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Summary. This study proposes to investigate the effects of dry friction on the behaviour of a parametrically excited nonlinear oscillator
using a pendulum as example. A harmonic balance method and time integration simulations are used to respectively compute and
validate the solutions of the problem and their stability. The effects of dry friction on the behaviour of the system are discussed.

Context

The parametric resonance phenomenon comes from the excitation of a dynamical system through the modulation of one
of its parameter and can be simply described by the Mathieu’s equation [1]. This phenomenon has been widely used to
enhance the dynamical behaviour of systems for energy harvesting or parametric amplification [2, 3]. Usually it occurs
for a forcing frequency different from the resonance of the excited system and results in infinite amplitude of oscillation
if no non linearities are present. The latter are thus necessary to stabilize the system motion and obtain a finite amplitude
of oscillation. An example of such a system is given by the Mathieu-Duffing’s equation. When adding viscous damping,
a forcing amplitude threshold depending on the damping coefficient must be overcome to initiate parametric oscillations.
Although dry friction is also a common source of damping, few studies deal with this kind of problems [4]. The present
study proposes to investigate the effects of dry friction on the behaviour of a parametrically excited nonlinear oscillator.
The governing equation is given and the example of the pendulum is used as illustration. A harmonic balance method
is used to compute theoretical solutions of the problem. Time integration simulations are compared to these solutions
to validate the model and its stability. The effects of dry friction on the behaviour of the pendulum and on its forcing
amplitude threshold are discussed.

Theoretical motion of a parametric nonlinear oscillator with dry friction

Governing equation
The Mathieu-Duffing’s equation including viscous and dry friction damping terms reads

θ̈ + µ1θ̇ + f0(θ̇) + (ω2
0 − δ 4Ω2 cos(2Ωt)) θ − γ θ3 = 0. (1)

This equation is the governing equation of a pendulum parametrically excited with a vertical displacement. In this case, θ
is the angular displacement of the pendulum and •̇ denotes a derivative relative to time t. ω2

0 = g/l is the resonance angular
frequency of the system with g the gravitational acceleration and l the length of the pendulum. δ and 2Ω are respectively
the amplitude and the angular frequency of the forcing. A factor 2 is joined to Ω since the parametric resonance occurs
at half of the excitation frequency in the case of the pendulum. The factor 4Ω2 appears due to the double derivative
relative to time of the forcing displacement term. The nonlinear coefficient γ comes from the linearisation of the sin term
describing the motion of the pendulum. The viscous damping coefficient is µ1 and the dry friction term is described by
the non-smooth function f0(θ̇) = µ0sign(θ̇) if θ̇ 6= 0 and f0(θ̇) ∈ [−µ0, µ0] if θ̇ = 0, with µ0 the dry friction coefficient.

Harmonic balance approach
The harmonic balance method (HBM) is used to find the solutions of Equation (1) using a Fourier series expansion of the
angular displacement with only one harmonic :

θ(t) = a(t) cos(Ωt+ β(t)) (2)

Substituting (2) in (1), considering the expansion of the dry friction function as a one term Fourier series and equating
each harmonics in Ω and 3Ω with zero results in a system of four equations named S. Equating all time derivatives of
S with zero and neglecting harmonics higher than the first order, one founds that the amplitude of fixed points can be
obtained solving the following equation :
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The amplitude a is numerically computed to find the non trivial solutions of the pendulum motion. Then, the phase β of
the angular displacement is computed such as
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It is worth mentioning that the trivial solutions a = 0 cannot be found with Equation (3) even if these solutions obviously
exist according to experiments. The stability of solutions is computed using the method of varying amplitude [5]. The
Jacobian J of the system S is first calculated. Then, the stability of the solutions is evaluated using the sign of its trace
and determinant. Assuming µ1 > 0, the trace of J is found to be negative. Thus, the condition for stability is achieved
when the determinant of J is positive.
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Time integration approach
Time integration simulations of Equation (1) are used to (i) validate the solutions found using the HBM, (ii) study the
trivial solutions of the system when µ0 6= 0 and (iii) validate the solution stability computed with the method of varying
amplitude. Simulations are computed using the ode45 solver from Matlab (MathWorks, Natick, USA). To avoid numerical
issues due to the discontinuities brought by the dry friction term, the switch model proposed in [6] is used. Thus, the dry
friction function is not regularized but replaced by a function including a transition phase in addition to the usual stick
and slip phases. Backward and forward frequency sweeps are done to obtain the trivial and periodic solutions.

Results

Figure 1 presents solutions of Equation (1) computed with the HBM and time integration simulations. The black dot-

Figure 1: Solutions of Equation (1) computed with the harmonic balance method (lines) and time integration simulations (circle
markers) for ω0 = 1, γ = 1/6, δ = 0.07, µ1 = 0.1 and µ0 = 0 (red) or µ0 = 0.015 (blue). Plain and dashed lines correspond
respectively to stable and unstable solutions. The black dotted line is the conservative solution of the system (δ = 0, µ1 = 0, µ0 = 0).
The blue cross corresponds to the birth of the isola.

ted line is the backbone curve of the system computed using the HBM. Red lines are the well-known solutions of the
parametric pendulum without dry friction whose behaviour is softening. The trivial solution is unstable between the two
bifurcation points of the periodic orbits. In this region, the pendulum necessarily jumps on the stable non trivial solution
branch when the forcing amplitude is larger than the critical value given by the HBM δcr = µ1/2Ω. Blue lines are the
solutions of the parametric pendulum with dry friction. In this case, non trivial solutions are disconnected from the trivial
ones which are always stable according to time integration simulations. According to HBM, the birth of the resulting isola
does not occur from a zero amplitude but from a point represented by the blue cross in Figure 1. It is worth mentioning
that the HBM does not predict this birth point onto but nearby the backbone curve. The critical forcing amplitude needed
to give birth to the isola depends on both the viscous and dry friction coefficient. However, the HBM does not allow the
computation of an analytical value for this threshold.

Conclusion and perspectives

A Mathieu-Duffing’s equation including a dry friction term was investigated to describe the dynamical behaviour of a
parametrically excited oscillator. The example of the pendulum was used to illustrate this problem. Solutions and their
stability were respectively computed using a harmonic balance approach and the method of varying amplitude. Results
were validated using time integration simulations. The dry friction gave birth to isolated solutions. To further investigate
these solutions, the energy principle method detailed in [7] will be used to analytically derive the critical forcing amplitude
needed to give birth to the isola. The influence of other parameters like initial conditions on the existence of non trivial
solutions will be also discussed.
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