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Recursive multiscale homogenization
of multiphysics behavior of fuzzy fiber
composites reinforced by hollow
carbon nanotubes

Qiang Chen , Fodil Meraghni and George Chatzigeorgiou

Abstract
Fuzzy fibers are fibers enhanced in terms of multiphysics properties with radially oriented carbon nanotubes grown on
their surface through the chemical deposition process. For the first time, this paper attempts to present two generalized
zeroth-order asymptotic homogenization schemes aimed at identifying the homogenized and local response of fuzzy
fiber-reinforced composites, accounting for both multiphysics piezoelectric effect and cylindrically orthotropic material
behavior. The unit cell problems are solved using the multiphysics finite-volume and the multiphysics finite-element tech-
niques, respectively. While the former approach is based on the strong form solution of the equilibrium and conserva-
tion equations in an averaged sense in the discretized domain, the latter is based on the minimization of the total
potential energy over the entire unit cell. A recursive multiscale analysis algorithm is developed wherein homogenized
moduli (or local fields) obtained from the homogenization (or localization) analysis at one scale are utilized in the calcula-
tion of homogenized moduli (or local fields) at the next scale. Numerical examples indicate that good agreement of the
homogenized properties and local field distributions generated by the two approaches is observed hence confirming the
accuracy of the new homogenization methods for fuzzy fiber composites with multiphysics behaviors.

Keywords
Fuzzy fiber composites, homogenization, piezoelectricity, multiphysics finite-volume method, multiphysics finite-element
method

1. Introduction

Modern engineering applications require the develop-
ment of composite materials with advanced mechani-
cal, thermal, electric, etc., properties that provide high
performances when employed for structural and/or
functional components. Carbon nanotubes (CNTs)
have shown excellent characteristics when introduced
into composite structures (Aniskevich and Starkova,
2021; Ay and Tanoğlu, 2020; De Luca et al., 2020;
Karger-Kocsis et al., 2020; Qian et al., 2010; Song
et al., 2012). They are probably the strongest and stiff-
est materials that have been discovered with regard to
the tensile strength and modulus. In a comparatively
new type of ‘‘fuzzy’’ fiber composite materials, the
CNTs are brought in by grafting and depositing on the
fiber surfaces through the chemical vapor deposition,
toward developing a new generation of composites with
enhanced interfacial strength and stiffness, as shown in
scanning electron microscopy (SEM) image (Figure 1),
by Li et al. (2015).

The potential advantages obtained from the use of
composites with enhanced fibers have fostered a tre-
mendous interest in understanding the mechanical,
thermal, and electric properties of such composites
(Aravand et al., 2016; Aziz et al., 2015). Not only many
experiments have been conducted in the literature in an
effort of improving interphase behavior through fuzzy
fiber technology (Aziz et al., 2015; Li et al., 2015; Qian
et al., 2010; Yildiz et al., 2020), but also a few theoreti-
cal models are available to understand the micro/nano-
mechanics behaviors of fuzzy fiber composites, namely
elastic (Chatzigeorgiou et al., 2011, 2012; Lurie et al.,
2018; Rao et al., 2021); elastic-plastic (Chatzigeorgiou
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et al., 2020; Chen et al., 2021); thermoelastic
(Kundalwal and Ray, 2014); electromechanical (Dhala
and Ray, 2015; Kundalwal et al., 2013). From the mod-
eling point of view, the fuzzy fiber microstructures can
be regarded as hierarchically reinforcing materials.
First of all, the CNTs-reinforced interphase can be
regarded as a nanocomposite made of radially-oriented
carbon nanotubes embedded in the matrix. Following
this spirit, the nanocomposite interphase is often
treated as an equivalent homogeneous medium with
cylindrically orthotropic multiphysics behaviors. For
that reason, two concentric cylinders can be utilized to
model the enhanced fibers, which represent the main
fiber and the coated nanocomposites interphase
(Chatzigeorgiou et al., 2020), respectively. As such, the
fuzzy fiber microstructures are considered to be a
three-scale medium, namely the microscale nanocom-
posite interphase (CNTs in the matrix), the mesoscale
fuzzy fiber composites (fuzzy fiber in the matrix), and
the macroscale composites.

Homogenization of fuzzy fiber composites with hier-
archal microstructures relies on appropriate microme-
chanics tools, which can be solved in two steps. The
first step of homogenization is conducted on the nano-
composite interphase in order to establish the effective
properties of the equivalent interphase medium. The
analytical solutions for fibers (solid or hollow fibers)
embedded in a matrix allow for predicting effective elas-
tic and thermal properties (Christensen and Lo, 1979;
Hashin and Rosen, 1964). The classical micromechanics
methods, such as the composite cylinder assemblage
(CCA) model (Hashin and Rosen, 1964) and dilute
approach (Isaeva and Topolov, 2021) continue to be

appropriate tools for predicting the effective properties
of hollow CNTs-reinforced nanocomposites. The recent
extension of the CCA model by Chatzigeorgiou et al.
(2019a, 2019b) has further enabled the efficient compu-
tation of homogenized properties of piezoelectric com-
posites with an interphase layer. It should be noted that
the classical micromechanics models are microstruc-
tural detail-free models. They contain either no direct
information on the actual distribution of phases or
account for their interaction in a rather simple manner
(Pindera et al., 2009). What’s more, the classical micro-
mechanics models are based on the uniform stress or
strain per phase, hence significantly underestimating
the stress or strain concentration within the composite
microstructures. While an accurate prediction of prop-
erties associated with the fiber axial direction may be
obtained in light of the correct kinematic constraint, the
effective properties in the transverse direction are gener-
ally quite inaccurate when the fiber/matrix property
mismatch is remarkably large for realistic fiber volume
fractions, such as the CNTs reinforced epoxy matrix.
The advances in computing power have really enabled
the computation of the homogenized properties using
the more accurate full-field approaches such as finite-
element and finite-volume-based approaches developed
in this manuscript.

The homogenized properties of the nanocomposite
interphase obtained in the first step are directly utilized
for the prediction of the actual fuzzy fiber composites’
effective behavior in the second step of homogeniza-
tion. However, the presence of a cylindrically orthotro-
pic interphase layer in composites adds notable
complexity to the development of homogenization
approaches with explicit expressions, since in the
Cartesian coordinates of a standard unit cell the inter-
phase is progressively functionally graded material
whose properties are determined by their angular posi-
tion and radial distance. This is particularly true in the
case of the multiphysics effect, such as piezoelectricity.
Analytical solutions for displacement field and electri-
cal potential in the interphase layer are more difficult
to derive compared to the pure mechanical case due to
the electromechanical coupling and cylindrical ortho-
tropic material behaviors. Therefore, in the second step
of homogenization, these complicated heterogeneous
materials cannot be studied with the classical multiscale
methodologies. More sophisticated numerical homoge-
nization methods are required to determine the homo-
genized properties of the overall composites in light of
their flexibility to address complex microstructures and
complicated constitutive law (Chen et al., 2018b; He
and Pindera, 2021b; Kudimova et al., 2021).

The present paper proposes two novel zeroth-order
asymptotic homogenization approaches for unidirec-
tional fuzzy fiber composites accounting for the piezo-
electric multiphysics effects. The fuzzy fiber composites
studied herein consist of the active piezo ceramic fibers

Figure 1. An SEM image of densely-packed carbon nanotube
fibers on the fiber surface (Li et al., 2015). It is reprinted from
the Composite Science and Technology, Vol. 117, ‘‘Hierarchical
carbon nanotube carbon fiber unidirectional composites with
preserved tensile and interfacial properties’’ by Richard Li, Noa
Lachman, Peter Florin, H. Daniel Wagner, Brian L. Wardle, pp.
139–145, 2015, with permission from Elsevier.
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(Lead Zirconate Titanate) with grown CNTs which are
embedded in a non-active epoxy matrix. The multiphy-
sics finite-volume direct averaging micromechanics
homogenization (MFVDAM) theory, detailed in Chen
et al. (2018a), Tu and Chen (2021), is adopted and fur-
ther extended to account for the cylindrically orthotro-
pic material properties in the Cartesian coordinates. To
validate the accuracy of the proposed MFVDAM, an
in-house finite-element micromechanics code is also
proposed considering the piezoelectric effect and cylin-
drically orthotopic constituent phases (Chen and
Wang, 2020). Numerical results are generated by the
two developed homogenization approaches, aiming at
understanding the fundamental relationship between
the micro/nanostructures, phase constituent properties,
and their macroscopic behaviors. The main contribu-
tions of the present work include:

� construction of two novel multiphysics versions
of finite-volume and finite-element homogeniza-
tion techniques in the presence of cylindrically
orthotropic phases

� comparison of predictive capacities of the multi-
physics finite-volume and finite-element homoge-
nization techniques for fuzzy fiber composites

� a thorough and comprehensive study of the
homogenized and local behavior of fuzzy fiber
composites under electro-mechanical loading at
various scales

The remainder of the present work is organized as
follows: Section 2 describes the problem under consid-
eration and the generalized Hooke’s law in different
coordinate systems. Section 3 presents the theoretical
framework for the multiphysics FVDAM and FEM
micromechanics techniques. Parametric studies are con-
ducted in Section 4 to investigate the effects of micro-
structural parameters and properties of constituent
phases on the homogenized properties or local stress/
electric concentrations within periodic arrays. Section 5
presents the discussion of the similarities and

differences between the finite-volume and finite-ele-
ment-based homogenization techniques. Figure 6 draws
pertinent conclusions and future developments.

2. Fuzzy fiber composites with
multiphysics effect

Figure 2(a) illustrates a schematic diagram of the repre-
sentative fuzzy fiber composites with randomly dis-
persed infinitely-long main fibers that are coated by
radially aligned hollow carbon nanotubes. Such compo-
sites can be regarded as a three-phase medium, namely,
the main fiber, the matrix, and the nanocomposite inter-
phase, as shown in Figure 2(b). The latter, which contains
CNTs microfibers and the matrix, is considered as a
homogenized coating layer encapsulating the main fiber.
Accordingly, the following scales are found: the microscale
involves the microfibers and the matrix; the mesoscale
involves the main fiber, the matrix, and the equivalent
nanocomposite interphase; and the macroscale is con-
cerned with the homogenized fuzzy fiber composites.

As a result, the multiscale hierarchical homogeniza-
tion scheme developed herein for such composites is
conducted in two steps. The first step of the homogeni-
zation is performed on the CNTs microfibers and
the surrounding matrix, in the cylindrical coordinate
system, which yields the effective properties of nano-
composite interphase. In the second step of homogeni-
zation, the overall properties of the fuzzy fiber
composites (Figure 2(c)) are obtained by homogenizing
the matrix, main fiber, and the equivalent interlayer
coating in the Cartesian coordinates.

The main fibers can be isotropic, transversely isotro-
pic or orthotropic materials with the axis of symmetry
parallel to the axis of the fibers. The nanocomposite
interphase is treated as a cylindrically orthotropic mate-
rial on account of the alignment of the microfibers in
the radial direction. Due to the geometrical characteris-
tics of the fuzzy fiber composites, the theoretical formu-
lation of the homogenization theory is performed in
two orthogonal coordinates, that is, the cylindrical

Figure 2. Hierarchical homogenization of the fuzzy fiber composites: (a) nanocomposite interphase, (b) fuzzy fiber composites, and
(c) homogenized composites.
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z, r, uð Þ and Cartesian x1, x2, x3ð Þ coordinates. The trans-
formation relation between the two coordinate systems
reads:

x1 = z, x2 = r cos u, x3 = r sin u ð1Þ

Without loss of generality, let’s consider the case
where all the phases are fully anisotropic materials. The
generalized constitutive relation of piezoelectric materi-
als reads:

s=C � e+ e � �E½ �
D= eT � e� k � �E½ �

ð2Þ

In compact form, X=L � E, where X= s, D½ �T,

E= e, � E½ �T and L=
C e

eT � k

� �
.

s= s11,s22,s33,s23,s13,s12½ �T denotes stresses,

e= e11, e22, e33, 2e23, 2e13, 2e12½ �T denotes strains,

D= D1,D2,D3½ �T denotes electric displacements,

E= E1,E2,E3½ �T denotes electric fields,

C=

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

2
6666664

3
7777775
denotes the elastic

stiffness, e=

e11 e21 e31

e12 e22 e32

e13 e23 e33

e14 e24 e34

e15 e25 e35

e16 e26 e36

2
6666664

3
7777775
and k=

k11 k12 k13

k12 k22 k23

k13 k23 k33

2
4

3
5

are the piezoelectric and dielectric properties written in
matrices using the Voigt notation.

In Voigt notation, the stress, strain, electric displace-
ment, and electric fields are transformed between the
cylindrical (indicated by the tilde symbol) and
Cartesian coordinate systems through the matrix-type
formulas (Chatzigeorgiou et al., 2017):

~e=Qe � e, ~s=Qs � s, e=QT
s � ~e, s=QT

e � ~s,

~E=RT � E, ~D=RT �D, E=R � ~E, D=R � ~D
ð3Þ

where ~s= szz,srr,suu,sru,szu,szr½ �T, ~e= ezz, err, euu,½
2eru, 2ezu, 2ezr�T, ~D= Dz,Dr,Du½ �T, ~E= Ez,Er,Eu½ �T res-
pectively are stresses, strains, electric displacements
and electric fields in the cylindrical coordinates. R

represents the rotator second-order tensor. Given the
equation (1), it reads:

R=
1 0 0

0 cos u � sin u

0 sin u cos u

2
4

3
5 ð4Þ

Qe and Qs are the proper fourth-order rotators that
transform the strain and the stress vectors expressed in
Voigt notation (Chatzigeorgiou et al., 2017),
respectively:

Qe =

1 0 0 0 0 0

0 cos2u sin2u cos u sin u 0 0

0 sin2u cos2u � cos u sin u 0 0

0 �2 cos u sin u 2 cos u sin u cos2u� sin2u 0 0

0 0 0 0 cos u � sin u

0 0 0 0 sin u cos u

2
6666664

3
7777775

ð5Þ

Qs =

1 0 0 0 0 0

0 cos2u sin2u 2 cos u sin u 0 0

0 sin2u cos2u �2 cos u sin u 0 0

0 � cos u sin u cos u sin u cos2u� sin2u 0 0

0 0 0 0 cos u � sin u

0 0 0 0 sin u cos u

2
6666664

3
7777775

ð6Þ

With the help of the above rotators, the transforma-
tion of the generalized stiffness matrix between the
cylindrical and Cartesian coordinates takes the form:

~L=WX � L �WX
T L=WT

E � ~L �WE ð7Þ

where

WX =
Qs 0

0 RT

� �
WE =

Qe 0

0 RT

� �

To accurately capture the effective properties of the
overall fuzzy fiber composites, a suitable micromecha-
nics scheme with multiphysics capability needs to be
developed. The cylindrical microstructures of the nano-
composite interphase pose challenges in terms of
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homogenization of multiphysics behaviors in the
Cartesian coordinates. First of all, at the first step of
homogenization (microscale), the nanocomposite inter-
phase with radially aligned CNTs cannot be replicated
by the duplication of the same unit cell, as in the
Cartesian periodic homogenization. Therefore, the unit
cell problem should be formulated considering cylindri-
cal periodicity (Tsalis et al., 2012). A complication
related to homogenization with the cylindrical periodi-
city is the fact that the volume fraction of the CNTs
decreases in a progressive manner with increasing
radial distance, leading to a progressively functionally
graded effective coating layer at the mesoscale. Finally,
the homogenized properties of the nanocomposite
interphase exhibit cylindrically orthotropic material
behaviors. At the second step of homogenization
(mesoscale), the generalized effective stiffness tensor of
the coating layer expressed in the Cartesian coordinates
depends on the angular position and radial distance.

From a computational point of view, to capture the
progressively graded effective properties in the nano-
composite interphase, the microscale homogenization
needs to be conducted for several unit cells along the
radial direction, whose effective properties are analyzed
numerically to take into account the variation of the
CNTs volume fractions at different radial distances. In
the present manuscript, in a coarse but successful
approximation, we assume the nanocomposite inter-
phase acts like a classical unidirectional composite
hence only one interphase layer is utilized to compute
their effective behaviors. The effective properties of the
CNTs (hollow microfibers) reinforced unidirectional
composites can be identified through either numerical
or analytical homogenization strategies. The effective
properties of the nanocomposites in the cylindrical
coordinates are then transformed to their Cartesian
counterparts in order to perform numerically the
mesoscale homogenization.

3. Theoretical developments

The multiphysics micromechanics approaches based on
the multiphysics finite-volume direct averaging micro-
mechanics (MFVDAM) and the multiphysics finite-
element micromechanics (MFEM) homogenization the-
ories have been developed by (Chen and Wang, 2020;
Chen et al., 2018a). Hereinafter, they are further
extended to account for cylindrically orthotopic phases
and are utilized to obtain the homogenized and local
behaviors at both micro- and mesoscales of the fuzzy
fiber composites.

In the multiphysics FVDAM theory, the repeating
unit cell representative of a unidirectional composite is
discretized into quadrilateral subvolumes designated by
the index qð Þ whose location is specified by the vertices
subvolume vertices y2, y3ð Þ p, qð Þ. Following Cavalcante

et al. (2007), the vertices of the qth subvolume are num-
bered in a counter-clockwise manner starting from the
lower-left corner y2, y3ð Þ 1, qð Þ. Consistently the face Fp

denotes the subvolume face defined by the endpoints
y2, y3ð Þ p, qð Þ and y2, y3ð Þ p+ 1, qð Þ, and when p= 4,

p+ 1! 1. The qth subvolume situated in the physical
domain y2 � y3ð Þ is created by mapping the reference
square in the h� jð Þ plane bounded by �1 ł h ł + 1

and �1 ł j ł + 1 onto its actual locations in the unit
cell using the parametric mapping:

y
qð Þ

i h, jð Þ=
Xm

p= 1

Np h, jð Þy p, qð Þ
i , i= 2, 3 ð8Þ

where m denotes the node number. For the MFVDAM,
m= 4, and

N1 h, jð Þ= 1

4
1� hð Þ 1� jð Þ,

N2 h, jð Þ= 1

4
1+hð Þ 1� jð Þ,

N3 h, jð Þ= 1

4
1+hð Þ 1+ jð Þ,

N4 h, jð Þ= 1

4
1� hð Þ 1+ jð Þ

In contrast, in the case of multiphysics FEM analy-
sis, the 8-noded parametric mapping is employed to
obtain the qth element in the actual coordinates.
y2, y3ð Þ p, qð Þ designated by the index p are the coordi-
nates at the four corners and four midpoints of the ref-
erence element starting at the lower-left corner and
progressing counterclockwise. The mapping functions
are given by:

N1 h, jð Þ= � 1

4
1� hð Þ 1� jð Þ 1+h+ jð Þ,

N5 h, jð Þ= 1

2
1� h2
� �

1� jð Þ

N2 h, jð Þ= � 1

4
1+hð Þ 1� jð Þ 1� h+ jð Þ,

N6 h, jð Þ= 1

2
1+hð Þ 1� j2

� �

N3 h, jð Þ= � 1

4
1+hð Þ 1+ jð Þ 1� h� jð Þ,

N7 h, jð Þ= 1

2
1� h2
� �

1+ jð Þ

N4 h, jð Þ= � 1

4
1� hð Þ 1+ jð Þ 1+h� jð Þ,

N8 h, jð Þ= 1

2
1� hð Þ 1� j2

� �

ð9Þ

The MFVDAM and MFEM provide a coherent
framework to account for the variation of macroscopic
strain and electric fields in microstructures which are
distributed in a periodical manner in the lower scale.
The unit cell problems are solved subject to periodic
boundary conditions. Following the asymptotic
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expansion theory widely used in the homogenization
theory of composites (Chen et al., 2018b; He and
Pindera, 2021a, 2021b; Yang and Müller, 2021; Yang
et al., 2020; Zhi et al., 2021a, 2021b), the displacement
and electric potential fields are represented by the two-
scale expansion involving the macroscopic coordinates
x and the microscopic coordinates y of the following
form:

u
qð Þ

i x, yð Þ= �eijxj + u0i
qð Þ

yð Þ a qð Þ x, yð Þ=� �Eixi +a0 qð Þ yð Þ
ð10Þ

where i= 1, 2, 3, �eij is the applied macroscopic strain
and �Ei is the applied macroscopic electric field. u0i qð Þ
and a0 qð Þ denote the fluctuating displacement and elec-
tric potential fields induced by the microstructures.
Accordingly, the microscopic strain e qð Þ

ij and electric
fields E

qð Þ
i are obtained in terms of macroscopic and

fluctuating components as follows:

e qð Þ
ij = �eij + e0ij

qð Þ
= �eij +

1

2

∂u0i
∂yj

+
∂u0j
∂yi

� � qð Þ

E
qð Þ

i = �Ei +E0i
qð Þ
= �Ei �

∂a0 qð Þ

∂yi

ð11Þ

3.1. Finite-volume based solution

In the multiphysics FVDAM theory, the fluctuating
displacements and electric potentials are represented by
the second-order Legendre polynomial expression in
the reference coordinates h, jð Þ:

u0i qð Þ=W
qð Þ

i 00ð Þ+hW
qð Þ

i 10ð Þ+ jW
qð Þ

i 01ð Þ+
1

2
3h2 � 1
� �

W
qð Þ

i 20ð Þ

+
1

2
3j2 � 1
� �

W
qð Þ

i 02ð Þ, i= 1, 2, 3

a0
qð Þ
=W

qð Þ
4 00ð Þ+hW

qð Þ
4 10ð Þ+ jW

qð Þ
4 01ð Þ+

1

2
3h2 � 1
� �

W
qð Þ

4 20ð Þ

+
1

2
3j2 � 1
� �

W
qð Þ

4 02ð Þ

ð12Þ

where W
qð Þ

i mnð Þ are the unknown microscopic variables
associated with each subvolume. Ultimately, these
unknown coefficients will be related to surface-averaged
displacements and electric potentials, upon solving the
local equilibrium and conservation equations.

Following the classical development of the finite-
volume theory, the surface-averaged fluctuating displa-
cements û0i

p, qð Þ, electric potentials â0 p, qð Þ, and the
surface-averaged tractions t̂

p, qð Þ
i and electric displace-

ments D̂ p, qð Þ, defined as follows, are used in the con-
struction of the generalized local stiffness matrices:

For p= 1, 3,

û
p, qð Þ

i =
1

2

ð+ 1

�1

u0i h,71ð Þdh,

â0
p, qð Þ

=
1

2

ð+ 1

�1

a0 h,71ð Þdh

t̂
p, qð Þ

i =
1

2

ð+ 1

�1

sij h,71ð Þ � njdh,

D̂
p, qð Þ

=
1

2

ð+ 1

�1

Di h,71ð Þ � nidh

ð13Þ

For p= 2, 4,

û
p, qð Þ

i =
1

2

ð+ 1

�1

u0i 61, jð Þdj,

â0
p, qð Þ

=
1

2

ð+ 1

�1

a0 61, jð Þdj

t̂
p, qð Þ

i =
1

2

ð+ 1

�1

sij 61, jð Þ � njdj,

D̂
p, qð Þ

=
1

2

ð+ 1

�1

Di 61, jð Þ � nidj

ð14Þ

where n= n2, n3½ � denotes the unit normal vector defin-
ing the orientations of each face.

To obtain the generalized local stiffness matrices, the

microvariables W
qð Þ

i mnð Þ in the displacement and electric

potential field representations must be expressed in
terms of fluctuating surface-averaged displacements
and electric potentials. Using the definition in equations

(13) and (14), the first- W
qð Þ

i 10ð Þ,W
qð Þ

i 01ð Þ and second-order

W
qð Þ

i 20ð Þ,W
qð Þ

i 02ð Þ unknown coefficients are first expressed in

terms of the fluctuating surface-averaged displacements

û
0 p, qð Þ
i , electric potentials â0 p, qð Þ and the zeroth-order

coefficients W
qð Þ

i 00ð Þ. Subsequently, the satisfaction of the

stress equilibrium and the Maxwell conservation condi-
tions in the large produces four equations for the deter-

mination of the zeroth-order coefficients W
qð Þ

i 00ð Þ:

ð
Sq

sijnjdS =
X4

p= 1

l p, qð Þ̂t
p, qð Þ

i = 0

ð
Sq

DinidS =
X4

p= 1

l p, qð ÞD̂
p, qð Þ

= 0

ð15Þ

where l p, qð Þ denotes the length of the pth face of the qth
subvolume.

The ultimate relations between the surface-averaged
tractions, electric displacements, and the mechanical
displacements, electric potentials can be written in the
matrix and vector forms as (with q omitted for
simplification):

�N=K � Ŝ0+N � L � �E ð16Þ
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In the above equation,

�N= q̂
1ð Þ
, q̂

2ð Þ
, q̂

3ð Þ
, q̂

4ð Þ
h iT

with q̂
pð Þ
= t̂1, t̂2, t̂3, D̂
� 	 pð ÞT

,

Ŝ0= r 1ð Þ, r 2ð Þ, r 3ð Þ, r 4ð Þ
h iT

with r̂
pð Þ
= û01, û02, û03, â0½ � pð ÞT

,

N= n 1ð Þ, n 2ð Þ, n 3ð Þ, n 4ð Þ
h i Tð Þ

with n pð Þ

=

0 0 0 0 n3 n2 0 0 0

0 n2 0 n3 0 0 0 0 0

0 0 n3 n2 0 0 0 0 0

0 0 0 0 0 0 0 n2 n3

2
6664

3
7775

pð Þ

,

and K denotes the local stiffness matrices which are
derived explicitly in terms of subvolume geometry
and generalized stiffness occupying the qth
subvolume.

The unknown interfacial mechanical displacements
and electric potentials are determined by solving a
global system of equations obtained by the enforce-
ment of traction and electric displacement continuity
and periodicity conditions, followed by direct enforce-
ment of mechanical displacement and electric poten-
tial continuity and periodicity conditions. The
resulting system of equations can be expressed in com-
pact form as follows:

K � Û0=DL � �E ð17Þ

where K denotes the global stiffness matrix, Û0 contains
all the unknown interfacial surface-averaged mechani-
cal displacements and electric potentials. DL represents
the differences in the generalized stiffness matrices of
adjacent subvolumes.

3.2. Finite-element based solution

In the multiphysics FEM homogenization, the fluctuat-
ing displacements and electric potentials are approxi-
mated using the Q8-element shape functions given
directly in terms of nodal quantities and interpolation
functions:

u0i
qð Þ

h, jð Þ=
Xm

p= 1

Np h, jð Þu
0o p, qð Þ
i , i= 1, 2, 3

a0 qð Þ h, jð Þ=
Xm

p= 1

Np h, jð Þa0o(p, q)

ð18Þ

where u
0o p, qð Þ
i and a0o(p, q) are the nodal displacements

and electric potentials respectively. For direct compari-
son with the MFVDAM theory, the fluctuating displa-
cements and electric potential for the Q8 elements may
be written as:

u0i qð Þ=U
qð Þ

i(00) +hU
qð Þ

i(10) + jU
qð Þ

i(01) +hjU
qð Þ

i(11) +h2U
qð Þ

i(20)

+ j2U
qð Þ

i(02) +h2jU
qð Þ

i(21) +hj2U
qð Þ

i(12)

a0
qð Þ
=U

qð Þ
4(00) +hU

qð Þ
4(10) + jU

qð Þ
4(01) +hjU

qð Þ
4(11) +h2U

qð Þ
4(20)

+ j2U
qð Þ

4(02) +h2jU
qð Þ

4(21) +hj2U
qð Þ

4(12)

ð19Þ

where U
qð Þ

i(mn) are the unknown microvariables. Applying
the differential operators to the internal trial displace-
ments and electric potential, the fluctuating strain and
electric fields are obtained in the following form:

e0 qð Þ
=B

qð Þ

u u0
o qð Þ

E0
qð Þ
= � B

qð Þ

a a0
o qð Þ ð20Þ

where u0o qð Þ= ½u0 1ð Þ:::u0 8ð Þ�T and u0 pð Þ= u01, u
0
2, u
0
3½ �o pð ÞT.

a0o qð Þ= a 1ð Þ, :::,a 8ð Þ� 	T
. B

qð Þ

u denotes the strain-

displacement relation and B
qð Þ

a denotes the electric field-

electric potential relation, which are used to construct
the potential energy integral at the element level.

The total potential energy of the unit cell is obtained
from the summation of the bulk strain and electric ener-
gies, as well as the work done by the external force and
electric charge:

P=Ub �W =
1

2

ð
V

sT � e�DT � E
� �

dV

�ð�sT � �e� �D
T � �EÞV

ð21Þ

The generalized local stiffness matrices are obtained
by the minimization of total potential energy equation
(21), which is done by substituting equations (11) and
(20) into equation (21) with the help of the generalized
Hooke’s law and then making the first variations:

Kuu Kua

KT
ua Kaa

� �
u0o

a0o

� �
=

fu
fa

� �
ð22Þ

where Kuu =
Ð

V
BT

uCBudV , Kaa =�
Ð

V
BT

akBadV ,

Kua=
Ð

V
BT

u eBadV , fu=
Ð

V
ðBT

u e
�E� BT

uC�eÞdV , fa =�
Ð

V

ðBT
ae

T�e+BT
ak�EÞdV .

The local stiffness matrices are assembled into a
global system of equations by enforcing the continu-
ities of displacements and electric potentials at com-
mon nodes of adjacent elements, as well as the
periodicity conditions at the mirrored faces of a
repeating unit cell. The final form of the system of
equations for the determination of the nodal displace-
ments and electric potentials can be expressed in the
following symbolic form:

Kuu Kua

K
T
ua Kaa

� �
U
0

a0

� �
=

Fu

Fa

� �
ð23Þ
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3.3. Homogenized generalized stiffness matrix

The homogenized generalized stiffness matrix L� of the
unit cell is obtained by sequentially applying one unit
strain or electric field to solve the equations (17) and
(23) iteratively nine times for the surface-averaged
unknown vector Û0 or the nodal displacements U0 and
electrical potentials a0, hence the stress and electric dis-
placement fields. The macroscopic loading conditions
for a specific boundary value problem are applied
through the homogenized strains or electric fields
directly. For instance, in order to obtain the first col-
umn in the generalized homogenized stiffness tensor,
the following loading condition is applied:

�E= 1, 0, 0, 0, 0, 0, 0, 0, 0½ �T

As a result, the solution of the global system of equa-
tions yields nine components of macroscopic stresses
and electric displacements through the volume-
averaging of their corresponding local fields over the
entire unit cell volume V :

�sij =
1

V

ð
V

sijdV , �Di =
1

V

ð
V

DidV ð24Þ

which are respectively equal to the elements in the first
column of L�, that is, C�11,C

�
21,C

�
31,C

�
41,C

�
51,C�61,

e�11, e
�
21, e�31. Similarly, the second column of L� can be

obtained by applying:

�E= 0, 1, 0, 0, 0, 0, 0, 0, 0½ �T

This procedure is continued till all the columns of L�

have been obtained.
Finally, using equation (24), the effective constitutive

equation for the multiphase unit cell is obtained as:

�X=L� � �E ð25Þ

where �X= ½�s, �D�T and �E= ½�e, � �E�T.

L�=
C� e�

e�T �k�

� �
. C�, e�, and k� are the effective elas-

tic stiffness, piezoelectric, and dielectric matrices,
respectively.

4. Numerical results

In this section, numerical examples of a fuzzy fiber
composite with multiphysics phases are presented. The

scope is to test the accuracy of the proposed multiphy-
sics finite-volume and finite-element-based two-step
homogenization scheme. The latter is typically regarded
as the computational standard in the simulation
communities.

The fuzzy fiber composites studied herein consist of
the classical epoxy matrix, the PZT main fiber, and the
carbon nanotubes walls made of graphene. While the
epoxy matrix and graphene are isotropic, the PZT main
fiber is transversely isotropic material. The properties
of all the material phases are summarized in Tables 1
and 2. It should be mentioned that the effective proper-
ties of carbon nanotubes walls are transversely isotropic
(Chatzigeorgiou et al., 2020) despite the fact that gra-
phene is isotropic.

The determination of geometrical parameters (such
as the thickness of the CNT interface and radii of the
micro and main fibers), the volume contents of the
CNTs (hollow microfibers made of graphene) and the
PZT main fiber is of great importance to the overall
properties of the fuzzy fiber composites. In this manu-
script, the CNTs have an inner radius of 0:51nm and an
external radius of 0:85nm(Chatzigeorgiou et al., 2012).
The diameter of the PZT main fiber is taken to be
100mm. The length of the CNTs (namely the thickness
of the nanocomposite coating layer) is assumed to be
25mm. While the characteristic sizes of the main fiber
and the nanocomposite interphase have been kept as
constants, the volume fraction of the CNTs in the
nanocomposite interphase and the overall fuzzy fiber
volume fraction may vary.

4.1. Microscale homogenization: CNTs reinforced
matrix

Figure 3 shows the cross-section of the nanocomposite
interphase reinforced by radially aligned CNTs. It is
assumed that the CNTs are perfectly straight and dis-
persed uniformly in the epoxy matrix. Due to the per-
fect orientation of the CNTs in the radial direction,

Table 1. Properties of the epoxy matrix and graphene.

E (GPa) v k (C2



GNm2)

Epoxy 3 0.3 3.098966E202
Graphene 1100 0.14 6.109390E202

Table 2. Properties of the PZT main fiber.

C11 (GPa) C12 (GPa) C22 (GPa) C23 (GPa) C44 (GPa) C66 (GPa)

131 74.24 148 76.2 35.9 25.3

e11 (C



m2) e12 (C



m2) e26 (C



m2) k11 (C2



GNm2) k22 (C2



GNm2) k33 (C2



GNm2)

10.99 22.324 9.31 2.081 3.984 3.984
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there is no drastic variation of material properties, local
stress and strain (or electric field and electric displace-
ment) fields in the pertinent direction. Therefore, the
unit cell problem is reduced to a two-dimensional prob-
lem with the generalized plane strain constraint. It
should be noted that at high CNTs content, the CNTs
are typically not well distributed in the nanocomposite
interphase, resulting in possible agglomeration of the
carbon nanotubes (Chatzigeorgiou et al., 2020). To
consider the agglomeration of the carbon nanotubes at
the microscale, a three-dimensional unit cell analysis is
required, which leads to the excessively large size of the
global system of equations. Therefore, in this manu-
script, such aspects are not considered due to the high
computational cost.

In general, the microfibers are distributed randomly
on the main fiber surface. For computational purposes,
it is assumed a tetragonal or hexagonal array pattern
of the microfibers. In this work, microscale homogeni-
zation is performed using the hexagonal arrangement
of the CNTs, as shown in Figure 4. For clarity and sim-
plification, the axes r, u, zð Þ also are referred to as
~x1,~x2,~x3ð Þ. Due to the six-fold symmetry of the

hexagonal unit cell, the homogenized properties of the
nanocomposites are transversely isotropic with the axis
of the symmetry parallel to the radial (or microfiber
axial) direction. In the multiphysics FVDAM theory,
periodic boundary conditions of mechanical displace-
ments, tractions, electric potentials, and electric displa-
cements are directly applied on the opposite faces of
the unit cell. To establish the complete generalized stiff-
ness tensor of the nanocomposite, the unit cell prob-
lems are solved iteratively nine times by sequential
imposition of only one unit macroscopic strain and
electric field at a time with all other strain and electric
field components equal to zero. As a result, the solution
of the system of equation (17) thus equations (24) and
(25) provides the nine components of the stresses and
electric displacements, which correspond to the ele-
ments in the associated column in the effective general-
ized stiffness matrix.

Figure 5 shows the variations of the selected effective
mechanical properties of the nanocomposite interphase
as a function of the CNTs volume fraction (VCNT ) in
the nanocomposite interphase. Figure 6 shows the var-
iations of the homogenized dielectric properties as a
function of the CNTs volume fraction. The multiphy-
sics finite-element results generated based on the same
unit cell architecture and mesh refinement are enclosed
in the figures for comparison. As observed, the correla-
tions of all the effective properties between the multi-
physics FVDAM and FEM are remarkable. The value
of the effective elastic stiffness Crr is significantly high

Figure 3. Cross-section of the nanocomposite interphase
reinforced by radially aligned CNTs.

Figure 4. Discretization of repeating unit cell representative of
nanocomposite interphase reinforced by CNTs. The hollow
CNT fiber has an inner radius of 0:51nm and external radius of
0:85nm.

Figure 5. Comparison of homogenized mechanical properties
of nanocomposite interphase as a function of CNT volume
fraction.
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in the radial direction along which the CNTs are
oriented.

4.2. Mesoscale homogenization: Fuzzy fiber-
reinforced matrix

Having obtained the equivalent properties of the nano-
composite interphase, the homogenization of the over-
all fuzzy fiber composites can be conducted using either
the MFVDAM or the MFEM again. The overall fuzzy
fiber composites can be described directly in the
Cartesian coordinates, where the actual composites are
treated as a three-phase medium consisting of the main
fiber, cylindrically orthotropic interphase layer, and the
surrounding matrix. In the same spirit as the microscale
homogenization, the mesoscale homogenization is per-
formed on the hexagonal arrangement of the coated
fiber with periodic boundary conditions, as shown in
Figure 7. As before, the unit cell problems are solved
iteratively nine times by sequential imposition of only
one unit macroscopic strain and electric field at a time
with all other strain and electric field components equal
to zero.

It is worth mentioning that the homogenization of
composites involving cylindrically orthotropic phases
in the Cartesian coordinates necessitates expressing the
effective properties of the nanocomposite interphase
from cylindrical coordinates r, u, zð Þ to the Cartesian
coordinates x1, x2, x3ð Þ according to the rotation for-
mula equation (7). Figure 8 shows the selected compo-
nents of the effective stiffness C22 and C44 in the
Cartesian coordinates at three different CNTs volume
fractions. It is observed that the nanocomposite inter-
phase is a functionally graded monoclinic medium in
the chosen coordinates whose effective properties rely

Figure 7. Discretization of repeating unit cell representing the
overall fuzzy fiber composites. The diameter of the PZT main
fiber is 100mm and the length of CNTs is 25mm.Figure 6. Comparison of homogenized dielectric properties of

nanocomposite interphase as a function of CNT volume fraction.

Figure 8. Comparison of the selected spatially-dependent
stiffness components in fuzzy fiber in the global coordinate
system, induced by the radially aligned CNTs at three different
CNT volume contents: (a) VCNT = 20%, (b) VCNT = 40% and
(c) VCNT = 60%.
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on the angular position. As a consequence of this spa-
tial dependency, a special constitutive law with the
rotated generalized stiffness detailed in Section 2 is
introduced for elements or subvolumes that occupy the
interphase.

Figures 9–11 summarize the results for the homoge-
nized mechanical, piezoelectric, and dielectric properties
of the fuzzy fiber composites as a function of the overall
fuzzy fiber volume fraction at three different CNTs vol-
ume contents. Both the finite-element and finite-volume
predictions are plotted in the figures for comparison,
where excellent agreements are obtained for every case
for the two homogenization schemes. It should be noted
that the solution principles employed in the finite-
volume and finite-element methods are substantially
different even though both techniques require the classi-
cal discretization of the analysis domain and the forma-
tion of the local thus global stiffness matrices. While
the finite-element method looks for the displacement
electric potential fields that satisfy the governing differ-
ential equations (namely the stress equilibrium and
Maxwell conservation equations) after the total

potential energy is minimized, the finite-volume theory
directly solves the strong form of the governing differ-
ential equations in each discretized subvolume in a
volume-averaged sense. It should be noted that both
the finite-element and finite-volume analyses are con-
ducted using 2880 elements or subvolumes. A much
finer mesh with 11,520 has also been used to perform
the computations but doesn’t yield different results,
providing direct evidence for the accuracy of the

Figure 10. Comparison of homogenized piezoelectric
properties of composites as a function of the overall fuzzy fiber
volume fraction.

Figure 9. Comparison of homogenized mechanical properties
of composites as a function of the overall fuzzy fiber volume
fraction.

Figure 11. Comparison of homogenized dielectric properties
of composites as a function of the overall fuzzy fiber volume
fraction.

Chen et al. 11



generated results with the adopted level of mesh refine-
ment. Using the selected mesh discretization, the com-
putation of the complete set of homogenized properties
for the overall fuzzy fiber composites takes about 443
and 47 s (averaged based on three runs) respectively for
the MFEM and MFVDAM approaches, which were
executed on a personal computer with Intel(R) Core
(TM) i7-6600U @ 2.60 GHz 2.81 GHz, 8.0 GB mem-
ory, 64-bit Operating System, 3 64-based processor.

4.3. Recovery of local fields

Compared to the mean-field homogenization methods
in the literature, an important advantage of the devel-
oped multiphysics full-field homogenization methodol-
ogies is the ability to efficiently and accurately identify
the local stress and electric fields at meso- thus micro-
scales. In this subsection, to demonstrate the capability
of the developed strategies for predicting the local fields
distributions, the overall fuzzy fiber composite is sub-
jected to the macroscopic strain �e22 = 1%. All other
macroscopic strain components and electric fields are
kept as zeros. The fuzzy fiber volume fraction is taken
to be 30%.

The mesoscale stress s22 field distributions are
obtained at two different CNTs volume contents,
namely VCNT = 20% and VCNT = 60%, generated using
the MFVDAM and MFEM approaches in Figure 12.
Overall, it is observed an excellent agreement between
the MFVDAM and MFEM homogenization tech-
niques. However, the MFEM seems to provide

smoother stress distributions, particularly in the vici-
nity of the coating on the matrix side. This observation
was expected since the MFEM results shown in Figure
12 are generated using the Serendipity biquadratic ele-
ments while the MFVDAM employs the second-order
Legendre polynomial in the representation of the dis-
placements and electric potentials. Another reason for
the lack of smoothness of local fields in finite-volume
theory is the fact that the continuity conditions con-
necting the adjacent subvolumes are enforced in a
surface-averaged sense. Figure 13 depicts the micro-
level stress and electric displacement field distributions
at the point r = 50nm, u= 0 for two different CNT
volume fractions VCNT = 20% and VCNT = 60%. To
generate the results in Figure 13, the strain and electric
field at r = 50nm, u= 0 are retrieved from the mesos-
cale analysis and are then applied to the microscale unit
cell. To avoid duplication, only finite-volume results
are shown. It is observed that increasing the CNTs vol-
ume content tends to decrease the microscale stress
field in the CNTs phase.

5. Discussion

The objective of this manuscript is to study homoge-
nized and local field distributions of fuzzy fiber compo-
sites under electro-mechanical loading conditions.
Indeed, micromechanical simulations of fuzzy fiber
microstructures play an indispensable role in the devel-
opment of novel material systems because they not only

Figure 12. Comparison of the mesoscale stress field s22(MPa)
generated by the multiphysics FVDAM and FEM methods with
the imposition of only one macroscopic strain �e22 = 1%:
(a) VCNT = 20% and (b) VCNT = 60%.

Figure 13. Micro-scale stress and electric displacement field
recovery at the location r= 50nm, u= 0 generated by the
multiphysics FVDAM for two different CNT volume fractions
with the imposition of the same macroscopic strain �e22 = 1%. It
should be noted that the overall fuzzy fiber volume fractions at
the mesoscale are kept at 30%: (a) s22(MPa) and (b) dzðC=m2Þ.
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can facilitate the identification and selection of candi-
date materials for specific applications but also the
development and fabrication of engineered materials
with target electro-mechanical properties, as well as
optimization of the structural components in a multi-
scale setting. Presently, these complicated heteroge-
neous materials cannot be studied with the classical
multiscale methodologies due to the presence of the
cylindrically orthotropic material properties and multi-
physics effects. It is worth mentioning that, in Cartesian
coordinates of a standard unit cell, a cylindrically
orthotropic material acts as a functionally graded mate-
rial (see Figure 8) with anisotropic response (terms such
as C42 and C43 are not zero). Hence in this contribution,
two numerical homogenization techniques based on
finite-volume and finite-element theories are presented
to tackle the problems encountered in the modeling of
fuzzy fiber composites. The two approaches predict
essentially the same homogenized properties and local
fields, providing good support for the generated results.
Comparison against the experimental data is a worth-
while pursuit to further validate the modeling strategies
for fuzzy fiber composites under electro-mechanical
loading conditions. Unfortunately, sufficient experi-
mental data for model validation is not readily available
in the open literature since this material is still in the
development stage.

It should be mentioned that the multiphysics finite-
volume homogenization technique is an attractive alter-
native to the finite-element method, the latter of which
is typically the computation standard in the literature.
Both approaches are based on mesh discretization of
unit cells into subvolumes/elements, two-scale expan-
sion of the displacement fields involving the macro-
scopic and fluctuating contributions, and the formation
of local/global system of equations. The solution prin-
ciples, however, are fundamentally different:

A major difference between the finite-element and
finite-volume based unit cell solution is the manner of
satisfying local, and thus global, equilibrium and
Maxwell conservation equations. Namely, while the
minimization of the total potential energy in the finite-
element approach leads to the ultimate satisfaction of
the unit cell’s global equilibrium and conservation with
sufficient mesh refinement, the multiphysics finite-
volume technique is based on strong form solution of
the stress equilibrium and conservation equations in a
volume-averaged sense at any level of mesh refinement.

Secondly, the finite-element method requires numeri-
cal integration of the local stiffness matrices. The finite-
volume technique is semi-analytical in the sense that
explicit expressions for the local stiffness matrices can
be derived, hence an increase in computation efficiency.

Finally, in the finite-element technique, the continu-
ity and periodicity conditions are applied only on the
nodal displacements and electric potential whereas, in
the finite-volume technique, continuity and periodicity

conditions are enforced on both surface-averaged trac-
tions/electric displacements and mechanical displace-
ments/electric potentials.

6. Summary and conclusion

Fuzzy fiber composites are hierarchically reinforcing
heterogeneous materials in which the main fibers are
coated with radially aligned CNTs. Due to the com-
plexity of the microstructures, two generalized zeroth-
order asymptotic homogenization approaches, based
on finite-volume and finite element micromechanics
theories, have been proposed in order to evaluate the
homogenized and local response of fuzzy fiber compo-
sites at different scales. The developed framework
account for both the multiphysics piezoelectric effect
and the cylindrical orthotropic material behavior at the
phase level for the first time. A recursive multiscale
analysis algorithm was developed wherein homoge-
nized moduli (or local fields) obtained from the homo-
genization (or localization) analysis at one scale are
used in the calculation of homogenized moduli (or local
fields) at the next scale. New results are generated for a
unidirectional fuzzy fiber composite considering PZT
fibers enhanced by the CNTs which are embedded in
the epoxy matrix. It is observed a good agreement
between the MFVDAM and MFEM approaches. The
present manuscript focuses on establishing new micro-
mechanical models for fuzzy fiber composites with mul-
tiphysics effects which are extensively verified by the
numerical examples. Parametric investigation with spe-
cific applications will be conducted in our future work
to estimate the sensitivity of microstructural parameters
and capture them with a first-order effect.
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Ay Z and Tanoğlu M (2020) The effect of single-walled car-

bon nanotube (SWCNT) concentration on the mechanical

and rheological behavior of epoxy matrix. Mechanics of

Composite Materials 56: 523–532.
Aziz S, Rashid SA, Rahmanian S, et al. (2015) Experimental

evaluation of the interfacial properties of carbon nanotube

coated carbon fiber reinforced hybrid composites. Polymer

Composites 36(10): 1941–1950.
Cavalcante MAA, Marques SPC and Pindera M-J (2007)

Parametric formulation of the finite-volume theory for

functionally graded materials—Part I: Analysis. Journal of

Applied Mechanics 74(5): 935–945.
Chatzigeorgiou G, Benaarbia A and Meraghni F (2019a)

Piezoelectric-piezomagnetic behaviour of coated long fiber

composites accounting for eigenfields. Mechanics of Mate-

rials 138: 103157.
Chatzigeorgiou G, Javili A and Meraghni F (2019b) Micro-

mechanical method for effective piezoelectric properties

and electromechanical fields in multi-coated long fiber

composites. International Journal of Solids and Structures

159: 21–39.
Chatzigeorgiou G, Charalambakis N, Chemisky Y, et al.

(2017) 1 - mathematical concepts. In: Chatzigeorgiou G,

Charalambakis N, Chemisky Y, et al. (eds) Thermomecha-

nical Behavior of Dissipative Composite Materials. Amster-

dam: Elsevier. pp.1–36.
Chatzigeorgiou G, Efendiev Y and Lagoudas DC (2011)

Homogenization of aligned ‘‘fuzzy fiber’’ composites.

International Journal of Solids and Structures 48(19):

2668–2680.
Chatzigeorgiou G, Meraghni F, Charalambakis N, et al.

(2020) Multiscale modeling accounting for inelastic

mechanisms of fuzzy fiber composites with straight or

wavy carbon nanotubes. International Journal of Solids

and Structures 202: 39–57.
Chatzigeorgiou G, Seidel GD and Lagoudas DC (2012) Effec-

tive mechanical properties of ‘‘fuzzy fiber’’ composites.

Composites Part B Engineering 43(6): 2577–2593.
Chen Q, Tu W, Liu R, et al. (2018a) Parametric multiphysics

finite-volume theory for periodic composites with thermo-

electro-elastic phases. Journal of Intelligent Material Sys-

tems and Structures 29(4): 530–552.
Chen Q, Wang G and Pindera M-J (2018b) Homogenization

and localization of nanoporous composites - A critical

review and new developments. Composites Part B Engi-

neering 155: 329–368.
Chen Q, Chatzigeorgiou G and Meraghni F (2021) Hybrid

hierarchical homogenization theory for unidirectional

CNTs-coated fuzzy fiber composites undergoing inelastic

deformations. Composites Science and Technology 215:

109012.
Chen Q and Wang G (2020) Computationally-efficient homo-

genization and localization of unidirectional piezoelectric

composites with partially cracked interface. Composite

Structures 232: 111452.
Christensen RM and Lo KH (1979) Solutions for effective

shear properties in three phase sphere and cylinder models.

Journal of the Mechanics and Physics of Solids 27(4):

315–330.
De Luca HG, Anthony DB, Greenhalgh ES, et al. (2020)

Piezoresistive structural composites reinforced by carbon

nanotube-grafted quartz fibres. Composites Science and

Technology 198: 108275.
Dhala S and RayMC (2015) Micromechanics of piezoelectric fuzzy

fiber-reinforced composite.Mechanics of Materials 81: 1–17.
Hashin Z and Rosen BW (1964) The elastic moduli of fiber-

reinforced materials. Journal of Applied Mechanics 31(2):

223–232.

He Z and Pindera M-J (2021a) Finite volume based asympto-

tic homogenization theory for periodic materials under

anti-plane shear. European Journal of Mechanics - A/Solids

85: 104122.
He Z and Pindera M-J (2021b) Locally exact asymptotic

homogenization of viscoelastic composites under anti-

plane shear loading. Mechanics of Materials 155: 103752.
Isaeva AN and Topolov VY (2021) Comparative study on

the performance of piezo-active 1–3-type composites with

lead-free components. Journal of Advanced Dielectrics

11(5): 2160003.
Karger-Kocsis J, Mahmood H and Pegoretti A (2020) All-

carbon multi-scale and hierarchical fibers and related

structural composites: A review. Composites Science and

Technology 186: 107932.
Kudimova AB, Nasedkin AV, Nasedkina AA, et al. (2021)

Computer Simulation of composites consisting of piezo-

ceramic matrix with metal inclusions and pores.Mechanics

of Composite Materials 57: 657–666.
Kundalwal SI and Ray MC (2014) Effect of carbon nanotube

waviness on the effective thermoelastic properties of a

novel continuous fuzzy fiber reinforced composite. Com-

posites Part B Engineering 57: 199–209.
Kundalwal SI, Suresh Kumar R and Ray MC (2013) Smart

damping of laminated fuzzy fiber reinforced composite

shells using 1-3 piezoelectric composites. Smart Materials

and Structures 22: 105001.
Li R, Lachman N, Florin P, et al. (2015) Hierarchical carbon

nanotube carbon fiber unidirectional composites with pre-

served tensile and interfacial properties. Composites Sci-

ence and Technology 117: 139–145.
Lurie SA, Volkov-Bogorodskiy DB, Menshykov O, et al.

(2018) Modeling the effective mechanical properties of

‘‘fuzzy fiber’’ composites across scales length. Composites

Part B Engineering 142: 24–35.
Pindera M-J, Khatam H, Drago AS, et al. (2009) Microme-

chanics of spatially uniform heterogeneous media: A criti-

cal review and emerging approaches. Composites Part B

Engineering 40(5): 349–378.
Qian H, Greenhalgh ES, Shaffer MSP, et al. (2010) Carbon

nanotube-based hierarchical composites: A review. Journal

of Materials Chemistry 20: 4751–4762.
Rao Y, Ban J, Yao S, et al. (2021) A hierarchical prediction

scheme for effective properties of fuzzy fiber reinforced

composites with two-scale interphases: Based on three-

phase bridging model.Mechanics of Materials 152: 103653.
Song Q, Li K-Z, Li H-L, et al. (2012) Grafting straight carbon

nanotubes radially onto carbon fibers and their effect on

the mechanical properties of carbon/carbon composites.

Carbon 50(10): 3949–3952.

14 Journal of Intelligent Material Systems and Structures 00(0)



Tsalis D, Chatzigeorgiou G and Charalambakis N (2012)
Homogenization of structures with generalized periodicity.
Composites Part B Engineering 43(6): 2495–2512.

Tu W and Chen Q (2021) Electromechanical response of mul-
tilayered piezoelectric BaTiO3/PZT-7A composites with
wavy architecture. Journal of Intelligent Material Systems

and Structures 32(17): 1966–1986.
Yang H, Abali BE, Timofeev D, et al. (2020) Determination

of metamaterial parameters by means of a homogeniza-
tion approach based on asymptotic analysis. Continuum
Mechanics and Thermodynamics 32: 1251–1270.

Yang H and Müller WH (2021) Size effects of mechanical
metamaterials: A computational study based on a second-

order asymptotic homogenization method. Archive of

Applied Mechanics 91: 1037–1053.
Yildiz K, Gürkan Turgut F, et al. (2020) Fracture toughness

enhancement of fuzzy CNT-glass fiber reinforced compo-
sites with a combined reinforcing strategy. Composites

Communications 21: 100423.
Zhi J, Raju K, Tay T, et al. (2021a) Multiscale analysis of

thermal problems in heterogeneous materials with direct
FE2 method. International Journal for Numerical Methods

in Engineering 122(24): 7482–7503.
Zhi J, Raju K, Tay T-E, et al. (2021b) Transient multi-scale

analysis with micro-inertia effects using direct FE2

method. Computational Mechanics 67(6): 1645–1660.

Chen et al. 15


