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Abstract Parametrically excited oscillators are used in several domains, in particular to improve
the dynamical behaviour of systems like in the case of the parametric amplification or parametric
energy harvesting. Although dry friction is often omitted during system modelling due to the
complexity of its non-smooth nature, it is sometimes necessary to account for this kind of damping
to adequately represent the system motion. In this paper, it is proposed to investigate the effect
of dry friction on the dynamical behaviour of a non linear parametric oscillator. Using the
pendulum case as example, the problem is formulated according to a Mathieu-Duffing equation.
Semi-analytical developments using the harmonic balance method and the method of varying
amplitudes are used to find the solutions of this equation and their stability. These results are
validated thanks to a comparison with time integration simulations. Effects of initial conditions
on the basins of attractions of the solutions are also studied using these simulations. It is found
that trivial and non trivial solutions of the oscillator including dry friction are not connected,
giving birth to isolated periodic solutions branches. Thus, both initial displacement and phase
between the excitation and the oscillator displacement must be carefully chosen to reach periodic
solutions. Finally, a method based on the energy principle is used to find the critical forcing
amplitude and frequency needed to obtain the birth of non trivial solutions for the non linear
parametric oscillator including dry friction.

Keywords Parametric nonlinear oscillator · dry friction · isola · critical forcing amplitude

1 Introduction

In the context of dynamical systems, damping is often a complex issue. Although viscous damping
is fairly well understood, dry friction is usually simplified or even neglected due to its nonlinear
and non smooth nature. However, numerous applications exhibit a dynamical behaviour influ-
enced by dry friction which is still the topic of a lot of studies [15,11,26,32,2,31]. One particular
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kind of systems which is often investigated omitting dry friction is the familly of parametrically
excited systems whose dynamical behaviour is derived from Mathieu’s equation [4,21,3,30,1]. As
in every resonant system, parametric resonances can be a source of perturbation if uncontrolled
but can also be used as an enhancement of the system dynamics like in the case of parametric
amplification [24,29] or parametric energy harvesting [8,12,28].

A famous textbook case of parametrically excited systems is the parametric pendulum whose
dynamical behaviour has been extensively studied in numerous references [4,3,30,33,9]. Among
all the studies dealing with the parametric pendulum dynamics, some of them take into account
a dry friction term in the governing equations. For example, Yabuno et al. have used a pendu-
lum including dry friction to control the parametric resonance of a beam [34]. Gonzalez et al.
have studied a coupled oscillator/pendulum system including dry friction, viscous and quadratic
damping to illustrate the use of a real-time dynamical substructuring modelling method [13].
Yano proposes to study the effect of dry friction in a parametrically self-excited system [35].
The identification of viscous and Coulomb damping parameters in a parametric pendulum is
addressed in [18]. Interesting contributions about viscous and dry friction damping applied to
non parametric pendulum are presented in [23,5]. The general case of a parametric oscillator
including dry friction is addressed in [7].

When dealing with parametrically excited systems, the existence of resonant motion depends
on a critical forcing amplitude related to the damping amount. In the case of a viscously damped
system, this critical forcing amplitude can be analytically derived from the existence of non
zero solutions when using perturbation methods [30]. In this case, the birth of the parametric
resonance occurs at the resonance frequency of the system when looking to its frequency response
curves. Thus, for a system including only viscous damping, the two bifurcated branches of the
non trivial solutions emerge from the branch of the trivial solutions describing the motionless
equilibrium of the system. When a dry friction term is added to the governing equations, branches
of non trivial solutions are not connected to the branch of trivial solutions anymore. The split
between branches of trivial and non trivial solutions of the system leads to the emergence of
an isola, as observed in [35] for example. It is likely that the critical forcing amplitude and the
corresponding frequency leading to the birth of an isola are not the same with and without dry
friction. However, it seems that no criterion can be found in the literature to obtain these forcing
amplitude and frequency.

A second remark on the difference between a system with purely viscous and mixed viscous
and dry friction damping is about the influence of initial conditions. Indeed, in the case of a
viscously damped parametric pendulum, trivial solutions are unstable between the two afore-
mentioned bifurcations (see [30] for example). Thus, the system necessarily jumps to the stable
non trivial solution branch when perturbed in this frequency band. In the case of mixed viscous
and dry friction damping, the stability of the motionless state of the system observed experi-
mentally suggests that the trivial solution is stable for every frequency. Thus, the jump on a non
trivial solution branch is not ensured but depends on the amplitude and phase of the excitation
initially applied to the system. However, it remains unclear how these initial conditions have to
be set to reach the stable periodic orbits of the system.

In this paper, we address two important issues when dealing with parametric non linear
systems that include viscous and dry friction damping. Firstly, we propose to investigate the way
initial conditions must be set to reach the stable non trivial solutions of the system. Secondly,
we investigate the critical forcing amplitude and frequency for which the birth of these non
trivial solutions (isola) occurs. The example of the parametrically excited pendulum is used to
illustrate the aforementioned propositions. A modelling of a parametrically excited pendulum
including a dry friction term is proposed. Solutions of the dynamical system are numerically
approximated using the harmonic balance method formalism. Stability of trivial and non trivial
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solutions is investigated using the method of varying amplitude proposed in [1]. Obtained results
are compared with numerical ones computed thanks to a time integration of the dynamical
system equations. In order to avoid the regularization of the dry friction term, a switch model
presented in [19] is used. Then, effects of the initial conditions on the basins of attraction of the
pendulum solutions are investigated thanks to time integration simulations. Finally, the critical
frequency for which non trivial solutions exist is numerically computed using a method based
on the energy principle [6]. The corresponding critical forcing amplitude is analytically derived
from this value.

2 Governing equations

y

x

•

m

l

θ(t)

u(t) = um cos 2Ωt

g

−Γ1θ̇ − T0(θ̇)

Fig. 1 A parametrically excited pendulum with viscous and dry friction.

As shown in Figure 1, we consider a pendulum parametrically excited by a vertical dis-
placement u(t) = um cos 2Ωt, with um and 2Ω the amplitude and the angular frequency of the
excitation respectively. The angular frequency deliberately appears with a factor 2 in the mod-
elling in order to exhibit the parametric behaviour of the system occurring at twice the natural
frequency in the case of the pendulum. The equation of motion for the angular displacement θ(t)
of the pendulum is derived from Newton’s second law and reads

ml2θ̈ + Γ1θ̇ + T0(θ̇) +ml[g + ü] sin θ = 0, (1)

where •̇ denotes the derivative of • with respect to time t. Parameters g, l and m are respectively
the gravitational acceleration, le length and the mass of the pendulum. Terms −Γ1θ̇ (Γ1 ∈ R+)
and −T0(θ̇) correspond respectively to viscous and dry friction damping torques applied at the
rotating point of the pendulum. With ω2

0 = g/l the natural angular frequency of the conservative
pendulum, Eq. (1) is rewritten such as

θ̈ + µ1θ̇ + f0(θ̇) + [ω2
0 + δ cos 2Ωt] sin θ = 0, (2)

where µ1 = Γ1/ml
2 is the viscous damping coefficient. The parametric driving amplitude reads

δ = −4Ω2δ̃, with δ̃ = um/l. This writing is useful in the case of a prescribed displacement
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forcing, for which um is independent of Ω. In the case of a prescribed acceleration forcing ü(t) =
am cos 2Ωt, Eq. (2) is rewritten with an acceleration amplitude am independent of Ω, such as
δ = δ̃a = am/l. In this paper, we will mainly consider the case of a prescribed displacement.
Examples of prescribed acceleration are treated in Appendix A.

The dry friction function f0(θ̇) = T0(θ̇)/ml2 is defined according to the Coulomb’s law, such
as

f0(θ̇)


= µ0, θ̇ > 0

∈ [−µ0, µ0], θ̇ = 0 ,

= −µ0, θ̇ < 0

(3a)

(3b)

(3c)

where µ0 is the dry friction coefficient [17]. Equations (3a,c) correspond to a slip phase, for
which the velocity is nonzero and the friction force is piecewise constant: f0(θ̇) = µ0 sign(θ̇).
Equation (3b) represents a stick phase, where the pendulum is motionless and the friction force
that can take any value between −µ0 and µ0. Notice that we consider in this paper identical slip
and stick friction coefficients. Together with Eq. (3b) that is a set-valued function, the equation
of motion (2) can be regarded as a differential inclusion [20]. Naturally deduced from Eqs. (3a-c),
the transition from a slip phase to a stick phase occurs whenever θ̇ becomes zero at a given
instant. On the contrary, the transition from a stick phase to a slip phase must be viewed with
the associated equation of motion. We rewrite Eq. (2) as

θ̈ − fre + f0(θ̇) = 0, (4)

where fre is the restoring force (all the forces applied to the pendulum but the inertia force and
the friction force). In the stick phase, θ̇ = θ̈ = 0 leads to f0(θ̇) = fre (the static version of (4)) and
according to Eq. (3b), the transition from a stick phase to a slip phase occurs at an instant where
|fre| becomes larger than µ0. In addition, according to the basic equilibrium of the pendulum,
the choice of Eqs. (3a) or (3c) for the next slip phase depends on how |fre| > µ0: if fre > µ0

(resp. fre < −µ0), the next slip phase is governed by Eqs. (3a) (resp. Eq. (3c)).

Fig. 2 Time evolution results for the free oscilations of the pendulum without viscous damping (µ0 = 1, δ = 0)
with ω0 = 2.5 and µ1 = 0. Initial conditions in position and velocity are respectively θ0 = 1.3 rad and θ̇0 = 0
rad/s. The curves corresponds to angle θ(t), velocity θ̇(t), acceleration θ̈(t), restoring force fre(t) and of friction
force f0(θ̇(t)).
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To give an example of the dry friction effect on the pendulum behaviour studied in this
article, we consider Eq. (2) in free oscillations with no viscous damping (δ = µ1 = 0), such as
fre = −ω2

0 sin θ. Results of the motion of the pendulum, according the time integration algorithm
presented in Section 4.2, are shown in Figure 2. Blue, red and yellow curves correspond to the
angular displacement, velocity and acceleration respectively. Purple curve is the dry friction force
f0(θ̇) and the green dashed curve is the restoring force fre applied to the pendulum. According
to Eq. (4), the difference between the green and purple curves must always be equal to the yellow
curve. Horizontal dashed lines correspond to ± the value of the dry friction coefficient µ0. The
description of the pendulum motion affected by the dry friction force can be done as follow. For
t = 0, θ̇ = 0 and |fre| > µ0 with fre < −µ0. In these conditions, the system is in a slip phase until
θ̇ = 0, at t = t1. At this instant, |fre| > µ0 with fre > µ0, which changes the sign of f0(θ̇) with
respect to the previous slip phase, during a stick phase of zero duration. This behaviour continues
until t = t4. At this instant, θ̇ = 0 but with |fre| < µ0. In these conditions, the pendulum falls in
a final stick phase, since its restoring force is included in a dead-zone delimited by ±µ0 in which
it is not large enough to overcome the dry friction force. Thus, the motion of the pendulum
is a succession of slip phases terminated by a stick phase. In the remaining of the paper, we
will consider steady state periodic motion of parametric oscillators and we will assume the same
behaviours: either a succession of slip phases or a final stick phase if |fre| < µ0 is in the dead-zone.

Regarding Eq. (2), one can use the approximation sin θ ≈ θ − 1
6θ

3 for finite and not too
large oscillations. With in mind the use of a perturbation method to calculate the approximated
solutions of the angular displacement of the pendulum, the multiplication between the excitation
term δ cos 2Ωt and the third-order term − 1

6θ
3 is neglected, resulting in

θ̈ + µ1θ̇ + f0(θ̇) + [ω2
0 + δ cos 2Ωt]θ − γθ3 = 0. (5)

In order to remain in a general frame, the nonlinear coefficient γ = ω2
0 γ̃ is introduced in Eq. (5)

and not restricted to the pendulum case (γ̃ = 1/6) in the following section. Thus, the governing
Eq. (5) is extended to a Mathieu-Duffing problem type. It is also worth mentioning that the
behaviour of the system depends on only three free parameters, related to µ1, µ0 and δ. This
can be proven with a dimensionless rewriting of Eq. (5) with time and angle scaling, as shown
in Appendix B. Consequently, in the remaining of the paper, without loss of generality, only the
variations of those three parameters will be considered in the investigations.

3 Analytical developments

In this section, we seek an analytical solution of Eq. (5) with a perturbation method. We use
the method of varying amplitude (MVA) proposed in [27] and used in [1]. This method is very
close to the harmonic balance method (HBM), the difference being that in the MVA we allow
the amplitude of the harmonic components to be time varying, in order to access to a stability
analysis. We us this method here, in comparison to more standard ones such as the method
of multiple scales [22], because it gives results closer to the numerical reference solution in the
present case of parametric resonances (see Appendix A for details).

3.1 Method of varying amplitude

In this section, the motion of a nonlinear parametric oscillator described by Eq. (5) is studied.
Following the MVA formalism, the Equation of motion (5) is rewritten using a Fourier series
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expansion of the angular displacement with only one harmonic such as

θ(t) = a(t) cosΦ(t), Φ(t) = Ωt+ β(t), (6)

with a(t) the amplitude and β(t) the phase of the angular displacement single term expansion.
Although the amplitude/phase formalism is convenient for calculation, the Cartesian form of the
angular displacement will be needed for the upcoming stability study and writes

θ(t) = A1(t) cosΩt+B1(t) sinΩt, (7)

with

A1(t) = a(t) cosβ(t), B1(t) = −a(t) sinβ(t). (8)

The dry friction term is also expanded using a one term Fourier series such as

f0(θ̇) = fc1 cosΦ+ fs1 sinΦ = Fc1 cosΩt+ Fs1 sinΩt (9)

with fc1, fs1 and Fc1, Fs1 the coefficients of the expansion in the Φ and Ωt form respectively.
Unlike the coefficients of the angular displacement expansion, the coefficients of Eq. (9) are
assumed to be constant since it is not possible to analytically compute their derivatives used to
find the stability of the system otherwise (see Section 3.2). This approximation will be validated
with comparison to a numerical solution in Section 4.

Injecting (6) and (9) in (5), grouping terms by harmonics and considering only the first
harmonic in Φ (see Appendix C for details), results in

ä− a (Ω + β̇)2 + ȧ µ1 + aω2
0 + fc1 +

1

2
a δ cos 2β − 3

4
a3 γ = 0

−2 ȧ (Ω + β̇)− a β̈ − aµ1 (Ω + β̇) + fs1 +
1

2
a δ sin 2β = 0

(10a)

(10b)

where Equations (10a) and (10b) are obtained equating to zero the coefficients of cosΦ and sinΦ
respectively.

To find the fixed points of the system, all time derivatives are set to zero (ä = β̈ = ȧ = β̇ = 0).
Under these conditions, Equations (10) are similar to those obtained with a usual harmonic
balance method. Since only slip phases are considered here, the friction term Fourier coefficients
are computed multiplying f0(θ̇) = µ0 sign(θ̇) with the corresponding trigonometric function
(cosΩt or sinΩt) and integrating over one period of the displacement motion. These coefficients
read 

fc1 = 0

fs1 = − 4µ0

π

(11)

In these conditions, Equations (10) result in
aω2

0 − aΩ2 − 3

4
a3 γ +

1

2
aδ cos 2β = 0

−aµ1Ω −
4µ0

π
+

1

2
aδ sin 2β = 0

(12a)

(12b)

It is noteworthy that the trivial case a = 0 (corresponding to a stick phase) is not a solution
of the System of equations (12) when µ0 6= 0. This motionless case is discussed in Section 3.3.
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Eliminating 2β in Equations (12) to find the amplitude a results in the 6th degree polynomial
equation

9

16
γ2a6 − 3

2
γ(ω2

0 −Ω2)a4 +

[
(ω2

0 −Ω2)2 +Ω2µ2
1 −

1

4
δ2
]
a2 +

8

π
Ωµ0µ1a+

16

π2
µ2
0 = 0. (13)

When solving Eqs. (12) in β, one finds

tan(2β) =
Ωµ1 a+ 4

πµ0

3
4γa

3 − (ω2
0 −Ω2)a

(14)

3.2 Stability

The stability of solutions is investigated injecting the Cartesian form given by Eq. (7) in Eq.
(5) Equating the terms in cosΩt and sinΩt with zero results in a system of two second order
equations which can be rewritten at first order using A2 = Ȧ1 and B2 = Ḃ1 and reads

Ȧ1 = A2

Ȧ2 = (Ω2 − ω2
0)A1 − µ1A2 − µ1ΩB1 − 2ΩB2 − Fc1 − 1

2δA1 + 3
4γA1(A2

1 +B2
1)

Ḃ1 = B2

Ḃ2 = (Ω2 − ω2
0)B1 − µ1B2 + µ1ΩA1 + 2ΩA2 − Fs1 + 1

2δB1 + 3
4γB1(A2

1 +B2
1)

(15)

where the friction term coefficients Fc1 and Fs1 are defined in Eq. (9). The Jacobian determinant
of the System (15) is calculated and reads

J =
[
3
2γA1B1 −Ωµ1

] [
3
2γA1B1 +Ωµ1

]
−
[
(Ω2 − ω2

0)− δ
2 + 3

4γ(3A2
1 +B2

1)
] [

(Ω2 − ω2
0) + δ

2 + 3
4γ(A2

1 + 3B2
1)
] (16)

The stability of the solutions of Eq. (13) is evaluated by numerically computing the eigenvalues
of the Jacobian matrix for a given fixed point, obtained by numerically solving (13), (14) and
using (8). Solutions are stable when the real part of the determinant roots are all negative and
unstable otherwise. It is noteworthy that the friction term coefficients are not directly included
in J but has an effect on the stability since the amplitudes (A1, B1) of the fixed points depend
on µ0.

3.3 Particular solutions

3.3.1 Trivial solutions (a = 0)

Because of the dry friction model, the equation of motion (4) has a trivial solution associated to
a permanent stick phase. Considering a motionless state (θ̇ = θ̈ = 0) with Eq. (3b), one shows
that a value θtr of θ, defined by fre(θtr) ∈ [−µ0, µ0], related to the dead-zone, is solution of the
equation of motion (4). As mentioned in Section 2, this trivial solution as well as its stability
is not predicted by the analytical developments presented in Section 3.1. This is natural since
no constant component is considered in the Fourier Series expansion of Eq. (6). Adding this
constant component would complicate the analytical developments and is thus not considered in
the present article. The existence and stability of this trivial solution will however be studied,
using time integration only, as described in Section 4.2.



8 S. Benacchio et al.

3.3.2 Conservative solutions (µ1 = µ0 = δ = 0)

Conservative solutions of the system in free vibrations, given by Eq. (12a) when µ1 = µ0 = δ = 0,
read

θc = ac cosΩt (17)

with

a2c =
4

3γ
(ω2

0 −Ω2) (18)

In the amplitude/forcing frequency plane, ac = f(Ω) corresponds to the well-known backbone
curve of the nonlinear oscillator, whose hardening and softening behaviour depends on the sign
of the nonlinear coefficient γ.

3.3.3 Solutions with viscous (µ1 6= 0) but no dry friction (µ0 = 0)

When there is no dry friction, analytical solutions of the amplitude and phase of the displacement
can be derived from Eq. (13). In this case, the amplitude and phase read

a2 =
4

3γ

(
(ω2

0 −Ω2)±
√
δ2

4
− µ2

1Ω
2

)
(19)

tan(2β) = ± Ω µ1√
δ2

4 − µ
2
1Ω

2
(20)

Eq. (19) is the same as Eq. (18) in addition to plus or minus a term depending on the damping and
forcing. Thus, the solutions are spread around the backbone curve given by Eq. (18). Moreover,
the existence of a real solution is possible only if the term inside the square root is positive. This
gives a criterion to find the critical forcing amplitude needed to initiate the system motion which
occurs at Ω = ω0. When the excitation is a constant forcing displacement (δ = −4Ω2δ̃), the
critical forcing amplitude is

δ̃cr,(µ0=0) =
µ1

2ω0
. (21)

When the excitation is a constant forcing acceleration (δ = δ̃a), the critical forcing amplitude is

δ̃a,cr,(µ0=0) = 2µ1ω0. (22)

3.4 Theoretical frequency responses for representative cases

To depict the behaviour of the system in representative cases, the example of a pendulum (γ̃ =
1/6), having a unit resonance angular frequency (ω0 = 1) and excited with a constant forcing
displacement (δ = −4Ω2 δ̃) is used. As explained in Appendix B, the qualitative behaviour of
the system is independent of ω0 and depends on the sign of γ, which results in a hardening or
softening behaviour, and not on its absolute value. We treat here only the case of a softening
behaviour (γ > 0). Other cases (hardening behaviour and prescribed acceleration driving) are
partially treated in section A. The solutions of Eq. (13) are numerically computed using the roots
algorithm in Matlab1 and plotted in Figure 3 for several forcing amplitudes (δ̃), viscous and dry
friction damping (µ1, µ0).

1 The roots of the polynomial are computed as the eigenvalues of the companion matrix of the polynomial
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(a) (b)

(c) (d)

Fig. 3 Amplitude of the first harmonic of the parametric pendulum motion for several representative cases of
forcing amplitude, viscous and dry friction damping. (a) µ0 = 0, µ1 = 0.1 and δ̃ = [0.051, 0.055, 0.07, 0.15], (b)
µ0 = 0.0024, µ1 = 0.1 and δ̃ = [0.051, 0.055, 0.07, 0.15], (c) µ0 = [0.0024, 0.0245, 0.0612], µ1 = 0.1 and δ̃ = 0.1,
(d) µ0 = 0.0245, µ1 = [0.005, 0.1, 0.15] and δ̃ = 0.1. Plain and dashed lines correspond respectively to stable
and unstable solutions. Black dotted lines show the backbone curve corresponding to the conservative solution
(see Eq. (18)) and the black bullets show the isola birth location for (a) δ̃cr,(µ0=0) = 0.050, (b) δ̃cr = 0.054, (c)
µ0 = 0.0723 and (d) µ1 = 0.155. Coloured bullets in Figure 3(a) correspond to the bifurcation points between
trivial and non trivial solutions.

Figure 3(a) presents the results of the parametric pendulum amplitude with no dry friction
as described by Eq. (19). In this case, the trivial solution a = 0 is predicted by the theoretical
development of Section 3.1 and always exists. The birth of the parametric resonance is depicted
with the black bullet in Figure 3(a) and emerges at the resonance angular frequency of the
pendulum (for Ω = ω0) when the forcing amplitude overcomes the critical forcing amplitude
value given by Eq. (21). In this case, the numerical computation of the solutions stability given
by the MVA approach leads to unstable trivial solutions between the two bifurcation points
represented by coloured bullets. The upper and lower branches of the non trivial solutions are
respectively stable and unstable. When increasing the forcing amplitude, the non trivial solutions
grow around the backbone curve described by Eq. (18).

In Figure 3(b), a dry friction term is added to the governing equation of the pendulum with
µ0 = 0.0024. As explained in section 3.3.1, the stick state resulting from Eq. (3b) is not predicted
by Eq. (13). However, this static state is studied in Section 4 using time integration simulations
and reveals that trivial solutions always exist. Therefore, non trivial solutions are disconnected
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from the trivial solutions giving birth to an isola. When increasing the forcing amplitude, the isola
emerges from a non zero amplitude depicted by the black bullet and grows around the backbone
curve. The birth of the isola has been manually found decreasing the forcing amplitude until
only one non trivial solution remains on the entire frequency band. It appears that the birth of
the isola does not occur at the resonance angular frequency of the pendulum but slightly lower
and not exactly on the backbone curve. The comparison between 3(a) and 3(b) also shows that
the critical forcing amplitude is larger with dry friction.

Figure 3(c) presents the effect of µ0 on the solutions of Eq. (13). As usually with damping
terms, the larger the coefficients are, the more damped the solution is. Again, the dry friction
coefficient has an effect on the location of the isola birth depicted by the black bullet. It changes
the critical forcing amplitude and angular frequency of the system. Since the isola birth does
not occur exactly on the backbone curve, isolated non trivial solutions which never cross the
backbone curve might exit according to the analytical developments proposed in Section 3.1.
Such a case is further studied in Section 4.3. Figure 3(d) presents the effect of µ1 on the non
trivial solutions and reveals similar conclusions.

4 Numerical validation of the analytical developments

Time integration simulations are used to (i) validate the existence and the stability of the non
trivial solutions computed with the MVA and presented in Section 3.1, (ii) verify the existence
of trivial solutions and study their stability and (iii) investigate the effect of initial conditions on
basins of attraction of trivial and non trivial solutions (see Section 5). These time integrations
bring no approximations to the model and provide solutions accurate up to the numerical toler-
ance. For this reason, they are considered as a reference in the present paper. The simulations
are performed using the ode45 solver from the software Matlab [25]. This solver has been cho-
sen since it is the most versatile and validated since no convergence error were noticed during
computations.

4.1 Algorithm for time integration simulations with dry friction

According to Eq. (3), dry friction brings discontinuities in the restoring force of the pendulum.
Since the ode45 solver is not adapted to non-smooth differential equations, the switch model
formulation proposed in [19] is used to account for the dry friction term avoiding its regularization.
Each time the system switches from one phase (slip or stick) to another, the dry friction force
f0(θ̇) is computed according to the Coulomb’s law (3) and respectively to the first and second
Newton’s laws when the system is in a stick and slip phase. To enable the system to quit the
dead-zone defined in Section 2, when the restoring force overcomes the necessary threshold, a
transition phase is added to the algorithm. Rewriting the complete equation of motion (5) with
the formalism of Eq. (4), with fre = −µ1θ̇−(ω2

0 +δ cos 2Ωt)θ+γθ3 the restoring force, the switch
model of Algorithm 1 enables to compute the dry friction force f0(θ̇).

The small parameter η is used to define a narrow band in which the velocity of the pendulum
is considered as null. This finite band of zero velocity is necessary since it is unlikely that an
exact zero value is numerically computed by the solver. In this study, this parameter is defined
such as η = 10−6. Details on the three possible states of the algorithm are:

• when the angular velocity is non zero (|θ̇| > η), the system is in a slip phase and the equation
of motion is (5) with f0(θ̇) = µ0 sign(θ̇);
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if |θ̇| > η then

f0(θ̇) = µ0 sign(θ̇) Slip phase (dynamical)

else if |fre| > µ0 then

f0(θ̇) = µ0 sign(fre) Stick to slip transition

else

f0(θ̇) = fre Stick phase (static)

end

Algorithm 1: Switch model algorithm [19].

• when the angular velocity is considered as null (|θ̇| ≤ η) and |fre| is lower than or equal to
µ0, the pendulum is in a stick phase. The pendulum is in a static state since the friction term
perfectly balances the restoring force (f0(θ̇) = fre in Eq. (4) leads to θ̈ = θ̇ = 0);

• when the angular velocity is zero and |fre| is larger than µ0, the pendulum passes through a
transition from stick (or slip) to slip phase.

4.2 Time integration simulations

Time integrations are first used to obtain frequency responses of the parametric pendulum. For
this, discrete forward and backward frequency sweeps are performed using constant frequency
steps. For each step, the initial conditions are chosen equal to the final state of the previous
step, in order to manage the multivalued parts of the frequency response. Precisely, the initial
time angular displacement and velocity computed for step i + 1 (i ∈ N∗) are θi+1(0) = θi(te)
and θ̇i+1(0) = θ̇i(te) where te is the duration of step i. Moreover, te is chosen equal to an integer
number N of excitation periods (te = 2πN/Ω), in order to avoid discontinuities in the forcing
signal from one step to the next one. N is chosen large enough to reach the steady state at
each step, i.e. when the amplitude of the last 20 periods of the simulated signal has a standard
deviation lower than 0.2% of the average amplitude computed for all these periods. For each of
the 20 periods, the aforementioned amplitude corresponds to the first harmonic amplitude of the
expansion in Fourier series of the signal computed using a synchronous demodulation method
(see [10] for example).

To obtain the frequency response of a parametric pendulum without dry friction, the initial
conditions of the very first step θ1(0) and θ̇1(0) can be set to zero since the upper branch of non
trivial solutions is necessarily reached in the unstable frequency range of the trivial solutions. For
a parametric pendulum including dry friction, trivial and non trivial solutions are disconnected.
Therefore, two sets of initial conditions are used to follow each group of solutions.

To jump on the stable non trivial solution branch of the system, the initial conditions are set
such as the first step of time integration for the forward frequency sweep is computed at Ω = ω0

using a zero initial velocity θ̇1(0) = 0 and an initial angular displacement θ1(0) equals to the
maximum theoretical value of the non trivial solutions computed with Eq. (13) at ω0. Notice
that the initial displacement must sometimes be adjusted around the computed value to initiate
the motion in the basin of attraction of the stable non trivial solution branch of the system (see
Figure 5 for example). The next steps of the forward sweep are computed as mentioned earlier.
Then, a backward frequency sweep is computed from the same initial frequency step (Ω = ω0)
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and the results of both forward and backward sweeps are merged together to obtain the entire
non trivial solution branch of the system.

To investigate the existence and the stability of the trivial solutions, a frequency sweep is
performed using the same initial conditions for each step i, starting from the lowest or highest
studied frequency. The initial velocity is set to zero (θ̇i(0) = 0) and the value of the initial angular
displacement θi(0) is set small enough to ensure that the system starts from a position slightly
greater than the boundaries of the dead-zone (i.e. with |fre| = µ0 + ε, where ε is a small positive
parameter). Since the trivial solutions are assumed to be always stable, the system should fall in
the dead-zone on the entire frequency band when excited in these conditions.

4.3 Results

The results of the time integration simulations used to validate the analytical solutions and
investigate the trivial solutions existence are presented in Figure 4. These results are also useful
to assess the stability of both trivial and non trivial solutions, since time integration simulations
only compute the stable solutions of the system.

(a) (b)

(c) (d)

Fig. 4 First harmonic amplitude of the parametric pendulum computed using time integration simulations (cir-
cles) and compared to solutions of Eq. (13) (plain and dashed lines) for (a) δ̃ = 0.07, µ1 = 0.1 and µ0 = 0,
(b) δ̃ = 0.07, µ1 = 0.1 and µ0 = 0.0024, (c) δ̃ = 0.1, µ1 = 0 and µ0 = 0.1225 and (d) δ̃ = 0.26, µ1 = 0 and
µ0 = 0.4899. For all cases, ω0 = 1 and γ̃ = 1/6.
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Figure 4 shows that the solutions computed with the MVA (plain lines) and time integration
simulations (circles) are very similar. Without dry friction (Fig. 4(a)), the trivial solutions are
unstable between the two bifurcation points with the non trivial solutions. At the top of non
trivial solution branches, the MVA predicts the existence of solutions a little bit higher in ampli-
tude than time integration. This is due to the fact that only one harmonic is considered in the
MVA computation. A calculation with two harmonics could be used to improve the accuracy of
the results either by analytical computations as in [1] or using an asymptotic numerical method
combined with harmonic balance as in [14] for example. This is left for future contributions.

Figures 4(b) and 4(c) present two cases with dry friction. The time integration simulations
not only reveal that the trivial solutions always exist in this case but also that they are always
stable. Indeed, even when perturbed, trivial solution persists for the entire frequency band.

Figure 4(d) presents a case with large dry friction coefficient and forcing amplitude. For this
particular case, the isola does not cross the backbone curve. Compared to the time integration
solutions, the MVA predicts well the non trivial solution amplitude close to the backbone but
is less accurate far from the conservative solutions. However, both method predict that the non
trivial solutions are disconnected form the backbone curve of the pendulum.

It is noteworthy that the amplitude of the trivial solutions presented in Figure 4(b), (c) and
(d) always equals zero since it corresponds to the amplitude of the first harmonic of the simulated
signal. When looking at the time signal of these simulations, the constant angular displacement
reached when the velocity comes to zero is not necessarily null but is included in the dead-zone
which depends on the value of the dry friction coefficient.

5 Effects of initial conditions on the basins of attraction of solutions

As observed in Figures 4(b), (c) and (d), trivial solutions of a system including dry friction are
stable on the whole frequency band. To jump on a stable periodic solution branch, the critical
forcing amplitude of the system must be overcome and initial conditions must be chosen carefully.
Thus, a panel of initial conditions is tested using time integration simulations to obtain the basins
of attraction of trivial and non trivial solutions. In this paper, it is chosen to keep the initial
velocity such as θ̇(0) = 0 rad/s, to vary the initial displacement such as θ(0) ∈ [0, 2.2] rad and to
test these initial conditions on a frequency band around the resonance of the system. We make
this choice since in real experiments, initial conditions in term of non zero displacement with
zero initial velocity are easy to be prescribed. It is worth mentioning that the maximal initial
displacement corresponds to a maximal physical angle equal to 126◦. This condition does not
fulfil the small angle assumption made in Section 2. However, results are still relevant for the
case of the Mathieu-Duffing problem given by Eq. (5), but are not computed for higher values
of initial displacement since time integration simulations can diverge when θ(0) is close to 180◦.

The way the forcing excites the system at t = 0 also affects the way the system answers
to this excitation. In other words, the initial displacement of the excitation signal (bottom or
top position of u(0) in Figure 1 for example) has an effect on the transient displacement of
the oscillator and thus, on its steady state. Therefore, the initial phase between u(t) and θ(t)
can change the basins of attraction of the system. In order to evaluate the effect of this initial
phase, a term φ0 is added to the excitation signal such as the parametric term in Eq. (5) reads
δ cos(2Ωt + φ0). Several values of this phase are tested for one forcing amplitude δ̃ = 0.07 and
one viscous damping coefficient µ1 = 0.1. For the dry friction coefficient, two cases are studied:
a case without dry friction (µ0 = 0), denoted as NDF and a case with dry friction (µ0 = 0.0024),
denoted as DF. These two cases correspond to time integrations presented in Figures 4(a) and
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4(b) respectively. The basins of attraction obtained with time integration simulations and drawn
in the (θ(0), Ω/ω0) plane are presented in Figure 5.

(a)

φ0 = 0

a (Fig. 4(a))

���

a (Fig. 4(b))

?

(b)

φ0 = π/4

(c)

φ0 = π/3

(d)

φ0 = π/2

(e)

φ0 = 3π/4

(f)

φ0 = π

(g)

φ0 = 5π/4

(h)

φ0 = 3π/2

(i)

φ0 = 7π/4

Fig. 5 Basins of attraction for non trivial solutions of Eq. (13), in the NDF case (µ0 = 0, light and dark gray)
and DF case (µ0 = 0.0024, dark gray), with δ̃ = 0.07 and µ1 = 0.1 and for different initial phases: (a) φ0 = 0,
(b) φ0 = π/4 , (c) φ0 = π/3, (d) φ0 = π/2, (e) φ0 = 3π/4, (f) φ0 = π, (g) φ0 = 5π/4, (h) φ0 = 3π/2 and (i)
φ0 = 7π/4. Initial angular displacement and velocity are arbitrarily chosen such as θ(0) ∈ [0, 2.2] rad and θ̇(0) = 0
rad/s. Coloured circles correspond to time integration solutions presented in Figures 4(a) (red) and 4(b) (orange).

The steady state solutions presented in Figures 4(a) and (b), corresponding to the NDF (red)
and DF (orange) cases, are also plotted in Figure 5. Remark that these solutions do not depend
on φ0 and are thus identical on all the nine plots of Figure 5. For the DF case, the dark gray
regions are the basins of attraction of non trivial solutions, represented by orange circles with a
non zero amplitude. For the NDF case, the unions of dark and light gray regions are the basins of
attraction of non trivial solutions, represented by red circles with a non zero amplitude. Figures
5(a) to (i) shows the effect of several initial phase φ0.

The first remark about these results is that the basins of attraction for the non trivial solutions
of the DF case are always included in those those of the NDF case. For the latter, the trivial
solutions are always unstable between the two bifurcation points surrounding Ω = ω0. Thus, the
upper branch of non trivial solutions are systematically reached when the system is perturbed in
this frequency range. For the DF case, trivial solutions are always stable. In this case and for a
given forcing amplitude, the initial angular displacement must exceed a threshold value to allow
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the system to jump on the branch of stable non trivial solutions. According to Figures 5(a) to
(i), this threshold varies with the value of the initial phase φ0.

Figure 5 also shows that the basins of attraction for non trivial solutions can be greatly
reduced when φ0 varies. For both DF and NDF cases, the largest basin of attraction for non
trivial solutions occurs for φ0 = π/2. In these conditions, the system can jump on the upper
branch of non trivial solutions for any frequency as long as the solution exists. The smallest
basin of attraction for non trivial solutions occurs at φ0 = 5π/4. Obviously, the evolution of the
basins of attraction with the initial phase is repeated when φ0 < 0 or φ0 ≥ 2π. These results
show that the initial displacement and phase must be carefully chosen to ensure oscillations of a
system including dry friction.

6 Estimation of the critical forcing amplitude and angular frequency

Results of Section 3 can be used to compute the amplitude and phase of the motion of a para-
metric nonlinear oscillator for given parameters. However, it remains difficult to know what is
the critical forcing amplitude δ̃cr needed to ensure the motion of the pendulum when dry friction
is added to the system. The following section proposes to use the approach based on an energy
principle method and presented in [6] to estimate this forcing threshold.

6.1 Analysis based on the energy principle

The aim of the method proposed in [6] is to find the existence of periodic solutions branches of a
forced/damped system in the vicinity of a branch of free solution of the associated conservative
system. For this, we first consider the quantity

Q[θ, θ̇, τ ] = − δ cos 2Ωτ θ − µ1 θ̇ − f0(θ̇) (23)

that gathers the dissipation and forcing terms of Eq. (5), as a perturbation of the conservative
part of the equation, whose solution is denoted by θc(t) (an analytical expression of θc is given
by Eq. (17)). For any T -periodic solution θp(t) of Eq. (5) (obtained in the steady state), the work
W of the perturbation Q over one period of the motion is necessarily null [16,6]:

W =

∫ T

0

θ̇p(τ)Q[θp(τ), θ̇p(τ), τ ] dτ = 0. (24)

This comes from Eq. (5) in which the work of the conservative part is by definition zero over one
period T of the motion2. This result is denoted in [6] as “energy principle”.

It is shown in [6] that, if we consider Q as a small perturbation of the conservative part of
the equation of motion (5), the leading-order term of a Taylor expansion of Eq. (24) centred at
θc corresponds to the Melnikov function defined as

M1:2(t) =

∫ T

0

θ̇c(τ + t)Q[θc(τ + t), θ̇c(τ + t), τ ] dτ. (25)

This function corresponds to the energy injected and dissipated along one period of the free
conservative solution θc, due to forcing and damping forces. The Melnikov function exponent 1:2

2 To prove this, Eq. (5) must be multiplied by θ̇. Then, the conservative part is equal to the time derivative of
the Hamiltonian H[θ, θ̇] = θ̇2/2 + ω2

0θ
2/2 − γθ4/4, whose integral over one period gives H[θ(T + t), θ̇(T + t)] −

H[θ(t), θ̇(t)] = 0 since θ(t+ T ) = θ(t). The remaining of the equation gives W = 0.
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indicates that the integral is computed along 1 period (T = 2π/Ω) of the conservative solution
θc perturbed at the order 2 to obtain a subharmonic resonance of the pendulum in the case of a
parametric excitation. According to Eq. (23), the Melnikov function is rewritten such as

M1:2(t) = w1:2(δ, t)−R(µ1, µ0), (26)

where the first term corresponds to the work done by the parametric forcing along one period of
the conservative solution and depends on the forcing amplitude such as

w1:2(δ, t) = − δ
∫ T

0

θ̇c(τ + t) cos 2Ωτ θc(τ + t) dτ. (27)

The second term of Eq. (26) corresponds to the dissipated energy along one period of the con-
servative solution due to viscous and dry friction and reads

R(µ1, µ0) =

∫ T

0

θ̇c(τ)
(
µ1 θ̇c(τ) + f0(θ̇c(τ))

)
dτ. (28)

This resistance term is independent of t since the friction terms do not explicitly depend on
time. After calculations using the analytical solution θc of Eqs (17) and (18), Eqs. (27) and (28)
become {

w1:2(δ, t) = W 1:2(δ) sin 2Ωt

R(µ1, µ0) = −πµ1Ωa
2
c − 4µ0ac

(29a)

(29b)

with

W 1:2(δ) =
π

2
δa2c . (30)

The existence of solutions for the damped system forced at the frequency 2Ω with an ampli-
tude δ can be stated according to Proposition 4.1 given in [6] and recalled here.

• (P1): If |W 1:2(δ)| < |R(µ1, µ0)|, no periodic solution persist.
• (P2): If |W 1:2(δ)| = |R(µ1, µ0)|, one periodic solution exists.
• (P3): If |W 1:2(δ)| > |R(µ1, µ0)|, two periodic solutions exist.

This proposition uses the balance of injected energy and dissipated energy to know if none, one or
two periodic solutions exist for a given frequency. Examples of (P1), (P2) and (P3) are presented
in Figure 6 for a parametric oscillator with no dry friction and excited with a constant forcing
displacement (δ = −4Ω2δ̃). Figure 6(a) is computed using Equations (29b) and (30) and Figure
6(b) is computed using Eq. (18) for the backbone curve ac and Eq. (19) for the amplitude a of
the parametric oscillator.

The curves representing the dissipated energy |R| for µ1 = 0.1 (black line) and the injected
energy |W 1:2| for δ̃1 = 0.015 (yellow line) are plotted in Figure 6(a). It is noteworthy that these
two curves never cross each other, which means that the injected energy is not sufficient enough
to overcome the energy dissipated due to damping. Therefore, no periodic solution corresponding
to δ̃1 = 0.015 is obtained in Figure 6(b). When increasing the forcing amplitude to δ̃2 = 0.05,
which is the critical value computed using Eq. (21), the curves |R| and |W 1:2| (magenta line)
cross each other at Ω = ω0. This forcing amplitude correspond to the birth of the resonance
represented by the magenta triangle in Figure 6(b). Then, the forced response of the system is
plotted for δ̃3 = 0.055 (green line) in Figure 6(b). For the excitation frequency represented by the
vertical black dashed line, no solution exist in this case. This can also be observed in Figure 6(a).
Indeed, at the corresponding frequency (dashed vertical black line), the green curve representing



Effect of dry friction on a parametric non linear oscillator 17

(a)

(b)

Fig. 6 Illustration of the method proposed in [6] and based on the energy principle. (a) Comparison between
dissipated energy when µ1 = 0.1 and µ0 = 0 (plain black line) and injected energy for δ̃1 = 0.015 (yellow line),
δ̃2 = 0.05 (magenta line), δ̃3 = 0.055 (green line), δ̃4 = 0.06 (red line) and δ̃5 = 0.07 (blue line). White and gray
regions correspond respectively to propositions (P1) and (P3). The black plain line corresponds to the proposition
(P2). (b) Corresponding forced responses of the system computed using the MVA. The dotted black line is the
backbone curve corresponding to the conservative solution. Coloured bullets, triangles and the vertical dashed
line are markers used to compared Figures (a) and (b).

the energy injected in the system by the forcing, does not cross, nor overcome the black plain
line representing the energy dissipated by the system damping. According to (P1), no periodic
solution exist at this frequency for these specific set of parameters. The forced response of the
system for δ̃4 = 0.06 (red line) is then plotted in Figure 6(b). For the same excitation frequency,
only one periodic solution exists represented by the red bullet. At the corresponding frequency
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in Figure 6(a) (dashed vertical black line), the red curve representing the energy injected in the
system by the forcing, crosses the black line representing the energy dissipated by the system
damping. According to (P2), only one periodic solution exists at this frequency for these specific
set of parameters. Finally, the forced response of the system is plotted for δ̃5 = 0.07 in Figure
6(b) (blue line). In this case, two periodic solutions exist at the studied excitation frequency
and are represented by blue bullets. In Figure 6(a), the blue curve is over the black line at this
frequency where two periodic solutions exist for these specific set of parameters according to
(P3).

6.2 Estimation of the isola birth

For a pendulum without dry friction, the critical forcing amplitude is given by Eq. (21) and
occurs at the critical frequency Ωcr = ω0 as presented in Section 3.3.3 and shown in Section 6.1.
However, for a system including dry friction, the birth of isola observed in Figure 3 does not
occur at ω0 anymore. Therefore, it is necessary to find not only the critical forcing amplitude, but
also at which critical frequency the birth of the isola occurs. With the assumption that the isola
emerges from a point located on the backbone curve and for a constant forcing displacement
excitation, it must exist a critical forcing amplitude δ̃Ω = δ̃cr which observes the proposition
(P2), ∣∣∣π

2
δ a2c

∣∣∣ =
∣∣∣−2π Ω2 δ̃Ω a2c

∣∣∣ =
∣∣−πµ1Ωa

2
c − 4µ0ac

∣∣ , (31)

at the critical angular frequency Ω = Ωcr. Using Eq. (18), the forcing amplitude δ̃Ω , needed to
obtain a single non trivial solution located on the backbone curve at Ω, reads

δ̃Ω =
µ1

2Ω
+

2µ0

πΩ2
√

4
3γ (ω2

0 −Ω2)
. (32)

According to Proposition 4.3 in [6], the existence of a unique solution of Eq. (32) for any Ω can
be detected when ∂δ̃Ω/∂Ω = 0 and ∂2δ̃Ω/∂Ω

2 > 0. Indeed, since δ̃Ω is a convex function for
Ω ∈ ]0, ω0[, the angular frequency found with the two aforementioned conditions corresponds
to the smallest value of δ̃Ω for a given set (µ0, µ1). This threshold value also corresponds to the
critical forcing amplitude δ̃cr which ensures that |W 1:2| and |R| are tangential. The condition on
the first order derivative gives

µ1

2
Ωcr(ω

2
0 −Ω2

cr)
3/2 =

2µ0

π

√
3γ

4
(3Ω2

cr − 2ω2
0), (33)

and is used to numerically compute the critical angular frequency Ωcr also ensuring the validity
of the condition on the second order derivative. Finally, the critical forcing amplitude δ̃cr is
computed injecting Ωcr in Eq. (32).

Some remarks on this approach are made here. Firstly, it is noteworthy that Ωcr is necessarily
smaller than ω0 (when γ̃ = 1/6) since no real value of ac exists for Ω > ω0. Moreover, ac = 0
when Ω = ω0. Since a = 0 is not a solution of Eq. (13) when µ0 6= 0, no intersection between non
trivial solutions and the backbone curve can occur at the natural angular frequency ω0 of the
system. According to Eq. (33), it is stated again that Ωcr = ω0 for a system without dry friction.
In this case, the critical forcing amplitude computed with Eq. (32) is the same as δ̃cr,(µ0=0)

presented in Section 3.3.3. For the special case µ1 = 0 and µ0 6= 0, the critical angular frequency
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does not depend on the value of the dry friction coefficient and is Ωcr =
√

2/3ω0 ' 0.817ω0. The
corresponding critical forcing amplitude reads

δ̃cr,(µ1=0) =
9µ0

√
γ̃

2πω2
0

. (34)

A second remark is about the assumption that the isola birth occurs on the backbone curve.
When the dry friction coefficient is not too large, Equations (33) and (32) give a good estimation
of the critical angular frequency and amplitude. However, when the dry coefficient is large, the
isola birth does not occur on the backbone curve as shown in Figures 3(c), (d) and 4(d). In this
case, the proposed approach gives a less accurate approximation of the critical forcing amplitude
and frequency.

6.3 Results

Cartographies of the critical forcing amplitude and angular frequency, respectively computed
using Equations (32) and (33), are presented in Figure 7 for γ̃ = 1/6 and ω0 = 1. These
cartographies are useful to quickly determine what are the excitation force and frequency to
obtain (or to avoid) a periodic motion for a parametric system including both dry and viscous
damping.

Figure 7(a) shows that the relation between the damping coefficients and the critical forcing
amplitude is roughly linear, with a greater influence for the dry friction coefficient. Since the
surface shown in Figure 7(a) seems close to a plan, it is proposed to fit it with a two variables
polynomial to obtain a simple analytical approximation of the critical forcing amplitude (see
Appendix D). Figure 7(b) presents the corresponding critical angular frequency which variates
between the two limits Ωcr,(µ0=0) = ω0 and Ωcr,(µ1=0) =

√
2/3ω0. The critical angular frequency

quickly decreases toward Ωcr,(µ1=0) when µ0 increases showing again a great influence of the dry
friction coefficient.

To further analyse the accuracy of the critical forcing amplitude and angular frequency esti-
mation, some examples, identified with coloured markers and number k, are picked up from the
cartographies of Figure 7. The corresponding damping parameters are given in Table 1. Figure

Table 1 Damping parameters used in examples presented in Figure 7.

k 1 2 3 4 5
µ0 0.0024 0 0.0245 0.2449 0.2449
µ1 0 0.05 0.1 0 0.1

8 presents illustrations of Propositions (P2) and (P3) and the corresponding MVA solutions for
these few examples. In Figure 8(a), the method described in Section 6.1 is illustrated for a sys-
tem including dry friction with the curves referred as |R4|, |R5| and |W 1:2

0 | where the latter is
computed with δ̃ = 0.25. The intersections between these resistance curves (|R|) and the curve
related to the forcing (|W 1:2|) are represented by squares. In Figure 8(b), these markers corre-
spond to the intersections between the non trivial solutions computed with the MVA and the
backbone curve of the pendulum (plain black line). According to the proposition presented in
Section 6.1, two solutions exist when |W 1:2| > |R| (see (P3)) and only one solution exists when
|W 1:2| = |R| (see (P2)). Thus, the estimated birth of an isola in Figure 8(b) occurs when |W 1:2|
and |R| are tangential in Figure 8(a). These cases are represented by coloured bullets (resp.
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(a)

k = 1

k = 2

k = 3

k = 4

k = 5

(b)

Fig. 7 Critical (a) forcing amplitude and (b) angular frequency as a function of µ1 and µ0. The horizontal gray

plane in Figure 7(b) corresponds to Ωcr =
√

2/3ω0. Coloured markers correspond to examples presented in
Figure 8 and denoted with the number k.

diamond) in Figure 8(a) for k = 2, 5 (resp. k = 1). As predicted in Section 6.2, the corresponding
critical angular frequency is included in the interval [

√
2/3ω0, ω0] represented by black dotted

vertical lines for every k. Corresponding critical forcing amplitudes are used to compute the
solutions of Eq. (13) which are plotted in Figure 8(b). For k = 1 (red diamond) and 2 (green
circle), the birth of the isola occurs on the backbone curve. For k = 3 (purple circle), a small
isola is tangential to the backbone when computed with the estimated critical forcing amplitude
and angular frequency. For large values of µ0, corresponding to k = 4 (blue circle) and 5 (yellow
circle), it is clear that the estimated critical forcing amplitude does not correspond to the birth of
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Fig. 8 (a) Energy principle illustrations using parameters drawn by coloured markers in Figure 7. |W 1:2
k | is the

maximum amplitude of the work done by the parametric forcing along one period of the pendulum conservative
solution and |Rk| is the resistance due to damping forces. |W 1:2

0 | is computed with δ̃ = 0.25. Bullet and diamond
markers correspond to the estimated birth of non trivial solutions computed with Equations (32) and (33). For
k = 2 and 5, dotted coloured lines correspond to |W 1:2

k (δ̃excr,k)|, where δ̃excr,k was manually tuned to obtain the

exact birth of solutions represented by stars. (b) Corresponding stable and unstable solutions (respectively plain
and dashed lines) computed using Eq. (13). Squares correspond to the intersections of the non trivial solutions
with the conservative ones also indicated by the intersection of |W 1:2

0 | with |R4| and |R5| in Figure 8(a).

the isola. Instead, the isola computed using the MVA is tangential to the backbone curve. This is
explained by the fact that the isola does not grow exactly around the backbone curve when µ0 is
large as seen in Figure 4(d). For k = 4 and 5, the exact critical forcing amplitude, denoted δ̃excr,k,
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is manually identified. The resulting curves |W 1:2
k (δ̃excr,k)| are plotted in dotted coloured lines in

Figure 8(a) and the corresponding isola birth are represented by stars in Figure 8(b). The exact
critical forcing amplitude values are compared to the estimated ones in Table 2 which also gives
the estimated and manually identified critical angular frequencies. The relative error between
the forcing amplitudes are approximately 4% for k = 4 and 6% for k = 5. Similar relative errors
are found between estimated and manually identified angular frequencies. Thus, for large values
of µ0, the proposed method does not give exactly the critical forcing amplitude and angular fre-
quency due to the shift of the non trivial solutions around the backbone curve. As an interesting
fact, the amplitudes at which isola emerges are almost the same when computed by the method
based on the energy principle (acr,k) and manually identified (aexcr,k). These values are also given
in Table 2 and the relative errors between them are less than 0.5%.

Table 2 Critical forcing amplitude and angular frequency estimated with Equations (32) and (33) and manually
identified for k = 4 and 5.

k δ̃cr,k δ̃excr,k Ωcr,k Ωexcr,k acr,k aexcr,k
4 0.1432 0.1377 0.8165 0.8493 1.631 1.633
5 0.2035 0.1921 0.8408 0.9017 1.530 1.525

7 Conclusion

This paper addresses the effect of dry friction on the dynamical behaviour of a parametric non
linear oscillator. The example of a parametrically excited pendulum including viscous and dry
friction is studied. The theoretical solutions of the system are derived using the harmonic balance
method. The stability of obtained non trivial solutions is studied using the method of varying
amplitude. Since the perturbation method used in this paper does not allow the computation of
trivial solutions for the case including dry friction, the existence and stability of the motionless
solutions of the system are studied using time integration simulations. To avoid the linearisation
of the dry friction term during these simulations, a switch model is used for the modelling.

When including dry friction, it was found that the trivial solutions of the system always
exist and are always stable. Non trivial solutions also exist but are isolated from the trivial
solutions compared to the case with no dry friction. The dry friction also has the effect to shift
the birth of these isola from the conservative solutions of the system. Thus, isola do not emerge
form the backbone curve and it is possible to obtain non trivial solutions which never cross the
backbone curve when the dry friction coefficient is very large. The effects of the system initial
conditions on the basins of attraction of the isolated non trivial solutions are investigated using
time integration simulations. It is found that the initial angular displacement impose to the
pendulum and its initial phase with the parametric excitation must be carefully chosen to obtain
the largest basin of attraction of the isolated solutions. Moreover, the initial angular displacement
must also exceed a threshold value to initiate the motion of the pendulum due to the stability
of trivial solutions. Finally, a method to estimate the critical forcing amplitude needed to jump
on the non trivial solutions stable branch is proposed using an approach based on the energy
principle. The corresponding critical angular frequency is also derived from this approach. The
proposed method gives a relevant estimation of these force and frequency for small values of the
dry friction coefficient. When the latter are large, the computed critical values are not exact due
to the shift of the non trivial solutions from the conservative solution of the system.
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Future works must address the correction of the energy principle approach to better estimate
the critical forcing amplitude and angular frequency. The manner to precisely impose initial
conditions to a parametric pendulum must also be further investigated.

A Solutions of the equation of motion using the method of multiple scales

To use the method of multiple scales (MMS), Eq. (5) is rewritten using ε as a bookkeeping parameter to identify
small terms such as

θ̈ + εµ1θ̇ + εf0(θ̇) + [ω2
0 + εδ cos 2Ωt]θ − εγθ3 = 0. (35)

The solutions of Eq. (35) are calculated using the expansion

θ(t, ε) = θ0(T0, T1) + εθ1(T0, T1) +O(ε2), (36)

with T0 = t and T1 = εt fast and slow independent time scale respectively. Substituting this expansion into Eq.
(35) and equating to zero the coefficients of orders ε0 and ε1 yieldsD2

0θ0 + ω2
0θ0 = 0

D2
0θ1 + ω2

0θ1 = −2D0D1θ0 − µ1D0θ0 − f0(D0θ0)− δ cos 2Ωtθ0 + γθ30

(37)

with Din = ∂i/∂T in partial differential operators. Using i =
√
−1 and ¯ denoting the complex conjugate, the

solution of the first equation of the system (37) can be written in the form

θ0 = A(T1)ei ω0 T0 + Ā(T1)e−i ω0 T0 . (38)

Substituting this solution in the second equation of the System (37) gives

D2
0 θ1 + ω2

0 θ1 =
[
−2iω0D1A− iω0µ1 A+ 3γ A2Ā

]
ei ω0 T0

− δ
2

[
Aei(ω0+2Ω)T0 + Āe−i(ω0−2Ω)T0

]
+ γ A3 ei3ω0T0 + cc − f0(iω0Aeiω0T0 − iω0Āe−iω0T0 )

(39)

where cc denotes complex conjugate terms.
In order to investigate the primary parametric resonance of the system, the case Ω ≈ ω0 is studied introducing

a detuning parameter σ such as

Ω = ω0 + ε
σ

2
. (40)

Eq. (39) becomes

D2
0θ1 + ω2

0 θ1 =
[
−2iω0D1A− iω0µ1 A+ 3γ A2Ā

]
ei ω0 T0 − δ

2

[
Aei3ω0T0 + Āeiω0T0

]
eiσT1

+γ A3 ei3ω0T0 + cc − f0(iω0Aeiω0T0 − iω0Āe−iω0T0 )
(41)

At this stage, the method of multiple scales has the advantage to clearly reveal the resonant terms (depending on
ei ω0 T0 ) responsible for secular terms in the solutions of θ1. To capture all the resonant terms, the dry friction
function can be expanded in a Fourier series

f0(iω0 Ae
iω0T0 − iω0 Āe

−iω0T0 ) =

+∞∑
−∞

cn e
inω0T0 (42)

with cn the Fourier coefficients such as

cn =
ω0

2π

∫ 2π/ω0

0
f0(iω0Ae

iω0T0 − iω0Āe
−iω0T0 ) e−inω0T0dT0. (43)

Thus, the only resonant term of the Fourier series (42) is c1 eiω0T0 .
To eliminate secular terms, the resonant terms in Eq. (41) must vanish giving the solvability condition

−2iω0D1A− iω0µ1 A+ 3γ A2Ā−
δ

2
Ā eiσT1 − c1 = 0 (44)
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Then, the polar form A = 1
2
amseib is introduced to be able to separate real and imaginary parts of the solvability

condition. This yields D1A = 1
2

(a′ms + iamsb′)eib where ′ denotes the derivative with respect to T1. A new
parameter is also introduced such as φ = ω0T0 + b leading to the new form θ0 = ams cosφ. Using these notations
and considering the case ams > 0, the dry friction term reads

c1 =
1

2π

∫ 2π

0
f0(−amsω0 sinφ) e−iφ eib dφ =

2iµ0

π
eib (45)

and the solvability condition becomes[
−iω0 (a′ms + iamsb

′)−
iω0µ1

2
ams +

3γ

8
a3ms −

δ

4
ams e

i2(σ
2
T1−b) −

2iµ0

π

]
eib = 0. (46)

The system of modulation equations is obtained separating real and imaginary parts of Eq. (46) and reads
a′ms = −µ1

2
ams − δ

4ω0
ams sin 2(σ

2
T1 − b)− 2µ0

πω0

amsb′ = − 3γ
8ω0

a3ms + δ
4ω0

ams cos(2(σ
2
T1 − b))

(47)

Using ψ = σ
2
T1 − b to make the system autonomous (no explicit term in T1), the modulation equations become


a′ms = −µ1

2
ams − 2µ0

πω0
− δ

4ω0
ams sin 2ψ

amsψ′ = σ
2
ams + 3γ

8ω0
a3ms − δ

4ω0
ams cos 2ψ

(48)

To find the fixed points of the system, the amplitude and phase are searched such as a′ms = ψ′ = 0. Thus, the
system (48) gives (

δ

4ω0

)2

a2ms =

(
µ1

2
ams +

2µ0

πω0

)2

+

(
σ

2
ams +

3γ

8ω0
a3ms

)2

(49)

Developing this equation gives a 6th degree polynomial equation such as

9

16
γ2 a6ms +

3

2
γ ω0σ a

4
ms +

(
ω2
0σ

2 + ω2
0µ

2
1 −

1

4
δ2
)
a2ms +

8

π
ω0µ0µ1 ams +

16

π2
µ20 = 0. (50)

For ψ the solution reads

tan(2ψ) = −
ω0 µ1 ams + 4

π
µ0

ω0σ ams + 3
4
γ a3ms

. (51)

The stability of non trivial solutions is computed using the Jacobian of the modulation equations (48) which
reads

J(ams, ψ) =

 ∂a′ms∂ams

∂a′ms
∂ψ

∂ψ′

∂ams

∂ψ′

∂ψ

 =

−µ1
2
− δ

4ω0
sin 2ψ − δ

2ω0
ams cos 2ψ

3γ
4ω0

ams
δ

2ω0
sin 2ψ

 (52)

The condition for stability of solutions is given by the real part of the Jacobian eigenvalues λ(ω). When Re(λ(ω)) <
0 solutions are stable and unstable otherwise.

Solutions obtained using the method of multiple scales are compared to those computed with the method of
varying amplitude presented in Section 3.1 for the special case µ0 = 0. To evaluate the precision of both methods,
the asymptotic numerical method (ANM) using a harmonic balance method with eleven harmonics implemented in
the Manlab code is used as reference [14]. Results are computed for a constant forcing displacement (δ = −4Ω2δ̃)
and a constant forcing acceleration (δ = δ̃a) defined to have the same amplitude at Ω = 1 and for γ both positive
and negative. The amplitudes of the first harmonic for MVA and ANM and of the first expansion term for MMS
are plotted in Figure 9. It has been verified that the amplitude of the first harmonic for the ANM is similar to
the amplitude norm computed using the eleven harmonics.

The first point about these results is that the MVA gives more accurate solutions than MMS. The MVA gives
globally good results compared to the ANM solutions except in the case of the constant forcing acceleration (see
Fig. 9(b)) and a softening behaviour (γ = 1/6). In this case, the non trivial solutions predicted by the MVA
have no low frequency bound unlike for the ANM solutions. Moreover, the stability of the higher branch of the
solutions is not well predicted by the MVA compared to the ANM solutions.
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(a)

(b)

Fig. 9 Comparison between the method of multiple scales (blue), method of varying amplitude (black) and
asymptotic numerical method using harmonic balance method (red) for (a) a constant forcing displacement
(δ = −0.28Ω2) and (b) a constant forcing acceleration (δ = −0.28). The softening behaviour (tilt toward low
frequencies) is obtained for γ = 1/6 and the hardening behaviour (tilt toward high frequencies) for γ = −1/6.
Other parameters are µ1 = 0.1, µ0 = 0, ω0 = 1. Plain and dashed or dotted curves respectively correspond to
stable and unstable solutions.

The second point about these results is that the form of the forcing amplitude (constant displacement or
acceleration) modifies the behaviour of the system. Indeed, for a softening behaviour (γ = 1/6), a low frequency
bound is predicted by analytical methods for non trivial solutions when a constant forcing displacement is applied
but not for a constant forcing acceleration. On the contrary, for a hardening behaviour (γ = −1/6), a high
frequency bound is predicted by the ANM and the MVA when a constant forcing acceleration is applied. In this
case, the MMS failed to predict this solution bound as presented in [1]. This justifies the choice of the MVA in
this article instead of MMS.

B Rewriting of the governing equation with three dependent parameters

In order to reduce the number of dependent parameters in the equation of motion, Eq. (5) is rewritten using the
following variables

θ̂ =
√
γ̃θ, t̂ = ω0t, (53)

and parameters

Ω̂ =
Ω

ω0
, µ̂1 =

µ1

ω0
, µ̂0 =

µ0
√
γ̃

ω2
0

(54)

and reads
¨̂
θ + µ̂1

˙̂
θ + f̂0(

˙̂
θ) + (1− 4Ω̂2δ̃ cos 2Ω̂t̂)θ̂ − θ̂3 = 0, (55)
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with f̂0(
˙̂
θ) equals f0(

˙̂
θ) as defined in Eq. (3) substituting µ0 with µ̂0. Thus, solutions of Eq. (55) depend on the

three parameters δ̃, µ̂0 and µ̂1 only.

C Details on the MVA developments

The derivatives of the expansion presented in Section 3.1 read
θ̇ = ȧ cosΦ− a(Ω + β̇) sinΦ

θ̈ = (ä− a(Ω + β̇)2) cosΦ− (2ȧ(Ω + β̇) + aβ̈) sinΦ

(56)

and non linear and parametric terms of Eq. (5) read
θ3 = 1

4
a3(3 cosΦ+ cos 3Φ)

cos(2Ωt)θ = 1
2
a[cos 2β(cosΦ+ cos 3Φ) + sin 2β(sinΦ+ sin 3Φ)]

(57)

D Analytical estimation of the critical forcing amplitude

The critical forcing amplitude map computed in Section 6.3 and presented in Figure 7(a) is fitted using a regression
with an order 4 polynomial in µ0 and 1 in µ1.

δ̃polcr (µ1, µ0) = c10 µ1 + c01 µ0 + c11 µ1 µ0 + c02 µ
2
0 + c12 µ1 µ

2
0 + c03 µ

3
0 + c13 µ1 µ

3
0 + c04 µ

4
0 (58)

The computed coefficient of determination is R2 = 0.9999 and the final root mean square error is RMSE =
0.0009204. The coefficients of the polynomial are given in Table 3. To evaluate the accuracy of the polynomial,

Table 3 Coefficients of the polynomial fitting the critical forcing amplitude computed in Section 6.3.

c10 c01 c11 c02 c12 c03 c13 c04

0.5027 0.601 2.757 -0.3691 -21.78 2.571 51.08 -5.498

the relative error between the critical forcing amplitude presented in Figure 7(a) and the values obtained with Eq.
(58) is given in Figure 10. The polynomial described by Eq. (58) and Table 3 gives an acceptable approximation of
the critical forcing amplitude since the relative error computed in Figure 10 is smaller than 8% for all considered
values of µ1 and µ0. Notice that the relative error is not computed for µ1 = µ0 = 0 since δ̃cr equals zero for these

parameters. Since Polynomial (58) has no constant term, δ̃polcr also equals zero for these set of parameters.
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Fig. 10 Relative error between the critical forcing amplitude computed in Section 6.3 and approximated with
the polynomial (58) as a function of µ1 and µ0.
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