1 tolerance analysis
The Type 1 is the verification of Tolerance values that satisfy a set of geometrical require-
ment targets despite variation due to geometrical imperfections or clearances, as also
highlighted by the P_diagram of Type 1 Tolerance analysis in Figure 5.

A simple illustration of Type 1 tolerance analysis is the classical dimensional chain
(Figure 5). The designer identifies a functional clearance, which affects the overall mech-
anism function, and identifies all component dimensions influencing it. The mathematical
formalization of the corresponding topological loop then allows the determination of the
response function, a step that can be generalized to other geometrical characteristics (posi-
tion or orientation) and to complex mechanisms with several topological loops (Dantan
et al. 2012b).

The formalization and the calculation of the response function f(X, z) (Dantan et al.
2012b),which is themathematicalmodel of the tolerance chains (Dumas andDantan 2015),
are based on the geometrical and topological properties of the mechanism, and the two
conditions to be verified::

• Assemblability condition or Existential condition (Qureshi, Dantan, and Bigot 2009): ‘For
all acceptable geometrical deviations (which are inside tolerances), there exists a gap con-
figuration such as the assembly requirements and the geometrical behavior constraints are
verified’

• Functional condition or Universal condition – ‘For all acceptable geometrical devi-
ations (which are inside tolerances), and for all admissible gap configurations, the
assembly and functional requirements and the geometrical behavior constraints are
verified’.

To verify these conditions, the effectiveness of mathematical techniques depends on
the mathematical formulation of the geometrical behavior of the mechanism. In the case
of isoconstrainedmechanisms or simple overconstrainedmechanism, it is possible to easily
define the response function Y = f(X,z) (Ballu, Plantec, and Mathieu 2009), and several cur-
rent mathematical techniques could be used. In the case of overconstrained mechanism,
the calculation of the response function requires the determination of the worst configura-
tion of gaps though, so that only theMinkowski sum (for tolerance accumulation) (Ledoux,
Teissandier, and Sebastian 2016), or Monte Carlo simulation coupled with optimization or
several system reliability methods (for displacement accumulation) can be used (Dumas
and Dantan 2015).

Standard commercial tolerancing software performs Type 1 tolerance analysis in the
case of isoconstrained mechanisms or simple overconstrained mechanism. In the case of
overconstrained mechanism, most industrial practices are based on the decomposition of
the kinematic configurations and the simplification of the response function, which are
not consistently efficient. Moreover, several simplified behavior models are used for this
type of analysis (kinematic joints without form defects, geometrical simulation without
deformations, . . . ), which largely affects the accuracy of results (Ballu, Plantec, and Mathieu
2009).



3.2.2. Type 2 tolerance analysis
Often ignored in traditional analyses is the fact that geometrical deviations not only affect
the geometrical behavior of a mechanism, but that these also lead to other noise factors,
such as deformations, leading to additional effects on the geometrical behavior. There-
fore, Type 2 tolerance analysis refers to the verification of Tolerance values that satisfy
a set of geometrical or multiphysical performance requirement targets despite variation
in noise factors that include geometrical imperfections, deformations, clearances, . . . . The
P_diagram of Type 2 Tolerance analysis (Figure 5) shows that themechanism is considered
as signal-response relationship, which integrates the definition of the signal factors and
mathematically represents the ideal function as embodied by the design concept. Usually,
this signal-response relationship represents the behavior of the mechanism and models
several multiphysical phenomena. The main objective of Type 2 Tolerance analysis is to
propagate the geometrical deviations based on this signal-response relationship.

An example of Type 2 is the analysis of gear tolerances. In fact, the geometrical devia-
tions have an impact on the transmission error, the tooth contact position, the meshing
interference, the stress . . . (Dantan 2015). There is a ‘domino effect’: geometrical deviations
impact the tooth contact position, which impacts the stress, hence the distortions, which
in turn affect the tooth contact position. The impact of the geometrical deviations and the
distortions are coupled.

In this case, the formalization and the calculation of the response function f(X,m,z) are
based on the geometrical and topological properties of the mechanism, the multiphysical
behavior laws, two extended conditions and a discretization of the modelling like Finite
Element Method. The aim of the extended conditions is to integrate the deformations or
distortions and the multiphysical aspect of the behavior of the mechanism:

• Assemblability condition or Existential condition – ‘For all acceptable geometrical devia-
tions (which are inside tolerances), there exists a gap configuration and acceptable dis-
tortions such as the assembly requirements and themultiphysicalbehavior constraints
are verified’. In this condition, distortions facilitate the assembly.

• Functional condition or Universal condition – ‘For all acceptable geometrical devia-
tions (which are inside tolerances), for all acceptable distortions and for all admissible
gap configurations, the assembly and functional requirements and the multiphysi-
cal behavior constraints are verified’. In this condition, distortions do not facilitate the
respect of the universal condition.

The effectiveness ofmathematical techniques depends on the coupling of the geometri-
cal behaviormodelling and themultiphysical behaviormodelling (Deng et al. 2017), usually
in form of an analysis of component deformation. The most commonly used techniques
are the Monte Carlo Simulation coupled with Finite Element Methods (Camelio, Hu, and
Ceglarek 2003; Dahlströmand Lindkvist 2004; Jareteg et al. 2014; Söderberg et al. 2012) and
several probabilistic method (FORM, . . . ) (Goka et al. 2019). In fact, Monte Carlo simulation
remains the reference method but requires many mechanical computations that makes it
very difficult to use in practice for industrial applications. The increasing interest of accurate
but time consumingnumericalmethods, such as the Finite ElementMethods for thepredic-
tion of mechanical behavior, has involved the development of approximated probabilistic



methods (Dantan et al. 2012b): FORM system, Response Surface Method, Support Vector
Machine, Kriging method, . . .

Several commercial software tools allow for performing a simplified Type 2 tolerance
analysis, that is usually focusing on single component behavior anddoes not consider gaps.
We identify two main industrial practices:

• Complete decoupling of the geometrical simulation with geometrical deviations and
themultiphysical behavior simulationwithout geometrical deviations by Finite Element
Method and the accumulation of the effects on the functional requirements.

• A multiphysical behavior simulation with some simple geometrical deviations with a
Monte Carlo simulation.

Considering the probability computation of multiphysical behavior including the exis-
tence of gaps, the literature on that subject seems to be very poor. We identify only several
applications for gear analyses (Bruyere et al. 2007; Dantan 2015).

3.3. Extension of current approaches to Type 3 tolerance analysis

The Type 3 Tolerance analysis is an uncharted territory. The Type 2 Tolerance analysis con-
siders the description of geometrical behavior andmultiphysical relationships as perfect. In
reality, the usedmodels are, however, affected by several uncertainties: model uncertainty,
parameter uncertainty . . . , which has an impact on the accuracy of the results. Accordingly,
Type 3 is the verification of Tolerance values that satisfy a set of performance require-
ments (geometrical or multiphysics) targets despite variation in noise factors (geometrical
imperfections, deformations, clearances, . . . ) and variability within the model (Figure 5).

An example of tolerance type 3 is the tolerance analysis of a pump, where clearances
have a significant impact on the achievable efficiency. To simulate the impact of the clear-
ances on the hydraulic flow, it is, however, necessary to formalize several assumptions
about the fluid behavior (Malmiry et al. 2016). These assumptions are the cause of model
errors, and additional approaches are needed to efficiently quantify and propagate the cor-
responding effects in the tolerance assessment of the pump. A corresponding approach
to propagate all uncertainties – manufacturing imprecisions and model uncertainties – is
proposed in the following section.

3.4. Proposed techniques to perform uncertaintymanagement during tolerancing

In the context of Type 3 Tolerance Analysis, there are two types of uncertainty that have
to be distinguished: Aleatory and epistemic uncertainty. Similar to the robust design tasks
reviewed above, the key challenge is consequently the question of a heterogeneous uncer-
tainty propagation, i.e. how tomodel and propagate different types of uncertainty through
the usedmodel (signal-response relationship) to allow for an efficient andmeaningful data
analysis.

There are many ways of modelling epistemic uncertainty. A simple way to propagate
epistemic uncertainty is by interval analysis (Du 2006). In interval analysis, it is assumed that
the uncertain variables lie within certain intervals. That is, there is no particular structure on
the possible values for the uncertain variables. The problem of uncertainty propagation



then becomes an interval analysis problem. An efficient approach is to use optimization
to find the maximum and minimum values of the responses, which correspond to the
upper and lower interval bounds on the responses. There are a number of optimization
algorithms, which solve bound constrained problems. Another approach is to use surro-
gates to determine interval responses bounds; the surrogatemethods involve constructing
response surface approximations of signal-response relationship. The second way to prop-
agate epistemic uncertainty is Dempster-Shafer Evidence theory (Dempster 1967), which
is an efficient approach because it is a generalization of classical probability theory. In
Dempster-Shafer evidence theory, the epistemic uncertain variables aremodeled as sets of
intervals. The intervals are propagated to estimate belief and plausibility. Belief is the lower
bound on a probability value that is consistent with the evidence, and plausibility is the
upper bound on a probability value that is consistent with the evidence. Therefore, belief
and plausibility define an interval-valued probability distribution. This approach allows to
propagate both aleatory and epistemic uncertainty.

Inspired by the review of robust design, the proposed approach is an aggregation of
these two techniques above. We proposed to combine Monte Carlo simulation and opti-
mization. The optimization allows for identifying the worst configurations of the responses
of each sample of the aleatory uncertainty (geometrical deviation). Figure 6 shows the
proposed general flow chart describing the uncertainties propagation techniques. To com-
pare several approaches of epistemic uncertainty propagation, the proposed framework
includes:

• Statistical tolerance analysis without taking into account the epistemic uncertainty; the
outputs are the classical results of Type 2 tolerance analysis: the failure rate in ppm
and the cumulative distribution function (CDF) of the functional characteristics without
consideration of epistemic uncertainty,

• Statistical tolerance analysis and probabilistic propagation of the epistemic uncertainty;
the outputs are the failure rate in ppm and the cumulative distribution function (CDF) of
the functional characteristics; usually, they were estimated by several techniques of the
Type 2 robust design approach.

• Statistical tolerance analysis coupled with optimization to perform the evaluation of
the cumulative belief and plausibility functions (Plausibility CDF & Belief CDF to rep-
resent the pessimistic and the optimistic case); this evaluation can be done by modi-
fying a technique of the Type 3 robust design approach: monte carlo simulation and
optimization.

3.5. Case study

To illustrate this framework, the Type 3 tolerance analysis is performed on an External gear
pump (Figure 7). The efficiency and oil flow of the pump depend on different backlashes.
These backlashes are between the gears and the housing as well as between the gears and
shafts. Themanufacture of the current oil pump expects aminimum oil flow of 4.35×10-14
m3/s.

To analyze the impact of the tolerance allocation and themodel imprecision,weperform
three case studies with two different sets of tolerances (case study 1 and case studies 2
& 3) and with two different sets of model parameter imprecisions (case studies 1 & 2 and



Figure 6. Algorithm for Type 3 Tolerance analysis.

case study 3). Figure 6 summarizes all considered geometrical characteristics, their nominal
values, their tolerances, and their standard deviations. One tolerance (location of bearings)
of the case study 1 is greater than those of the case studies 2 & 3. The model imprecisions
of the case study 3 are greater than those of the case studies 1 & 2.

Theusedgeometricalmodel and tolerance analysis techniqueof this external gearpump
were detailed in Dumas and Dantan (2015). Monte Carlo simulation is used to simulate the
deviations and the optimization to identify the worst gap configuration. The intermediate
result of the Monte Carlo simulation coupled with the optimization is a statistical distribu-
tion of all functional backlashes. The estimation of the leakage rate is based on a surrogate
model, which depends on the functional backlashes between gears, pump housing and
the shaft, and four model parameters (MP: a, b, c, d – Figure 7). The estimation of these
model parameters and their confidence intervals is donebasedon experimental results and
results of finite element simulations. The statistical distributions of the leakage rate and the



Figure 7. Use Cases.

oil flow are calculated from the statistical distribution of all functional backlashes and from
the surrogate model.

The results (Figure 8) of the three case studies include;

• the cumulative belief and plausibility functions (Belief CDF and Plausibility CDF),
• the cumulativedistribution functions (continuous curves – CDFof classical tolerance anal-

ysis and CDF of tolerance analysis with the probabilistic propagation of the model
parameter imprecision),

• Probaoptimist(Q>0,000435 | assembly): optimistic non-conformance rate that represents
the impact ofmanufacturing imprecision on the respect of the functional requirement
estimated in the optimistic configuration of the model parameter imprecision,



Figure 8. Results.

• Probapessimist(Q>0,000435 | assembly): pessimistic non-conformance rate that repre-
sents the impact of manufacturing imprecision on the respect of the functional
requirement estimated in thepessimistic configurationof themodel parameter impre-
cision,

• Probawithout(Q>0,000435 | assembly): classical non-conformance rate that represents the
impact of manufacturing imprecision on the respect of the functional requirement,

• Probawith(Q>0,000435 | assembly): probabilistic non-conformance rate that represents
the impact of all uncertainties (manufacturing imprecision and model parameter
imprecision) on the respect of the functional requirement estimated by a probabilistic
propagation,

These results highlight:

• the impact of the model parameter imprecision: For each case study, the differences
between non-conformance rates are not negligible. For example, the confidence inter-
val of the non-conformance rate of the case study 1 is [50, 598 ppm] that the interval
limits are the worst configurations of the non-conformance rate due to the epistemic
uncertainty. The differences between the Belief CDF and Plausibility CDF represent the
impact of the model parameter imprecision on the probability of oil flow requirement
(Figure 8).

• the impact of the epistemic uncertainty propagation techniques: Two techniques of
epistemic uncertainty propagation are compared: uncertainty propagation using a
worst case modelling and uncertainty propagation using a probabilistic modelling. For
example, the non-conformance rate of the case study 1 varies between 50, 239 and
598 ppm regarding the uncertainty modelling of the model parameter imprecision.



• The impact of themodel accuracy: The differences between the results of the case stud-
ies 2 and 3 are due to the model accuracy. The case study 3 uses a rough model; the
impact of the model parameter imprecision is too important to ignore: [7, 160183 ppm]

• The impact of the tolerance allocation: the differences between the results of the case
studies 1 and 2 are only due to one tolerance.

Several differences between results are due to the accuracy of the Monte Carlo simula-
tion. The confidence interval of each non-conformance rate estimation is equal to 8 ppm.
For example, the classical non-conformance rates of the case studies 2 and 3must be equal
(68 and 74 ppm). The highlighted impacts aremuchgreater than the impact of the accuracy
of the Monte Carlo simulation. All results illustrate the importance of the Type 3 tolerance
analysis.

4. Conclusion

The first sentence of the introduction is ‘Uncertainty is ubiquitous in engineering design’.
And as the conclusion of this paper is ‘Indeed uncertainty is ubiquitous in tolerancing’, it
can be stated that the objective of tolerancing is the efficient management of the uncer-
tainty in geometrical variabilities: how to limit them? How to ensure the assemblability and
functional conditions?

While usually considered as purely aleatory uncertainty, this paper aims at extending
this classical view, and to highlight the influence of other uncertainties on the tolerancing
activity. The state of art on the robust design taxonomy shows that different types of uncer-
tainty are considered during the parameter design, and all of them have an impact on the
results. Based on this state of art, a taxonomy of tolerance analysis issue is proposed, which
is complementary to other available classifications, and is based on the uncertainty point
of view: Which uncertainties are considered?

The taxonomy distinguishes between three types of tolerance analysis, extending tra-
ditional approaches that usually neglect epistemic uncertainty due to model parameter
imprecision or model error. Complementary, we propose a framework to propagate all
uncertainties and to quantify the impact of the epistemic uncertainty on tolerance anal-
ysis results. The application of the framework is demonstrated through an industrial case
study, which illustrates the significant impact of the model parameter imprecision on the
results and the need to consider them.

The selectionof the tolerance analysis strategy regarding the 3 types dependson the sig-
nificance of the impact of the distortion and the significance of the impact of the accuracy
of the behavior model of the product. Only, the type 3 should take into account the model
uncertainty: if the accuracy of the behavior model is poor then type 3 must be performed.

Note

1. Research work on early stage Robust Designmethods/tools can, applicable in the SystemDesign
phase, can for example be found in Eifler and Howard (2018), or Eifler, Christensen, and Howard
(2013).
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