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Abstract

The aim of this paper is to compute modes of immersed multilayer plates by writing and solving an eigenvalue
problem. The method can be applied to any kind of material with layers, i.e., fluid, anisotropic and viscoelastic.
The two external interfaces of the plate can be described as either vacuum/vacuum, fluid/vacuum, or fluid/fluid
with a single fluid or fluid/fluid with two different fluids. The method is based on the discretization of the plate
by using a finite differences scheme in its vertical direction. One global state vector is associated with inner
discretized positions of each layer, and two local state vectors characterize the physical state at its bounds.
Interfacial state vectors are introduced in certain situations at external and internal plate interfaces. With
these state vectors and after pertinent algebraic manipulations, an eigenvalue system is built. Its solutions
are searched by fixing the slowness, wavevector or frequency of guided waves. These three parameterizations
correspond to three different physical models. For each case, discussions of dispersion curves and attenuation
curves are given for guided modes in a plate loaded by fluids at one or two sides. This numerical tool is shown
to provide convenience and accuracy.
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highlights

� The computation of modes is accomplished by writing and solving an eigenvalue problem.

� Guided modes are found for a given slowness, wavevector or frequency.

� Convenient global, local and interfacial state vectors are necessary to build an eigenvalue system.

� A plate can possibly be loaded by two fluids with different sound speeds.
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1 Introduction

The subject of this paper is to provide a method that efficiently computes modes in multilayer plates that are
fluid-loaded on one or both sides by building an eigenvalue problem. In a one- or two-dimensional waveguide,
a mode is characterized by its wavevector k = ω s belonging to the axis/plane of the waveguide, its slowness
vector s and its angular frequency ω. Without any treatment, a linear system L(k, ω) a = 0 can be written.
The global matrix L(k, ω) [19] characterizes the waveguide, while components of the vector a that are not all
zeros are the amplitudes of the partial waves [26] contributing to the mode shape. The existence of a nonzero
solution a is conditioned by the satisfaction of the so-called “dispersion equation” det[L(k, ω)] = 0. This strongly
nonlinear equation can be directly solved by standard root-finding methods, for example Newton-like iterative
methods [19, 26]. The solutions of the dispersion equation are found one by one, with frequent problems of
convergence or ill-conditioning.

Alternatively, to avoid such numerical problems, an eigenvalue problem, which is easily solved with all solutions
acquired by a single computation, can be formulated by spatial discretization of the waveguide cross-section.
Specifically for nonradiating waveguides, various methods have been developed over the last decades to make this
discretization. As examples of such methods, let us cite the following: the thin-layer method (TLM) [14, 17], the
semi-analytical finite element (SAFE) approach [6], the scaled boundary finite element method (SBFEM) [7],
the high-order finite difference scheme [3], spectral collocation [12, 18], the complex-length finite element method
(CFEM) [1], or decomposition on basis functions [24].

For immersed or embedded one-dimensional waveguides, such as rods and pipes, two main approaches have been
used to obtain an eigenvalue problem. First, approximate radiation boundary conditions can be formulated as
in [13] for the fluid-loaded case and in [9, 10] for the solid-loaded case, namely, the dashpot boundary condition.
Second, numerical techniques for modeling the external infinite medium can be performed, such as “absorbing
regions” for fluids [4] and solids [2], the 2.5D boundary element method for fluids [21] and solids [20], and perfectly
matched layers (PML) for fluids [31] and solids [23]. Alternatively, iterative computation by solving successive
eigenvalue problems has also been used [8]. For a more complete bibliography, see, e.g., [8, 11, 21, 1, 18].

Even if similar methods can be directly employed for multilayer plates, e.g., [8, 30, 5], some specific and useful
approaches have been introduced. In that respect, for a solid half-space in seismology, the CFEM is coupled
with the method of perfectly matched discrete layers (PMDL) in [1]. More important for our study are recent
works of great interest on plates for an external fluid either on one side or both sides of the plate. In this way,
exact formulations have been developed to achieve a “polynomial eigenvalue problem” either directly by “using
the symmetry of Lamb wave modes under the conditions that leaky media are nonviscous fluids with the same
sound velocities” with SAFE [11], or by a change of variable in a spectral collocation scheme [18].

The present paper is in line with the results of Hayashi and Inoue [11] and of Kiefer et al. [18], which to our
knowledge are the only publications that have successfully posed an eigenvalue problem with exact boundary
conditions for an immersed plate. Even though the essence of these two methods and of ours may be the same,
the obtained final systems are significantly different since their specific state vectors have nothing to do with
each other. In addition, the polynomial eigenvalue formulations in [11] and [18] are not involved here. This
leads to a numerically solvable problem of smaller dimension. Moreover, the articles [11] and [18] are limited to
the case where the plate is loaded by two external fluids with the same sound speed. Another advance of the
present work is the use of a high-order finite difference scheme chosen for the simplicity of its implementation.
It also has other advantages such as very good accuracy with relatively few discretization points and the fact
that it does not require using any external calculation code.

The present paper addresses the case of a fluid-loaded multilayer plate where the two external fluids can have
different sound speeds. The global eigenvalue problem is built from a primary linear problem involving so-called
“global state vectors” and “local state vectors”. A single global state vector entirely describes the inner physical
state of the plate and depends on the numerical scheme used to discretize the plate thickness. At most two local
state vectors, introduced if necessary, represent the physical state of the plate at its external interfaces and are
involved in the boundary conditions. These boundary conditions are the classical zero normal stress condition
for vacuum, zero normal displacement for a rigid wall or the exact radiation boundary condition for an external
fluid.
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The dimension of the final eigenvalue problem is approximately twice the initial problem dimension if either a
fluid is loading one side only or if the two loading fluids have the same sound speed. This final dimension is
approximately four times the initial problem dimension if the two loading fluids have different sound speeds.
Thus, each frequency–wavenumber pair found numerically corresponds to a nonzero solution of wave equations
such that the acoustic wave in each external fluid is a plane wave with a single wavevector.

Consequently, the present technique is convenient not only to compute “guided modes”, where the plate does
radiate into one or two external fluids or does not for SH waves but also to deal with “crossing modes”, for
which an incident acoustic wave comes from one side of the plate and is transmitted through the plate to its
other side without any reflection. This point should be kept in mind for interpreting the results, even if it will
not be emphasized in this paper.

For lossless waveguides, the propagative modes have real-valued wavenumbers and, consequently, real-valued
slownesses, while evanescent modes have complex wavenumbers and amplitudes rapidly decreasing in space. For
radiating waveguides, a leaky mode can be characterized by its frequency, its wavenumber and its slowness. Only
one of these three parameters can be real-valued while the other two are complex-valued with nonzero imaginary
parts due to the leakage. Concerning these three parameters, different cases must be analyzed separately: (i) In
almost all of the papers cited above, as in most literature on the subject regardless of the technique used, the
axial wavenumbers of the modes are computed for a given real-valued frequency. This is what is called the
fixed-frequency problem. (ii) It has been shown that field computation can be done by a modal approach in the
time domain by computing eigenfrequencies for given real wavenumbers [17, 3]. As a result, the complete modal
basis contains only the propagative modes. Curiously, to our knowledge, these techniques are used relatively
infrequently. In the same idea, efficient codes using Laplace and Fourier integral transforms exist for simulating
the wave propagation in immersed/embedded waveguides of canonical forms, e.g., multilayer plates [15, 22] and
multilayer axisymmetric pipes [16]. For these two ways to calculate fields in waveguides, i.e., modal expansion
in time and integral transforms, the wavenumber is fixed and assumed to be real. This is the fixed-wavenumber
problem. (iii) To fully explain phenomena observed in experimental or numerical studies, due to plate resonances,
it is of great interest to fix a real-valued slowness [27]. This is the so-called fixed-slowness problem.

These three problems, which correspond to three different types of modes, are addressed below and illustrated
by basic examples. It is shown that for high-order finite difference schemes, detailed in the appendices, the
first two problems can be treated by the general technique described in this paper, while the last case, i.e., the
fixed-slowness problem, does not need particular treatment for immersed/embedded plates. In the latter case,
in contrast, possible ill-posed situations and singularities can occur and must be taken into account.

2 Definitions and basic equations

Let us consider a multilayered medium made of a plate system consisting of m number of perfect flat layers of
normal z corresponding to the vertical direction. The plate is assumed to be infinite in the horizontal xy-plane
and any two layers in contact are stacked together in this plane. Each layer is made either of an anisotropic solid
or a fluid, with a given thickness hβ=zβ−zβ−1, as illustrated in Fig. 1. The total thickness is expressed by `.
Above and below this plate system are semi-infinite half-spaces of fluid or vacuum. Without loss of generality,
we consider that each mode is characterized by its displacement field:

u(x, y, z, t) = Re{u(z) exp[ i (ω t− k x− ν y) ]}

at any time t and observation point m = (x, y, z). Satisfying the Snell-Descartes law at each interface, the
wavenumbers k and ν in the x- and y-directions, respectively, are identical for all partial waves propagating in
any layer or half-space. The complex function u results in interferences of these partial waves within the plate.
Without loss of generality, the wavenumber k = kr + i ki can be complex-valued, while the wavenumber ν is
considered a fixed real-valued parameter. The complex angular frequency ω = ωr + iωi satisfies ωr > 0, and the
amplitude is either constant or decreasing in time, i.e., ωi > 0, if the plate can radiate outwardly. In contrast,
the amplitude will be increasing, i.e., ωi < 0, if the plate receives energy from the outside.
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Consequently, each mode is characterized here by its angular frequency ω, its wavenumber k in the x-direction
and its shape u(z). Hereafter, for convenience, any shape f(z) of a field f(x, y, z, t) will be directly called by
the field name, e.g., u(z) will be the displacement vector. Furthermore, in all the equations below, the symbols
prime and double prime indicate, respectively, the first and second derivatives with respect to the vertical z-
direction. The wavenumber ν in the y-direction is often zero but it can be useful to consider it as a fixed
real-valued parameter to stay as general as possible.

The multilayer plate can contain solid and fluid layers, while each of its external bounds is in contact either
with vacuum1 or a fluid. Let us now summarize the basic equations of wave propagation in these media.

2.1 Solid media

First, solid layers are considered by assuming a general viscoelastic model. Due to possible stratification, the
mass density ρ(z) depends on the vertical position z. Newton’s second law yields the following system of
equations:

− ρ(z)ω2 u(z) = −i kσx(z)− i ν σy(z) + σ ′z(z) , (1)

where the vector σα(z) stands for the stress vector in the α-direction.

The generalized Hooke’s law is expressed by:

σα(z) = −i k [ Cαx(z) + iωHαx(z) ] u(z)

−i ν [ Cαy(z) + iωHαy(z) ] u(z)

+ [ Cαz(z) + iωHαz(z) ] u ′(z) , α = x, y, z ,

(2)

which models a viscoelastic behavior by introducing complex elastic tensors C(z) and H(z) which can depend
on the vertical position z. In addition, 3-by-3 submatrices of these tensors are involved in Eq. (2) and satisfy
Mαβ(z) = [mαijβ(z)]16i63,16j63, M = C,H. With the exception of the symmetry conditions, no specific as-
sumptions are imposed on these coefficients. Therefore, the general anisotropy can be inspected. Note that the
variations of propagation direction of guided waves are taken into account by rotating the crystallographic axes.
Consequently, the latter submatrices can be full in many cases.

2.2 Fluid media

To simplify the calculation developments, mainly to express the state vector in a fluid that will be introduced
later, it is of interest to express the fields and equations under consideration by using the displacement and
velocity potentials. Thus, all the fields are derived from the displacement potential ψ(z) satisfying the following
ordinary differential equation:

ψ ′′(z) =

(
k2 + ν2 − ω2

c2

)
ψ(z) , (3)

where c denotes the uniform sound speed.

Indeed, the velocity potential φ(z), the displacement vector u(z) and the acoustic pressure p(z) are defined as
follows:

φ(z) = iω ψ(z) , u(z) =

 −i k ψ(z)
−i ν ψ(z)
ψ ′(z)

 and p(z) = ρω2 ψ(z) . (4)

The expression of the acoustic pressure with respect to the displacement potential comes from Newton’s second
law, where ρ denotes the uniform mass density.

In the plate, Eqs. (1) and (2) in solid layers and Eqs. (3) and (4) in fluid layers will be directly included in the
numerical scheme without being solved, as shown below.

1The case of a fluid layer bounded by a rigid wall is also treated in the appendices.
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In contrast, in any fluid half-space loading the plate, it must be specified that the searched wave of vertical
wavenumber κα is only one of the two possible waves with opposite vertical wavenumbers, where

κα = ±

√
ω2

c2α
− k2 − ν2 , α = u, ` . (5)

The subscripts u and ` denote the upper (z < 0) and lower (z > `) half-spaces, respectively.

Each field f(z) in a fluid half-space (f = ψ, φ, p,u, . . . ) is analytically expressed by:

f(z) = fu exp(iκu z) , z < 0 , or f(z) = f` exp[iκ` (`− z)] , z > ` , (6)

in upper and lower half-spaces, respectively. Note that the wavenumbers κu and κ` correspond to opposite
vertical directions to maintain the symmetry.

The main challenge below will be to deal with the square root expressions (5) of the vertical wavenumbers in
the possible external fluids to build an eigenvalue problem that must be linear.

3 General equations obtained by discretization in the vertical di-

rection

The final aim is to obtain an eigenvalue problem with respect to λ, in the classic form:

λW = GW , (7)

where W denotes a “global vector” that will entirely describe the fields in the discretized immersed plate and
where the matrix G is generated by the discretization of the equations summarized in the previous section. Three
different cases are analyzed. For the first two cases, λ = iω corresponds to the first derivative with respect to
time t. These cases are the fixed-wavenumber problem, i.e., it can be solved for a given wavenumber k, and the
fixed-slowness problem, i.e., it can be solved for a given slowness s = k/ω. The third case is the fixed-frequency
problem, the most widespread, where the frequency ω is given and λ = −i k corresponds to the first derivative
with respect to position x.

In this section, a set of equations, considered the last stage before obtaining the eigenvalue problem (7), is built
by discretization in the vertical direction by using a high-order finite differences scheme.

3.1 Ordinary differential equation in each layer

In each layer, a “local state vector” w(z) must be defined such that the following ordinary differential system
with respect to the vertical position z is satisfied:

λw(z) = M0(z) w(z) +M1(z) w′(z) +M2(z) w′′(z) . (8)

The local state vector w(z) depends on the kind of medium. Typically, it is of dimension d= 6 for a solid
layer and of dimension d= 2 for a fluid layer. It also depends on the type of problem, i.e., fixed-wavenumber,
fixed-frequency or fixed-slowness. For all possible cases, Table 1 gives the expressions of the local state vector as
well as the associated subsections in the appendices where the specific expressions of the matrices M0(z), M1(z)
and M2(z) can be found. The different components of state vectors w(z) are deduced from displacement fields
u(z) for solid media, the solution of Eqs. (1) and (2), and from displacement potentials ψ(z) for fluid media,
the solution of Eq. (3).

It is very important to note that the choice of local state vectors is the key point of the method. Among all
the possible state vectors, those that have been chosen make the initial goal possible, i.e., the achievement
of the desired eigenvalue problem. Other possibilities likely exist but have not been found. Generally, the
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Problem Fixed-wavenumber Fixed-frequency Fixed-slowness

Searched
eigenvalue

λ = iω λ = −i k λ = iω

Medium of
the layer

Fluid Solid Fluid Solid Fluid Solid

Local state
vector w(z)

[
φ(z)
p(z)

] [
u(z)

v(z)=λu(z)

] [
ψ(z)
ux(z)

] [
u(z)

v(z)=λu(z)

] [
φ(z)
p(z)

] [
u(z)

v(z)=λu(z)

]
Appendix § B.1 § B.2 § C.1 § C.2 § D.1 § D.2

Table 1: Details on Eq. (8) with respect to both the treated problem and the medium: searched
eigenvalues, local state vectors and section numbers in the appendices which give more details
and the expressions of the matrix functions M0, M1 and M2. Local state vector w(z) - Fluid:
ψ, φ, p and ux are the displacement and velocity potential, the acoustic pressure and the
displacement in the x-direction. - Solid: u(z) is the displacement vector.

Figure 1: Geometry of the multilayer plate and state vectors. The discretiza-
tion of each layer is described at the left-hand side, with the definition of the
global state vector W and local state vectors w0 and wn at the bounds. The
right-hand side summarizes how an inner interface is taken into account in the
global state vector of the plate by introducing the additional interfacial state
vector sI .

definition of state vectors is a crucial point for many situations, e.g., Stroh formalism [29] or the formulation of
a biorthogonality relation for Lamb wave propagation [25].

To solve Eq. (8) for a single layer of thickness η, let us discretize the space with respect to the vertical position z
into n subintervals of the same thickness h= η/n, to obtain (n+1) vertical positions z0, z1, . . . , zn, so-called
the “nodes” of the mesh, as shown on the left side of Fig. 1. In doing so, we define a global state vector W of
dimension (n−1)×d containing the state vectors w(zi), i = 1, . . . , (n−1), at the inner nodes of the layer. By
applying a high-order finite difference scheme, the following vectors W′ and W′′ approximate the vectors of first
and second derivatives of the vector function w at the inner nodes, respectively:

W′ =
1

h
(S1 w0 +D1 W + T1 wn) ≈

 w′(z1)
...

w′(zn−1)

 and W′′ =
1

h2
(S2 w0 +D2 W + T2 wn) ≈

 w′′(z1)
...

w′′(zn−1)

 . (9)

These approximations also depend on the two local state vectors w0 = w(z0) and wn = w(zn) at the upper
and lower bounds, respectively. The newly introduced matrices S1, D1, T1, S2, D2 and T2 are given in A by
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Eqs. (A.1) and (A.2). Finally, introducing the expressions (9) in the discretization of Eq. (8), leads to the
following linear system:

λW =MW + C0 w0 + Cn wn , (10)

where:

M =M0 +
1

h
M1D1 +

1

h2
M2D2

C0 =
1

h
M1 S1 +

1

h2
M2 S2

Cn =
1

h
M1 T1 +

1

h2
M2 T2

and Mj =


Mj(z1) O3 · · · · · · O3

O3 Mj(z2)
. . .

...
...

. . . . . . . . .
...

...
. . . Mj(zn−2) O3

O3 · · · · · · O3 Mj(zn−1)

 , j = 0, 1, 2 .

To go forward, the continuity at the interfaces between two layers will be taken into account in the next
subsection.

3.2 Continuity at the internal interface of a bilayer

Eq. (10) holds true independently for any layer and contains the local state vectors w0 and wn at its upper and
lower bounds. However, the local state vectors at each interface are coupled from one layer to another through
the continuity equations. Let be an interface between two layers, for which all variables in the upper and lower
layers are indexed by plus and minus, respectively. As shown on the right side of Fig. 1, the local state vectors w−n
and w+

0 are involved at this interface. The continuity of normal stress and of either displacement vector for
solid/solid interfaces or vertical displacement for interfaces with at least one fluid provides complementary
equations. These equations depend on the kind of interface and two cases must be analyzed separately.

On the one hand, for the simplest cases, the following linear systems at the interface can be written:

w−n = K−−W− +K+
−W+ and w+

0 = K−+ W− +K+
+ W+ . (11)

The matrices K−−, K+
−, K−+ and K+

+ introduced in the generic form (11) depend on both the type of interface
and the problem to solve. Their expressions are detailed in the appendices, and the link of each case with
the corresponding subsection is given in Table 2. As an example, for the viscoelastic solid/viscoelastic solid
interface and for the fixed-wavenumber problem, the matrices K−−, K+

−, K−+ and K+
+ can be easily identified from

Eq. (B.17) in section B.4.3. This is a simple case, but other cases are more complicated, where the equations in
the generic form (11) would be very large to display. Consequently, the interested reader can find such generic
forms from the equations detailed in appendices.

Interface
Problem Fixed-

wavenumber
Fixed-frequency Fixed-slowness2

Fluid/Fluid § B.4.1 § C.4.1 § D.4.1

Fluid/Solid § B.4.2 § C.4.2 § D.4.2

Solid/Solid § B.4.3 § C.4.3 § D.4.3

Table 2: Internal interfaces without or with interfacial state vector, and subsection numbers
in appendices indicate where they are detailed.

2For this problem, only the simple case of homogeneous fluids and homogeneous elastic solids is considered.
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To fully take into account the interface equations, first, let us apply Eq. (10) to the two layers; second, replace w−n
and w+

0 in the latter two equations by their expression from Eq. (11) to obtain the following two equations:

λW− = C−0 w−0 +
(
M− + C−n K−−

)
W− + C−n K+

−W+ and

λW+ = C+0 K−+ W− +
(
C+0 K+

+ +M+
)

W+ + C+n w+
n .

(12)

On the other hand, more complicated cases exist, for which an additional equation at the interface must be
satisfied. This is necessary because an additional interfacial state vector sI must be introduced to express the
interface equations. Then, these equations can be written in the following generic linear system:

w−n = K−−W−+KI− sI +K+
−W+

λ sI = K−I W−+KII sI +K+
I W+

w+
0 = K−+ W−+KI+ sI +K+

+ W+

, (13)

where the new matrices KI−, K−I , KII , K+
I and KI+ depend, once again, on both the type of interface and the

problem dealt with. In Table 2, the link between each case and the corresponding subsection in the appendices
can be found. The same processes as those used to obtain Eq. (12) can be applied to obtain the following three
equations:

λW− = C−0 w−0 +
(
M− + C−n K−−

)
W− + C−n KI− sI + C−n K+

−W+ ,

λ sI = K−I W− + KII sI + K+
I W+ and

λW+ = C+0 K−+ W− + C+0 KI+ sI +
(
C+0 K+

+ +M+
)

W+ + C+n w+
n .

(14)

Finally, Eqs. (12) and (14), respectively, take the form:

λ W−
+ =M−

+ W−
+ + C−0 w−0 + C+n w+

n , where W−
+ =

[
W−

W+

]
or

 W−

sI

W+

 , (15)

stands for the state vector of the bilayer. At this stage, it is important to note that the above Eq. (15) exhibits
the same form as Eq. (10). Consequently, from an algebraic point of view, through Eq. (15), a bilayer can be
considered a single layer. This will be exploited in the next subsection to build the linear system associated
with more general multilayer plates.

3.3 Final equation for multilayer plates

The system associated with the multilayer plate described in Fig. 1 is progressively built by taking the first
layer and then adding the other layers one by one by using Eq. (15) to keep the same form (10) at each stage.
At the end of the process, the following generic system can be written:

λ W =MW + Cu wu + C` w` , (16)

where wu is the local state vector w0 of the first layer at its upper bound, and the vector w` denotes the local
state vector wn of the last layer at its lower bound. Of course, they cannot be eliminated for now. As a result,
the system given in Eq. (16), unfortunately, does not exhibit the correct form introduced in Eq. (7) because the
external boundary conditions are yet to be taken into account. This will be done in the next section.

To conclude, let us point out that other numerical methods, (e.g., SAFE, TLM, and SBFEM) can very likely
lead to the same formulation as Eq. (16), and, consequently, they can also be used in the process described in
the next section.
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4 Eigenvalue formulation for all possible cases

The goal is now to eliminate the two local state vectors wu and w` at the plate bounds in Eq. (16). The process
consists of expressing these two local state vectors as functions of both the global state vector W and two
possible interfacial state vectors su and s` by using the boundary conditions at the two external interfaces of the
plate. These conditions depend on the medium, i.e., solid or fluid, of the first and last plate layers and on the
upper and lower half-spaces that are in contact with the plate. These external boundary conditions are exact.

With two half-spaces of either vacuum or fluid, four cases are possible: vacuum/vacuum, fluid/vacuum, fluid/fluid
with a single fluid, or fluid/fluid with two different fluids. The much more complicated cases for which at least
one of the two half-spaces is solid are not treated here because more than a single partial wave must be considered
in a solid. This is still an open problem.

Writing the adequate equations requires a particular treatment for each problem, i.e., fixed-wavenumber, fixed-
frequency or fixed-slowness. Details are given in the appendices. In Table 3, the link between the different
cases and appendices can be found. Before giving details on calculation procedures, let us describe Table 3. It
presents the state variables at the two external interfaces z = 0 and z = `. The two local state vectors in the
first and last layers are denoted by wu = w(0+) and w` = w(`−), respectively. They are explicitly in agreement
with Table 1. For particular external conditions and treated problems, interfacial state vectors, denoted by su
and s`, must be introduced. For further investigations, let ru and r` be the dimensions of the vectors su and s`,
respectively. Each interfacial vector is expressed from different fields in the external half-space if it is of fluid,
and in both the external layer and the external half-space if it is solid. This vector can be empty, e.g., for a
fluid layer in contact with a half-space of vacuum. In contrast, its maximum dimension is 2 + 2 r where r is the
rank of the stiffness matrix Czx of the solid layer at its external side.

The next subsections describe how it is possible to obtain eigenvalue formulations for the four cases mentioned
above. Even if it is a specific case, the authors encourage the reader to first analyze § C.3.3, which concerns the
vacuum/viscoelastic solid interface. Generic equations for solid media are fully detailed only in this subsection.

4.1 Plate in vacuum

For this well-known case, the following two generic equations can be formulated by rewriting the boundary
conditions at z = 0:

λ su =Mu su +Nu W and wu = Qu su +Ru W , (17)

where an interfacial state vector su has been introduced, as detailed for different cases in subsections referenced
in Table 3. Follow the links given in Table 3 to obtain for each case the expressions of the su vector and of
matricesMu, Nu, Qu and Ru. It is noticeable that the rectangular matrices Nu and Ru are sparse and contain
nonzero coefficients only in their first rows, which specifically correspond to the uppermost nodes of the first
layer. These equations can include the simplest cases where the dimension of the interfacial state vector su is
zero and the matrices Mu, Nu and Qu are empty, which simply gives: wu = Ru W.

Similarly, a local state vector s` at the interface z = ` is introduced such that:

λ s` = N` W +M` s` and w` = R` W +Q` s` . (18)

Combining Eqs. (16), (17) and (18) immediately leads to the following set of equations after elimination of the
state vectors wu and w`:

λ

 su

W

s`

 =

 Mu Nu Oru,r`

CuQu M+ CuRu + C`R` C`Q`
Or`,ru N` M`


 su

W

s`

 , (19)

where On,m denotes the n-by-m zero matrix. This system is a standard eigenvalue problem as introduced in
Eq. (7). Its dimension is (N+ru+r`), where N is the dimension of the global state vector W.
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Let us inspect the circumstances for which the interfacial state vectors su and s` are zero-dimensional vectors.
Referring to Table 3, for the fixed-wavenumber problem, this occurs for any first and last layers. However, for
the two other problems, this is only possible if the first and last layer are both fluid media. As a result, the
system (19) is then reduced to: λW = (M+ CuRu + C`R`) W.

To close this section, it is important to note that Eqs. (17) and (18), and therefore Eq. (19), hold true also
for the fixed-slowness problem with external fluids, as shown in § D.3.4 and D.3.5 and summarized in Table 3.
Consequently, the next sections are only applicable to fixed-wavenumber and fixed-frequency problems.

4.2 Plate in contact with an external fluid at one side only

Let us consider the plate in contact with an external fluid at z = 0 and free at z = `. Let us first deal with
the free lower interface. Therefore, Eq. (16) can be rewritten by using Eq. (18). By doing so, the following
incomplete eigenvalue problem is obtained:

λW[`] =M[`] W[`] + C[`]u wu, with W[`]=

(
W
s`

)
, M[`]=

(
M+C`R` C`Q`
N` M`

)
and C[`]u =

(
Cu
Or`,N

)
, (20)

where the local state vector w` is eliminated and the possible interfacial state vector s` is included in the global
state vector W[`].

Much more complicated is the treatment of the external fluid in contact with the plate at z = 0 because the
vertical wavenumber κu, defined by a square-root in Eq. (5), is a nonlinear expression of both the frequency ω

Problem Fixed-wavenumber Fixed-frequency Fixed-slowness

Medium
of the
first layer

Fluid Solid Fluid Solid Fluid Solid

Local
state
vector wu

[
φ(0+)
p(0+)

] [
u(0+)
iω u(0+)

] [
ψ(0+)
ux(0

+)

][
u(0+)

−i k u(0+)

] [
φ(0+)
p(0+)

] [
u(0+)
iω u(0+)

]
Additional
interfacial

Vacuum — — — r⊥0 — r⊥0

state § B.3.2 § B.3.3 § C.3.2 § C.3.3 § D.3.2 § D.3.3

vector su
between the
first layer
and the up-
per
half-space:

Fluid

[
φu
pu

] 
ψu
φu
pu
v0z

 [
ψu
uux

] 
r⊥0

iκu r⊥0
ψu
uux

 [
φu
]

r⊥0

§ B.3.4* § B.3.5* § C.3.4* § C.3.5* § D.3.4 § D.3.5

Table 3: State variables at the interface z = 0 and z = `. Local state vector at the upper
external interface in the first layer wu = w(0+), see Table 1. Interfacial state vector su -
External fluid dependence: ψu, φu, pu and uux are the displacement and velocity potentials, the
acoustic pressure and the displacement in the x-direction, respectively. They are expressed at
z = 0. κu is the wavenumber in the z-direction, defined by Eq. (5). - Solid dependence: v0z is
the velocity in the z-direction. r⊥0 is a vector of dimension equal to the rank of the stiffness
matrix Czx. To deal with the lower interface, replace wu by w` = w(`−), and ψu, φu, pu, uux,
v0z, κu and r⊥0 by ψ`, φ`, p`, u`x, vnz, -κ` and r⊥n . The equations at interfaces are given either
by Eqs. (17) and (18) or by Eqs. (21) and (24). This last case is indicated by a star (*).
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and the wavenumber k. Fortunately, the square of κu is a linear combination of both frequency and horizontal
wavenumber squares. This property is essential for what follows, since the idea is to consider κu an additional
unknown of a new eigenvalue problem. Anticipating the further eigenvalue formulation (22), this is the key point
of this paper. In this spirit, the global state vector will be modified to include the vertical wavenumber κu, as
done in [11] in a different way, leveraging the fact that we can find a convenient interfacial state vector su such
that:

λ su = Mu su + Nu W + Pu (µu W) , (a)

wu = Qu su + Ru W + Su (µu W) and (b)

(µu wu) = Tu su + Uu W + Vu (µu W) , (c)

(21)

with the new parameter µu = iκu, as λ denotes either iω or −i k. To our knowledge, this kind of technique has
been used only by Hiyashi and Inoue [11] for the fixed-frequency problem, with a semi-analytical finite element
method and more complex calculations. At this stage, it is of great interest to put emphasis on the essence
of the method. As a matter of fact, it is particularly delicate to find the convenient interfacial state vector su
because Eq. (21) contains both additional terms at the right-hand side with respect to Eq. (17) and an additional
equation at its third row involving the new state vector components (µu wu) and (µu W). Note that all matrices
introduced in Eq. (21), i.e.,Mu, Nu, Pu, Qu, Ru, Su, Tu, Uu and Vu, do not depend on the parameter µu. These
matrices depend on the first layer medium, i.e, fluid or solid, in contact with the upper external fluid and on
the treated problem. The expressions of these matrices can be found in the appendices referenced in Table 3.
It is important to note that the interfacial state vector su is always necessary when the external interface is
not free, as indicated in Table 3. It is different from the possible interfacial state vector su at an interface with
vacuum used in the previous section.

Our primary goal is now achieved. Indeed, Eqs. (20) and (21) lead to the following eigenvalue problem as written
in Eq. (7):

λ

 su

W[`](
µu W[`]

)


︸ ︷︷ ︸
W

=

 Mu N [`]
u P [`]

u

C[`]u Qu M[`] + C[`]u R[`]
u C[`]u S [`]

u

C[`]u Tu C[`]u U [`]
u M[`] + C[`]u V [`]

u


︸ ︷︷ ︸

G

 su

W[`](
µu W[`]

)


︸ ︷︷ ︸
W

, (22)

of dimension [ru+2(N+r`)] and where Z [`]
u =

(
Zu Or`,r`

)
, Z ∈ {N ,P}, are r`-by-(N+r`) matrices and

Z [`]
u =

(
Zu ON,r`

)
, Z ∈ {R,S,U ,V}, are N -by-(N+r`) matrices. All of these matrices are defined such that

Zu W = Z [`]
u W[`]. The third component

(
µu W[`]

)
of the global state vector W is the mean to take into account

the vertical wavevector in the external fluid without using its expression (5). This kind of technique is well-
known to transform a second-order scalar ordinary differential equation (ODE) into a first-order vector ODE
or in Stroh formalism [29]. The first row of the global matrix G is directly obtained by using Eq. (21.a). The
second row of G is built by replacing the local state vector wu in Eq. (20) by its expression (21.b). The last row
of G results from the product of Eq. (20) by µu, in which (µu wu) is then replaced by its expression (21.c).

4.3 Plate in contact with two external fluids with the same sound speed

If the plate is in contact with external fluids at both sides, we begin by the elimination of the local state
vector wu at z = 0, as explained above to obtain Eq. (22), except that in this case, Eq. (20) is replaced by
Eq. (16) while Eq. (21) remains used. Doing so provides the following system:

λ

 su

W

µu W


︸ ︷︷ ︸

W∗

=

 Mu Nu Pu
CuQu M+ CuRu Cu Su
Cu Tu Cu Uu M+ Cu Vu


︸ ︷︷ ︸

M∗

 su

W

µu W

+

Oru,d` Oru,d`

C` ON,d`

ON,d` C`


︸ ︷︷ ︸

C∗`

(
w`

µu w`

)
︸ ︷︷ ︸

w∗`

, (23)

where d` denotes the dimension of the local state vector w`.
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Thus, considering the vertical wavenumber κ` = −iµ` in the external fluid at the side z = `, we find a convenient
state vector s` such that:

λ s` = M` s` + N` W + P` (µ` W) ,

w` = Q` s` + R` W + S` (µ` W) and

µ` w` = T` s` + U` W + V` (µ` W) .

(24)

It is now necessary to separate the case where the two external fluids are identical, or at least have the same
sound speed3, from the case where the sound speeds are different. This last case is treated in the next subsection.
Each wavenumber κu or κ` corresponds to a single wave in each external fluid half-space. If the sound speeds
are identical, these wavenumbers are either equal or opposite, i.e., κ` = ε κu where ε = ±1. (i) If ε = 1,
the wavevectors in the external fluids are symmetrical with respect to the plate plane. The plate is actually
considered a waveguide. The two waves are either both outgoing or both ingoing. (ii) If ε = −1, the wavevectors
are equal. The plate is crossed by the wave which is ingoing to one side and outgoing from the other side. With
this notation, µ` = ε µu and combining Eqs. (23) and (24) gives the following eigenvalue problem of dimension
(ru+2N+r`):

λ


su

W

µu W

s`

 =


Mu Nu Pu Oru,r`

CuQu M+ CuRu + C`R` Cu Su + ε C` S` C`Q`
Cu Tu Cu Uu + ε C` U` M+ Cu Vu + C` V` ε C` T`
Or`,ru N` εP` M`




su

W

µu W

s`

 . (25)

Let us compare the solutions given by Hayashi and Inoue [11] and Kiefer et al. [18] with ours. Even if the
essence of all is the same, the obtained final systems are different. This is notably because polynomial eigenvalue
formulation is not used in the present paper. In addition, one of the most important reasons is that the specific
state vectors have nothing to do with each other. Moreover, the assumptions of availability do not cover the
same range of uses.

In that respect, an assumption of “symmetry of Lamb wave modes under the conditions that leaky media are
nonviscous fluids with the same sound velocities” in anisotropic multilayered plates is made in [11] to obtain a
third-order polynomial eigenvalue problem, which leads to an eigenvalue problem of dimension almost one and a
half greater than the dimension of Eq. (25). A fourth-order polynomial eigenvalue problem is formulated in [18]
by using a proper change of variables, as similarly done before in [13]. This latter “procedure is applicable to
anisotropic, viscoelastic, inhomogeneous, and layered plates coupled to an inviscid fluid” and gives an eigenvalue
problem of dimension approximately twice the dimension of Eq. (25). Thus, the smaller dimension of the
eigenvalue problem (25) may have an appreciable impact on numerical computations. Furthermore, referring to
the definitions given in the present paper, these two works deal only with the fixed-frequency problem. Another
interest of the present approach is that inspecting a plate in contact with two different external fluids is just a
matter of algebraic manipulations, as shown in the next subsection.

3assumption made in [11].

E. Ducasse & M. Deschamps 12 / 31 Mode computation of immersed multilayer plates



4.4 Plate in contact with two different external fluids

When the calculation architecture is well understood through the above examples, this last and more complicated
case is easy to inspect. Skipping details, if the sound speeds in external fluids are different, Eqs. (23) and (24)
lead to the following eigenvalue problem of dimension (2 ru + 4N + 2 r`):

λ

 W∗

µ` W
∗

s∗`

 =

 M
∗ + C∗` R∗` C∗` S∗` C∗` Q∗`
C∗` U∗` M∗ + C∗` V∗` C∗` T ∗`
N ∗` P∗` M∗

`


 W∗

µ` W
∗

s∗`

 , (26)

where s∗` =

(
s`
µu s`

)
, M∗

` =

(
M` Or`,r`

Or`,r` M`

)
, Z∗` =

(
Or`,ru Z` Or`,N

Or`,ru Or`,N Z`

)
, Z ∈ {N ,P},

Z∗` =

(
Z` Od`,r`

Od`,r` Z`

)
, Z ∈ {Q, T } and Z∗` =

(
Od`,r` Z` Od`,r`

Od`,r` Od`,r` Z`

)
, Z ∈ {R,S,U ,V}.

All the other matrices are defined in Eq. (23).

5 Numerical results

This section reports some numerical results based on our numerical schemes. These results have been obtained
by using an 8th-order finite difference scheme, detailed in A. The code has been carefully validated. First, the
three separately formulated problems have been compared to each other for free plates and give the same results
with a high-precision level for modes with real-valued eigenfrequencies and eigenwavenumbers, i.e., attenuated
neither in time nor in space. Second, regarding finite-element-like codes, convergence is checked by changing
both discretization steps and order of the finite difference scheme. Thus, convergence is well controlled with
respect to these two parameters.

Many computations have been done for comparison with the literature. Let us mention the analysis of such in
the following cases: immersed monolayer isotropic plate by formulating an eigenvalue problem [11] or by using
an iterative method [8]; and multilayer plate in vacuum with anisotropic and fluid layers [12]. All of these latter
cases are fixed-frequency problems. The comparison has also been done with the fixed-slowness problem of an
immersed isotropic plate [27]. All comparisons give similar dispersion curves.

Beyond these examples, more detailed investigations are shown in next three subsections for the three problems
treated here. For all cases, these analyses concern a 1 mm thick brass plate. For the fixed-frequency problem,
the plate is immersed in water, while for the other two problems, the plate is loaded by water on one side and
by motor oil on the other side. Indeed, we focus on this latter example because to our knowledge, the case
of two fluids with different sound speeds has never been addressed by solving an eigenvalue problem. For the
fixed-frequency and fixed-wavenumber problems, modes can be obtained while the size of the global matrix is
twice that of its dimension for plates immersed in a single fluid. In contrast, the fixed-slowness problem needs a
global matrix of half-dimension, i.e., of the same dimension as that for plates in vacuum. Material parameters
are given in Table 4.

Material Mass density Compression sound speed Shear sound speed

Brass ? ρb = 8.44 mg·mm−3 cL = 4.475 mm·µs−1 cT = 2.204 mm·µs−1

Water ? ρw = 1.00 mg·mm−3 cw = 1.48 mm·µs−1 —

Motor Oil � ρo = 0.87 mg·mm−3 co = 1.74 mm·µs−1 —

Table 4: Material parameters for computations, from [18] ? and [8] �.
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(a) Phase velocity ω/Re(k) (b) Attenuation −Im(k)

Figure 2: Fixed-frequency problem - 1 mm thick brass plate immersed in
water: (a) phase velocities and (b) attenuations of modes versus frequency, to
be compared with Fig. 7 of [18].

5.1 Fixed-frequency problem

For comparison with the recent article from Kiefer et al. [18], the example of the brass plate loaded by water at
both sides is presented in Figure 2. This figure shows dispersion curves obtained for the fixed-frequency problem,
where the phase velocity and attenuation are plotted versus the frequency. These curves overlap perfectly those
of Fig. 7 from [18]. The dispersion curves of the SH modes, which are not attenuated because they do not
interact with external fluids, appear in Figure 2, while they are not drawn in [18] because the present code
treats general anisotropy without any simplifying assumption. To complete the comparison with this paper, let
us note that for a plate loaded by water at one side only, cf. Fig. 5 of [18], similar results are obtained but not
shown here.

5.2 Fixed-wavenumber problem

The dispersion curves obtained for the fixed-wavenumber problem are represented in Fig. 3a for the structure
water/brass/motor oil. The wavenumber k is assumed to be real-valued. The complexity necessary to take into
account the fluid loading is ensured by a complex frequency because attenuation is held by the imaginary part
of the frequency. For comparison with the fixed-frequency problem, the associated attenuation is scaled with
respect to position such that: Im(ω)/cϕ = k Im(ω)/Re(ω) where cϕ denotes the phase velocity. This normalized
attenuation is drawn on Fig. 3b. From a physical point of view, the subsonic modes at low frequencies might
be interesting to be investigated more precisely, but this is out of the topic of the present paper.

This structure has not been shown for the fixed-frequency problem in the above subsection. Nevertheless, when
comparing with the fixed-wavenumber problem, the dispersion curves are very close while the attenuations are
different since they do not exhibit the same physical meaning. However, they have similar orders of magnitude,
as observed in most cases. In the same spirit, the dispersion curves for the structure water/brass/water are
not drawn in this section because they are close to the fixed-frequency problem drawn in Fig. 2. They are also
similar to the case of the free plate, except for subsonic cases; see, e.g., [28], i.e., when the phase velocities are
less than the sound speed cw in water.

5.3 Fixed-slowness problem

Finally, Figure 4 shows the case where the slowness s, or the phase velocity cφ = 1/s, is fixed and real-valued.
The structure is the same as in § 5.2. Let us first analyze the dispersion curves. They differ from the other two
cases at low frequencies and for phase velocities lower than the sound speed co in oil, as shown in Fig. 4a. It must
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(a) Phase velocity Re(ω)/k) (b) Attenuation Im(ω)/cϕ = k Im(ω)/Re(ω)

Figure 3: Fixed-wavenumber problem - water / 1 mm thick brass plate / mo-
tor oil: (a) phase velocities and (b) attenuations of modes versus frequency.

(a) Phase velocity c = 1/s (b) Attenuation Im(ω)/c = s Im(ω)

Figure 4: Fixed-slowness problem - water / 1 mm thick brass plate / motor oil:
(a) phase velocities and (b) attenuations of modes versus frequency.

be noted that the computation of modes cannot be done if the phase velocity is in the close vicinity of any sound
speed of any material, i.e., cL, cT for brass, cw for water and co. Indeed, the problem is necessarily ill-posed,
exhibiting a singularity, because an infinity of modes should be found for phase velocity equal to cT , cw or co,
as can be observed in Fig. 3 and shown in D for mathematical details. Second, let us examine the imaginary
part of solutions, as illustrated in Fig. 4b, where s Im(ω) = Im(ω)/cφ is drawn for comparing attenuations. The
attenuations are notably different but in the same order of magnitude as the previous case. The amplitude of
each attenuated mode is in this case both decreasing with respect to time at a given position and increasing
with position at a given time; see [27] for more explanations.

6 Conclusion and prospects

A method has been developed to compute dispersion curves of guided waves for multilayered plates that exhibit
no, one or two fluids loading one or two of its sides. This method, based on the formulation of an eigenvalue
problem, provides a powerful and accurate tool that can be applied to any kind of layered material, i.e., fluid,
anisotropic and viscoelastic. To this end, interfacial state vectors must be introduced in certain situations
at external and internal interfaces. This eigenvalue system can be formulated by fixing the frequency, the
wavenumber or the slowness of the guided waves. These three formulations need matched treatments and
correspond to three distinct meaningful problems that can be associated with three different physical models.

The method presented in this study is only applied to laminated plates immersed in fluids or not. However, it
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seems possible to generalize this method to plates buried in isotropic elastic solids. At this stage, this is just an
assumption that needs to be confirmed after additional efforts. Unfortunately, the generalization of this method
to unidirectional waveguides of any section, as rods for instance, does not seem realistic. Restricting to circular
multilayer pipes that satisfy the assumption of rotational invariance, it may be envisioned that this problem
can be solved using the essence of our method. This is once again just a supposition.

Parallel to the present work, a study of energy velocities of elastic guided waves in immersed plates is in progress
for the three problems associated with the three formulations.
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A Finite differences in vertical position z

Let us discretize a layer of thickness η in n slices of thickness h = η/n. The position of each inner node is
zi = z0 + i h, i = 1, 2, . . . , n−1. To approximate a d-dimensional local state vector w(z) and its first and second
derivatives, let us apply a finite difference scheme of 2mth order on these three vectors. At position zi, they are
denoted by wi, w ′i and w ′′i , respectively, such that wi ≈ w(zi), w ′i ≈ w ′(zi) and w ′′i ≈ w ′′(zi). Assuming that
the number of slices satisfies n > 2m+ 2 and noting N = (n−1) d, let us introduce the following N -dimensional
vectors:

W =


w1

w2
...

wn−1

 , W ′ =


w ′1
w ′2
...

w ′n−1

 and W ′′ =


w ′′1
w ′′2

...
w ′′n−1

 ,

which express the approximations of the “global state vector” W of the layer and its first and second derivatives
at the inner discretization points of the interval [0, η]. An essential linear combination, associating the global
state vector, its first derivative and the two local state vectors w0 and wn at the bounds of the layer, can be
written as follows:

hW ′ = S1 w0 +D1 W + T1 wn , (A.1)

where S1 =



d
[1]
10 Id

d
[1]
20 Id
...

d
[1]
m0 Id

Od
...
Od


, T1 =



Od
...
Od

−d[1]m0 Id
...

−d[1]20 Id

−d[1]10 Id


and D1 =



R11 Od · · · · · · · · · Od

...
...

...
...

...
R1m Od Od

R1cent Od Od

Od R1cent Od Od

...
. . . . . . . . . . . . . . . . . .

...
Od Od R1cent Od

Od Od R1cent

Od Od R1−m
...

...
...

...
...

Od · · · · · · · · · Od R1−1



.

S1 and T1 are N -by-d matrices, while D1 is a N -square matrix. The matrices R1i and R1−i, of dimension d-by-l
with l = 2md, are such that:

R1i =
(
d
[1]
i1 Id d

[1]
i2 Id · · · d

[1]
i 2m Id

)
and R1−i =

(
−d[1]i 2m Id · · · −d

[1]
i2 Id −d

[1]
i1 Id

)
.

The d-by-(l+d) matrix R1cent =
(
d
[1]
m0 Id d

[1]
m1 Id · · · d

[1]
m (2m−1) Id d

[1]
m 2m Id

)
corresponds to the standard

centered scheme. Due to the symmetry properties of the first derivative, the following relations hold true:
d
[1]
m (2m−j)= − d

[1]
mj for any index j, and therefore the central coefficient d

[1]
mm is zero. Eq. (A.1) separates the

physics components, i.e., the state vectors, from the variables associated with the numeric scheme and included
in the matrices S1, T1 and D1. In fact these matrices depend only on the coefficients d

[1]
ij that come directly

from the approximations of the first derivative. They are given in Table 5 for m = 4.

Similarly, the vector W ′′ can be expressed as a linear combination of the global state vector W and of the local
state vectors w0 and wn such that:

h2 W ′′ = S2 w0 +D2 W + T2 wn . (A.2)

S2 and T2 are N -by-d matrices, while D2 is an N -square matrix. This latter matrix is of the same form as the
matrix D1 and contains the d-by-(l + d) submatrices R2i and R2−i such that:

R2i =
(
d
[2]
i1 Id d

[2]
i2 Id · · · d

[2]
i (2m+1) Id

)
and R2−i =

(
d
[2]
i (2m+1) Id · · · d

[2]
i2 Id d

[2]
i1 Id

)
.
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d
[1]
ij u0 u1 u2 u3 u4 u5 u6 u7 u8 u9

u ′0 −761
280

8 −14 56
3

−35
2

56
5

−14
3

8
7

−1
8

u ′1 −1
8

−223
140

7
2

−7
2

35
12

−7
4

7
10

−1
6

1
56

u ′2
1
56

−2
7
−19

20
2 −5

4
2
3

−1
4

2
35

− 1
168

u ′3 − 1
168

1
14

−1
2
− 9

20
5
4

−1
2

1
6

− 1
28

1
280

u ′4
1

280
− 4

105
1
5

−4
5

0 4
5

−1
5

4
105

− 1
280

u ′5
1

280
− 4

105
1
5

−4
5

0 4
5

−1
5

4
105

− 1
280

d
[2]
ij u0 u1 u2 u3 u4 u5 u6 u7 u8 u9

u ′′1
761
1260

61
144

−201
35

341
30

−1163
90

411
40

−17
3

1303
630

− 9
20

223
5040

u ′′2 − 223
5040

293
280

−395
252

−13
30

83
40

−319
180

59
60

− 5
14

389
5040

− 19
2520

u ′′3
19

2520
− 67

560
97
70

−89
36

23
20

7
40

−17
90

11
140

− 1
56

1
560

u ′′4 − 1
560

8
315

−1
5

8
5

−205
72

8
5

−1
5

8
315

− 1
560

u ′′5 − 1
560

8
315

−1
5

8
5

−205
72

8
5

−1
5

8
315

− 1
560

Table 5: Finite difference coefficients d
[1]
ij and d

[2]
ij of the linear combinations linking

the approximations u ′i and u ′′i of the first and second derivatives of a function u at
node ]i, respectively, to the values uj of the function at nodes ]j, for an 8th order
scheme.

The d-by-(l + d) matrix R2cent =
(

d
[2]
m0 Id d

[2]
m1 Id · · · d

[2]
m (2m−1) Id d

[2]
m 2m Id

)
is associated with the

centered scheme and its coefficients satisfy the following symmetry property d
[2]
m (2m−j)=d

[2]
mj for any index j. For

a finite difference scheme of 8th order, the coefficients d
[1]
ij and d

[2]
ij associated with the first and second derivatives,

respectively, are given in Table 5.

The first derivatives on the bounds of interval [0, η] satisfy similar equations:

hw ′0 = `0 w0 + L(d)
0 W and hw ′n = −`0 wn + L(d)

n W , (A.3)

with `0 = d
[1]
00 and where the d-by-N matrices L(d)

0 and L(d)
n are such that:

L(d)
0 =

(
d
[1]
01 Id · · · d

[1]
0 (2m) Id Od · · · Od

)
and L(d)

n =
(
Od · · · Od −d[1]0 (2m) Id · · · −d

[1]
01 Id

)
.

The developed method considerably relies on the latter equations (A.3). For further investigations, the global
state vector W, containing the local state vectors wi defined in Table 1 for each case, will be separated into
two global state subvectors by introducing one of the following three pairs: (Φ,P), (Ψ,Ux) or (U,V). These
notations will be useful in the next three appendices.
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B Detailed calculations for the fixed-wavenumber problem

B.1 Local state vector in homogeneous fluid [Eq. (8), Table 1]

The chosen local state vector is two-dimensional, consisting of the velocity potential and acoustic pressure
components. Therefore, by using Eqs. (3) and (4), the generic ODE (8) with respect to z is expressed with the
following vector and matrices:

w(z) =

[
φ(z)

p(z)

]
, M0 =

[
0 −1/ρ

ρ c2 (k2 + ν2) 0

]
, M1 = O2 and M2 =

[
0 0
−ρ c2 0

]
. (B.1)

B.2 Local state vector in viscoelastic solid [Eq. (8), Table 1]

The local state vector is six-dimensional and contains the displacement and velocity vectors. From Eqs. (1)
and (2), the generic ODE (8) is obtained with:

w(z) =

[
u(z)

v(z) = iω u(z)

]
, M0(z) =

[
O3 I3

M021(z) M022(z)

]
,

M1(z) =

[
O3 O3

M121(z) M122(z)

]
and M2(z) =

[
O3 O3

M221(z) M222(z)

]
,

(B.2)

with 

M021(z) = ρ(z)−1
{
−k2 Cxx(z)− k ν [Cxy(z)+Cyx(z)]− ν2 Cyy(z)− i k C ′zx(z)− i ν C ′zy(z)

}
M022(z) = ρ(z)−1

{
−k2Hxx(z)− k ν [Hxy(z)+Hyx(z)]− ν2Hyy(z)− i kH ′zx(z)− i νH ′zy(z)

}
M121(z) = ρ(z)−1 {−i k [Cxz(z)+Czx(z)]− i ν [Cyz(z)+Czy(z)] + C ′zz(z)}
M122(z) = ρ(z)−1 {−i k [Hxz(z)+Hzx(z)]− i ν [Hyz(z)+Hzy(z)] +H ′zz(z)}
M221(z) = ρ(z)−1 Czz(z)

M222(z) = ρ(z)−1 Hzz(z)

.

B.3 External interface at z = 0

B.3.1 Rigid wall/homogeneous fluid [Eq. (17), Table 3]

For rigid walls, the boundary condition is such that the normal displacement is zero, i.e., w ′(0+) = 02. By
using approximation Eq. (A.3), the state vector wu at the interface is immediately expressed with respect to

the global state vector W as follows: wu = − (`0)
−1 L(2)

0 W.

B.3.2 Vacuum/homogeneous fluid [Eq. (17), Table 3]

At a vacuum interface, both acoustic pressure and potentials are zero, i.e., w(0+) = wu = 02.

B.3.3 Vacuum/viscoelastic solid [Eq. (17), Table 3]

For simplicity, we neglect viscosity at the interface, i.e., all the matrices Hαβ(0+), α, β = x, y, z, in Eq. (2) are
assumed to be zero. The normal stress at the interface satisfies: σz(0

+) = 03. From Eq. (2) and approximation
Eq. (A.3), the displacement vector u0 and the velocity vector v0 in the solid at the interface are given by:

u0 = Au L(3)
0 U and v0 = Au L(3)

0 V, where:

Au = Bu
[

1

h
Czz(0+)

]
with Bu =

{
−`0
h
Czz(0+) + i

[
k Czx(0+) + ν Czy(0+)

]}−1
. (B.3)

E. Ducasse & M. Deschamps 20 / 31 Mode computation of immersed multilayer plates



Note that the 3-by-3 matrix Czz(z) is necessarily invertible. Consequently, the matrix Bu is defined for a
discretization step h small enough. Finally, the local state vector wu at the interface is a linear expression of
the global state vector W of the layer, as for the previous cases:

wu =

(
u0

v0

)
=

(
Au O3

O3 Au

)
L(6)

0 W . (B.4)

The generic form (17) is then identified with Eq. (B.4) with an empty interfacial vector su and empty matrices
Mu, Nu and Qu.

B.3.4 Homogeneous fluid/homogeneous fluid [Eq. (21), Table 3]

From Eq. (6), the vertical velocity and acoustic pressure at z = 0 are such that: iκu(k, ω) φu = φ′(0+) and
pu = p(0+), which implies ρu φu = ρ φ(0+). Using approximation Eq. (A.3), we deduce that:

iκu(k, ω)φu =
1

h

(
`0 φ(0+) + L(1)

0 Φ
)

and iκu(k, ω) pu =
ρu
ρ h

(
`0 p(0

+) + L(1)
0 P

)
. (B.5)

To obtain an eigenvalue-like equation, let us express iω pu in the following form:

iω pu = ρu ω
2 φu = ρu c

2
u

[
k2 + ν2 + κu(k, ω)2

]
φu

= ρu c
2
u

{(
k2 + ν2

)
φu − iκu(k, ω)

[
1

h

(
ρu
ρ
`0 φu + L(1)

0 Φ

)]}
.

Consequently, the components φu and pu constituting the local state vector w(0−) in the external fluid at the
interface satisfy the following eigenvalue-like equations:

iω φu = −pu/ρu and

iω pu = ρu c
2
u

{[
k2 + ν2 −

(
ρu `0
ρ h

)2
]
φu −

ρu `0
ρ h2

L(1)
0 Φ− 1

h
L(1)

0 [iκu(k, ω)Φ]

}
.

(B.6)

Both the local state vector wu = w(0+) of the multilayer plate at the bound z = 0 and the vector iκu(k, ω) wu

can be expressed as follows:

wu =

(
ρu/ρ 0

0 1

)
w(0−) and iκu(k, ω) wu =

ρu
ρ h

[
`0

(
ρu/ρ 0

0 1

)
w(0−) + L(2)

0 W

]
. (B.7)

Considering the additional interfacial state vector su = w(0−), from Eqs. (B.6) and (B.7), the system (21) is
completely defined.

B.3.5 Homogeneous fluid/viscoelastic solid [Eq. (21), Table 3]

Continuity of both vertical velocity and acoustic pressure at z = 0 leads to: iκu(k, ω)φu = vz(0
+) and pu n =

−σz(0+) = i
[
k Czx(0+)+ν Czy(0+)

]
u(0+) − Czz(0+) u ′(0+), where n denotes the unit vector in the z-direction.

From approximation Eq. (A.3) and definition (B.3), we obtain the displacement vector u0 in the solid at the
interface, with respect to the acoustic pressure pu in the fluid at the interface and the global displacement
vector U inside the solid:

u0 = pu Bu n +Au L(3)
0 U . (B.8)
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After some algebra, it seems convenient to consider the four-dimensional interfacial state vector su in the external
fluid at the interface, whose components are the acoustic pressure pu, the velocity potential φu, the displacement
potential ψu and the velocity v0z in the z-direction. Indeed, we obtain the following eigenvalue-like equations:

iω pu =
1

βu
(v0z − au ·V) , iω ψu = φu ,

iω φu = − 1

ρu
pu and iω v0z =

1

βu ρu

{
pu
ρu c2u

− (k2 + ν2)ψu + au · [iκu(ω, k) U]

}
,

(B.9)

where the vector au is the last row of the matrix Au L(3)
0 and the non-zero coefficient βu is the (3, 3)-component

of the matrix Bu . To express the local state vector wu at the interface defined by Eq. (B.2), let us complete
Eq. (B.8) by expressing the velocity vector v0 as follows:

v0 = v0z n + JAu L(3)
0 V , where J =

(
1 0 0
0 1 0
0 0 0

)
. (B.10)

Combining the square of Eq. (5) and Eqs. (B.9) and (B.10) yields the following expressions of the vectors
[iκu(k, ω) u0] and [iκu(k, ω) v0]:

iκu(k, ω) u0 =

[(
k2 + ν2

)
ψu −

pu
ρu c2u

]
n + JAu L(3)

0 [ iκu(k, ω) U ] and

iκu(k, ω) v0 =

[(
k2 + ν2

)
φu +

1

βu ρu c2u
(au ·V − v0z)

]
n + JAu L(3)

0 [ iκu(k, ω) V ] .

(B.11)

Consequently, the local state vector wu is expressed in Eqs. (B.8) and (B.10) with respect to both the two
global state vectors W and [ iκu(k, ω) W ] and the components of the interfacial state vector su that satisfies
the eigenvalue-like system (B.9). With Eq. (B.11), the generic system (21) is then totally defined.

B.4 Internal interfaces

B.4.1 Homogeneous fluid/homogeneous fluid [Eq. (11), Table 2]

Continuity of vertical velocity and acoustic pressure at z = zI leads to: (φ−) ′(z−I ) = (φ+) ′(z+I ) and p−(z−I ) =
p+(z+I ). From these equations and approximation Eq. (A.3), we deduce that: p−n = p+0 ,

ρ− φ−n = ρ+ φ+
0 and

1

h−
(
−`0 φ−n + L(1)

n Φ−
)

=
1

h+

(
`0 φ

+
0 + L(1)

0 Φ+
)

.

After some basic algebra, we obtain expressions of fields at the interface with respect to fields inside both layers:

w−n =
1

`0 (h−ρ−+h+ρ+)

[
h+
(
ρ+ 0
0 ρ+

)
L(2)
n W− − h−

(
ρ+ 0
0 ρ−

)
L(2)

0 W+

]
and

w+
0 =

1

`0 (h−ρ−+h+ρ+)

[
h+
(
ρ− 0
0 ρ+

)
L(2)
n W− − h−

(
ρ− 0
0 ρ−

)
L(2)

0 W+

]
.

(B.12)

Eq. (B.12) is directly of the form (11).

B.4.2 Viscoelastic solid/homogeneous fluid [Eq. (13), Table 2]

Continuity of vertical velocity and acoustic pressure at z = zI induces that: v−z (z−I ) =
(
φ+
) ′

(z+I ) and σ−z (z−I ) =

−i
[
k C−zx(z−I )+ν C−zy(z−I )

]
u−(z−I ) + C−zz(z−I )

(
u−
) ′

(z−I ) = −p+(z+I ) n, where n denotes the unit vector in the
z-direction. As in Eq. (B.3), the matrices A−n and B−n are defined as follows:

A−n = B−n
[

1

h−
Czz(z−I )

]
with B−n =

{
`0
h−
Czz(z−I ) + i

[
k Czx(z−I ) + ν Czy(z−I )

]}−1
. (B.13)
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Thus, we obtain from Eq. (A.3) both the velocity in the z-direction and the displacement vector in the solid at
the interface, with respect to the velocity potential and the acoustic pressure in the fluid at the interface and
the displacement inside the solid. Their expressions are:

n · v−n =
1

h+

(
`0 φ

+
0 + L(1)

0 Φ+
)

and u−n = p+0 B−n n +A−n L(3)
n U− , (B.14)

that give the following expression of the velocity vector in the solid at the interface:

v−n = JA−n L(3)
n V− +

1

h+

(
`0 φ

+
0 + L(1)

0 Φ+
)

n . (B.15)

Finally, after elimination of the displacement and velocity vectors in the solid at the interface, we obtain the
eigenvalue-like equation on the local state vector w+

0 :

iωw+
0 = iω sI =


−p

+
0

ρ+

1

β−n

[
1

h+

(
`0 φ

+
0 + L(1)

0 Φ+
)
− a−n ·V−

]
 , with sI =

 φ+
0

p+0

 , (B.16)

where β−n = n · (B−n n) denotes the (3, 3)-component of the matrix B−n , and a−n is the last row of the matrix

A−n L
(3)
n . Consequently, in this particular case, a 2-dimensional additional interfacial state vector denoted sI

must be introduced. With the definition (B.2) of the state vector in fluid, Eqs. (B.14) and (B.15) give the first
equation of system (13). Eq. (B.16) provides the second equation of this system and the third, since w+

0 = sI .
Of course, this last equation is strongly reduced.

B.4.3 Viscoelastic solid/viscoelastic solid [Eq. (11), Table 2]

The continuity of displacement, velocity and vertical-stress vectors gives:

w−n = w+
0 =

(
A+

O3

O3 A+

)
L(6)

0 W+ −
(
A− O3

O3 A−
)
L(6)
n W− , (B.17)

where B =
{
−`0

[
(1/h+) C+zz + (1/h−) C−zz

]
+ i

[(
k C+zx + ν C+zy

)
−
(
k C−zx + ν C−zy

)]}−1
, A− = (1/h−)B C−zz and

A+ = (1/h+)B C+zz. Eq. (B.17) gives the two state vectors to build the system (11).

C Detailed calculations for the fixed-frequency problem

C.1 Local state vector in homogeneous fluid [Eq. (8), Table 1]

The local state vector is two-dimensional. Its components are the displacement potential and the displacement
in the x-direction. From Eqs.(3) and (4), the generic ODE (8) is expressed with the following vector and
matrices:

w(z) =

[
ψ(z)

ux(z) = −i k ψ(z)

]
, M0 =

(
0 1

ν2 − ω2/c2 0

)
, M1 = O2 and M2 =

(
0 0
−1 0

)
. (C.1)

C.2 Local state vector in viscoelastic solid [Eq. (8), Table 1]

In this case, where the angular frequency ω is considered as a parameter, the generalized Hooke’s law (2) can
be simply rewritten as follows:

σα(z) = −i [k Cαx(z, ω) + ν Cαy(z, ω)] u(z) + Cαz(z, ω) u ′(z) , α = x, y, z . (C.2)
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The generic ODE (8) is built with the following six-dimensional local state vector:

w(z) =

[
u(z)

v(z) = −i k u(z)

]
, (C.3)

remembering that the vector v does not denote the velocity vector in the fixed-frequency problem.

From Eqs. (C.2) and (C.3), the matrices M2(z), M1(z) and M0(z) are the following 6-by-6 matrices:

M2(z) =

[
O3 O3

−C−1xx Czz O3

]
, M1(z) =

{
O3 O3

C−1xx [i ν (Cyz + Czy)− ∂zCzz] −C−1xx [(Cxz + Czx)]

}
and

M0(z) =

{
O3 I3

C−1xx [ ν2 Cyy + i ν ∂zCzy − ρ(z)ω2
I3 ] C−1xx [i ν (Cxy + Cyx)− ∂zCzx]

}
, Cαβ(z, ω) being simply denoted

by Cαβ .

C.3 External interface at z = 0

C.3.1 Rigid wall/homogeneous fluid [Eq. (17), Table 3]

The condition of zero normal displacement at z = 0 leads to: w ′(0+) = 02. The approximation Eq. (A.3)

directly gives the expression of the local state vector: wu = − (`0)
−1 L(2)

0 W.

C.3.2 Vacuum/homogeneous fluid [Eq. (17), Table 3]

The condition of zero acoustic pressure at z = 0 is: w(0+) = wu = 02.

C.3.3 Vacuum/viscoelastic solid [Eq. (17), Table 3]

Even though the results of this subsection concern only vacuum/viscoelastic solid external interfaces, the method
used here will be useful to express stress, displacement and velocity fields in any solid independently of the
external medium, i.e., vacuum or fluid. A similar method is also used below to treat internal interfaces involving
at least one solid layer.

By using Eq. (C.2) and the finite difference approximation Eq. (A.3) applied to u′(0+), we obtain the following
expression of the normal stress:

σz(0
+) = C+

zx v0 + B−1u
[
−u0 +Au L(3)

0 U
]

, (C.4)

where v0 = −i k u0 is not the velocity vector4, Bu =
[
(−`0/h) C+zz + i ν C+zy

]−1
and Au = h−1 Bu C+zz. Note the

similarity of this definition of the matrices Au and Bu to Eq. (B.3) for the fixed-wavenumber problem. The zero
normal stress condition immediately gives the expression of the displacement vector u0 at the interface such
that:

u0 = Bu C+zx v0 +Au L(3)
0 U , (C.5)

where the global vector U contains the displacements at the inner nodes of the plate. Multiplying Eq. (C.5) by

(−i k) gives:
(
Bu C+zx

)
(−i k v0) = v0 −Au L(3)

0 V, where the C+zx matrix is generally not invertible.

For the elastic case and with the Voigt notation, this matrix takes the form: Czx =

 C15 C56 C55

C14 C46 C45

C13 C36 C35

.

Remembering that the variations of propagation direction of guided waves are taken into account by rotating
the crystallographic axes, this matrix can be full in many cases. Nevertheless, for both isotropic solids and

4In fact v0 denotes λu0 which is the velocity vector only if λ = iω, i.e., for the other two problems.
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wave propagation along one crystallographic axis of an orthorhombic medium, this matrix is not invertible and

contains only two nonzero coefficients: Czx =

 0 0 C55

0 0 0
C13 0 0

.

Assuming that the matrix Bu C+zx is diagonalizable leads to: Bu C+zx = X0 diag
16i63

(λi) X−10 .

Considering the new vector r0 such that v0 = X0 r0 leads to: −i k diag
16i63

(λi) r0 = r0 −X−10 Au L
(3)
0 V, where the

eigenvalues λi are sorted by decreasing absolute values. The number of nonzero eigenvalues is the rank r of the
matrix C+zx5. To partially invert the latter equation, the three components of the vector r0 must be separated
into two vectors r⊥0 and r//

0 of dimensions r and 3−r, respectively. Doing so, we obtain:

−i k r⊥0 = Λ−10

[
r⊥0 −Y⊥0 Au L

(3)
0 V

]
, r//

0 = Y//

0Au L
(3)
0 V and v0 = X⊥0 r⊥0 + X//

0 r//

0 , (C.6)

where Λ0 = diag
16i6r

(λi) is an r-by-r diagonal invertible matrix. The r-by-3 matrix Y⊥0 and the (3−r)-by-3

matrix Y//

0 are built by taking the first r rows and the last (3−r) rows of the matrix X−10 , respectively. Similarly,
X⊥0 and X//

0 denote the matrices built by taking the first r columns and the last (3−r) columns of the matrix X0,
respectively. Finally, by replacing the vector r//

0 in the expression of v0 and rewriting Eq. (C.5) with Eq. (C.6), the
subvectors u0 and v0 of the local state vector wu at the interface with respect to the state vectors r⊥0 = Y⊥0 v0 ,
U and V are expressed as follows:

u0 = X⊥0 Λ0 r⊥0 +Au L(3)
0 U and v0 = X⊥0 r⊥0 + X//

0 Y//

0Au L
(3)
0 V . (C.7)

Introducing the interfacial state vector su = r⊥0 and with the first equation of (C.6), the identification of Eq. (17)
is then immediate.

C.3.4 Homogeneous fluid/homogeneous fluid [Eq. (21), Table 3]

From the wave definition in half-spaces given in Eq. (6), continuity of both vertical displacement and acoustic
pressure at z = 0 yields: iκu(k, ω)ψu = ψ ′(0+) and pu = p(0+), which implies: ρu ψu = ρψ(0+). By using the
expression given in §C.1, the local state vector wu of the plate at z = 0 is deduced as follows:

wu =

[
ψ(0+)

−i k ψ(0+)

]
=
ρu
ρ

(
ψu
uux

)
=
ρu
ρ

w(0−) =
ρu
ρ

su , (C.8)

where the interfacial state vector su has been introduced and coincides with the local state vector w(0−) in the
external fluid. Calculating the derivative w ′(0−) by using approximation Eq. (A.3) gives:

iκu(k, ω) wu =
ρu
ρ

[iκu(k, ω) su] =
ρu
ρ

[
ρu `0
ρ h

su +
1

h
L(2)

0 W

]
. (C.9)

The state variables in the external fluid satisfy the eigenvalue-like equations:

−i k ψu = uux and

−i k uux = −ρu `0
ρ h2

L(1)
0 Ψ− 1

h
L(1)

0 [ iκu(k, ω)Ψ ] +

[
ν2 − ω2

c2u
−
(
ρu `0
ρ h

)2
]
ψu .

(C.10)

From Eqs. (C.10), (C.8) and (C.9), Eqs. (21.a), (21.b) and (21.c) can be identified, respectively.

5r = 2 in most cases.
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C.3.5 Homogeneous fluid/viscoelastic solid [Eq. (21), Table 3]

Using the notation introduced for the vacuum/solid case, the normal stress at the interface in the solid is given by
Eq. (C.4). When writing the continuity of vertical stress vector, the presence of fluid instead of vacuum induces
changes in Eqs. (C.6) and (C.7). The subvectors u0 and v0 of the local state vector wu and the interfacial
vector r⊥0 now satisfy the following equations:

u0 = X⊥0 Λ0 r⊥0 +Au L(3)
0 U + ρu ω

2 ψu bu ,

v0 = X⊥0 r⊥0 + X//

0 Y//

0

(
Au L(3)

0 V + ρu ω
2 uux bu

)
and

−i k r⊥0 = Λ−10

[
r⊥0 −Y⊥0

(
Au L(3)

0 V + ρu ω
2 uux bu

)]
,

(C.11)

where the new vector bu is the last column of the matrix Bu defined in Eq. (C.4). Note that uux denotes
the displacement in the x-direction in the fluid and, of course, is different from the first component of the
displacement vector u0 in the solid. The variable ψu stands for the displacement potential in the fluid. In
regard to the vacuum/solid case, the vector r⊥0 must be appended to the interfacial state vector su because it
satisfies the eigenvalue-like equation being the last row of Eq. (C.11). The continuity of the vertical displacement
immediately gives: iκu(k, ω)ψu = n ·u0 and iκu(k, ω)uux = n ·v0, which leads with Eq. (C.11) to the following
expressions of iκu(k, ω) u0 and iκu(k, ω) v0:

iκu(k, ω) u0 = X⊥0 Λ0

[
iκu(k, ω) r⊥0

]
+Au L(3)

0 [ iκu(k, ω) U ] + ρu ω
2 (n · u0) bu and

iκu(k, ω) v0 = X⊥0
[
iκu(k, ω) r⊥0

]
+ X//

0 Y//

0

(
Au L(3)

0 [ iκu(k, ω) V ] + ρu ω
2 (n · v0) bu

)
,

(C.12)

where the vectors u0 and v0 will be easily replaced in (n ·u0) and (n ·v0) by the expressions given in Eq. (C.11).
Thus, from Eq. (C.1), we need to express the eigenvalue-like equations linking the two components of the
interfacial state vector in the fluid as follows:

−i k ψu = uux and

−i k uux = −k2 ψu =

(
κ2u(k, ω) + ν2 − ω2

c2u

)
ψu = −n · [ iκu(k, ω) u0 ] +

(
ν2 − ω2

c2u

)
ψu .

(C.13)

Last, the state vector
[
iκu(k, ω) r⊥0

]
that must be appended to complete the interfacial state vector su satisfies

the following eigenvalue-like equation:

−i k
[
iκu(k, ω) r⊥0

]
= Λ−10

{[
iκu(k, ω) r⊥0

]
−Y⊥0 Au L

(3)
0 [ iκu(k, ω) V]− ρu ω2 (n · v0) Y⊥0 bu

}
. (C.14)

Finally, from Eqs. (C.11) to (C.14), all the elements to obtain the matrices defined in System (21) can be
identified.

C.4 Internal interfaces

C.4.1 Homogeneous fluid/homogeneous fluid [Eq. (11), Table 2]

The equations of continuity of both vertical displacement and acoustic pressure at the interface immediately
give:

w−n = ρ+ wI and w+
0 = ρ−wI , where wI =

1

`0 (ρ− h− + ρ+ h+)

[
h+ L(2)

n W− − h− L(2)
0 W+

]
. (C.15)

These two equations lead immediately to Eq. (11).
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C.4.2 Homogeneous fluid/viscoelastic solid [Eq. (13), Table 2]

The continuity of the vertical displacement yields:

1

h−
[
−`0 ψ−n + L(1)

n Ψ−
]

= n · u+
0 and

1

h−
[
−`0 u−nx + L(1)

n U−x
]

= n · v+
0 . (C.16)

The combination of Eq. (C.16) and Eq. (C.11), the latter expressing the continuity of the vertical stress vector
at the interface, gives the expressions of the displacement potential ψ−n and the displacement u−nx in the fluid at
the interface, i.e., the components of the local state vector w−n , such that

ψ−n =
1

`0 + ω2 ρ− h− n · b0

[
L(1)
n Ψ− − h− n ·

(
X⊥0 Λ0 r⊥0 +Au L(3)

0 U+
)]

and

u−nx =
1

`0 + ω2 ρ− h− n · (X//

0 Y//

0 b0)

[
L(1)
n U−x − h− n ·

(
X⊥0 r⊥0 + X//

0 Y//

0 Au L
(3)
0 V+

)]
.

(C.17)

On rewriting Eq. (C.11) with the notations of this section, the following expressions:

u+
0 = X⊥0 Λ0 r⊥0 +Au L(3)

0 U+ + ω2 ρ− ψ−n bu

v+
0 = X⊥0 r⊥0 + X//

0 Y//

0

(
Au L(3)

0 V+ + ω2 ρ− u−nx bu

)
−i k r⊥0 = Λ−10

[
r⊥0 −Y⊥0

(
Au L(3)

0 V+ + ω2 ρ− u−nx bu

)] (C.18)

give the two components u+
0 and v+

0 of the local state vector w+
0 in the solid and the eigenvalue-like equation

with respect to the additional interfacial state vector sI = r⊥0 . Consequently, with the state vector definitions
given in § C.1 and § C.2, the above equations (C.17) and (C.18) provide system (13).

C.4.3 Viscoelastic solid/viscoelastic solid [Eq. (13), Table 2]

The continuity of displacements u−n = u+
0 implies v−n = v+

0 . As a consequence, the two local state vectors in
both solids, defined by Eq. C.3, are such that:

w−n = w+
0 . (C.19)

Thus, only one of these two vectors has to be expressed. Let us choose the vector w−n . The continuity of normal
stress leads to:

u−n =Mv−n +A+ L(3)
0 U+ −A− L(3)

n U− , (C.20)

where A− = (1/h−)B C−zz , A+ = (1/h+)B C+zz and M = B (C+zx − C−zx),

with B =
{
−`0

[
(1/h+) C+zz + (1/h−) C−zz

]
+ i ν

(
C+zy − C−zy

)}−1
.

In the same way as Eqs. (C.6) and (C.7) have been obtained above from Eq. (C.5) for the solid/vacuum case,
here, Eq. (C.20) leads to the following equations, with suitable notations:

u−n = X⊥Λ r⊥ +
(
A+ L(3)

0 U+ −A− L(3)
n U−

)
,

v−n = X⊥ r⊥ + X// Y//

(
A+ L(3)

0 V+ −A− L(3)
n V−

)
and

−i k r⊥ = Λ−1
[
r⊥ −Y⊥

(
A+ L(3)

0 V+ −A− L(3)
n V−

)]
.

(C.21)

An interfacial state vector sI = r⊥ of dimension the rank r of the M matrix has been introduced.
Finally, with Eqs. (C.19) and (C.21), the system (13) can be identified. To conclude, note that
if C−zx = C+zx, there is no interfacial state vector, i.e., its rank is zero, and Eq. (C.21) simply becomes:

u−n = A+ L(3)
0 U+ − A− L(3)

n U− and v−n = A+ L(3)
0 V+ − A− L(3)

n V−. These two equations are the same as
for the fixed-wavenumber problem [cf. Eq. (B.17)].
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D Detailed calculations for the fixed-slowness problem

For this problem, the horizontal slowness vector is fixed and the frequency ω becomes the variable to be
found. The slowness horizontal vector can be arbitrarily directed along the x-axis. Consequently, if s denotes
the slowness in the x-direction, the two vertical slownesses τu and τ`, in the upper and lower external fluids,
respectively, are such that:

τu = ±

√
1

c2u
− s2 and τ` = ±

√
1

c2`
− s2 , (D.1)

where, by using Eq. (5): k = ω s, ν = 0, κu = ω τu and κ` = ω τ`.

The issues of this third case are quite different from the others; therefore, they are further away from the main
topic of the present paper. Consequently, we consider here only the simple case of homogeneous fluids and
homogeneous elastic solids.

D.1 Local state vector in homogeneous fluid [Eq. (8), Table 1]

Let us consider the acoustic pressure p(z) and the velocity potential φ(z). From Eqs. (3) and (4), these two
fields are linked by the following equations:

iω φ(z) = −1

ρ
p(z) and iω

(
s2 − 1

c2

)
p(z) = ρ φ ′′(z) . (D.2)

There is a degenerate case when s = 1/c . This means that a plane wave propagates in the x-direction such
that the vertical velocity vz(z) = φ ′(z) = v0 is uniform on the layer and p(z) = iω ρ v0 z + p(0). In this case,
the global state vector of the layer is reduced to a single value v0 such that iω v0 = (p(`)− p(0))/(ρ `).

In the other cases, i.e., under subsonic or supersonic conditions, the two-dimensional local state vector w(z)
and the matrices M0, M1 and M2 in the generic ODE (8) are such that:

w(z) =

[
φ(z)

p(z)

]
, M0 =

[
0 −1/ρ
0 0

]
, M1 =O2 and M2 =

[
0 0

−α(s) 0

]
, where α(s)=

ρ c2

1− s2 c2
=

ρ

τ(s)2
. (D.3)

D.2 Local state vector in homogeneous Elastic solid [Eq. (8), Table 1]

Newton’s second law (1) and the standard Hooke’s law (2) for a homogeneous elastic solid lead to:

iω
(
s2 Cxx − ρ I3

)
v(z) = s (Cxz + Czx) v ′(z)− Czz u ′′(z) . (D.4)

The stiffness matrix Cxx is symmetric positive definite. Basically, it admits three eigenvalues ρ c2i
(i ∈ {1, 2, 3}) and an orthogonal polarization matrix P such that Cxx = ρP diag

i∈{1,2,3}
(c2i )PT. In the isotropic

case, c1 = cL and c2 = c3 = cT are the longitudinal and transverse sound speeds, respectively. Thus, Eq. (D.4)
becomes:

iω diag
i∈{1,2,3}

(s2 c2i − 1)PT v(z) =
1

ρ
PT [s (Cxz + Czx) v ′(z)− Czz u ′′(z)] . (D.5)

Consequently, similar to fluids, degenerate cases occur when s = 1/ci, i.e., the slowness corresponds to a bulk
wave propagating in the x-direction. This situation is not detailed here. For nondegenerate cases, the generic
ODE (8) is satisfied for the following six-dimensional local state vector w(z) and matrices:

w(z) =

[
u(z)

v(z) = iω u(z)

]
, M0 =

[
O3 I3

O3 O3

]
,

M1 =

[
O3 O3

O3 s (s2 Cxx−ρ I3)−1 (Cxz + Czx)

]
and M2 =

[
O3 O3

− (s2 Cxx−ρ I3)−1 Czz O3

]
.

(D.6)
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D.3 External interface at z = 0

D.3.1 Rigid wall/homogeneous fluid [Eq. (17), Table 3]

For rigid walls, the boundary condition is such that the normal displacement is zero, i.e., w ′(0+) = 02. By
using approximation Eq. (A.3), the state vector wu at the interface is immediately expressed with respect to

the global state vector W by: wu = − (`0)
−1 L(2)

0 W.

D.3.2 Vacuum/homogeneous fluid [Eq. (17), Table 3]

At a vacuum interface, both acoustic pressure and potentials are zero, i.e., w(0+) = wu = 02.

D.3.3 Vacuum/homogeneous elastic solid [Eq. (17), Table 3]

Writing that the vertical stress vector σz(0
+) in the solid is zero at the interface z = 0 leads to: iω s Czx u0 =

s Czx v0 =
1

h
Czz

(
`0 u0 + L(3)

0 U
)

and iω s Czx v0 =
1

h
Czz

(
`0 v0 + L(3)

0 V
)

.

As in § C.3, Eq. (C.6), after the diagonalization of the matrix Bu Czx, where Bu = (−h/`0) C−1zz , we obtain the
following equations:

u0 = −sX⊥0 Λ r⊥0 −
1

`0
L(3)

0 U , v0 = X⊥0 r⊥0 −
1

`0
X//

0 Y//

0 L
(3)
0 V and iωr⊥0 = −1

s
Λ−1

[
r⊥0 +

1

`0
Y⊥0 L

(3)
0 V

]
.

(D.7)

Let the vector r⊥0 be the interfacial state vector su. As a result, with the local state vector given in Eq. (D.6),
system (17) is obtained.

D.3.4 Homogeneous fluid/homogeneous fluid [Eq. (17), Table 3]

Analogous to the previous cases, we consider only the nondegenerate case where the slowness s is assumed to
be different from 1/c. The continuity of acoustic pressure at the interface with Eq. (D.2) directly implies that
the local state vector wu at the interface in the first fluid layer satisfies:

wu = w(0+) =

[
φ(0+)

p(0+)

]
=

(
ρu/ρ 0

0 1

)(
φu

pu

)
, (D.8)

where φu and pu are the two components of the local state vector at the interface in the external fluid. Due to
the definition (D.1) of the vertical slowness τu, approximation Eq. (A.3) and Eq. (D.2), the continuity of vertical
displacement yields:

vz0 = − τu
ρu

pu =
1

h

[
`0 φ(0+) + L(1)

0 Φ
]

=
1

h

[
`0 ρu
ρ

φu + L(1)
0 Φ

]
. (D.9)

From Eqs. (D.2) and (D.9), both the following expression of the acoustic pressure pu at the interface and the
following eigenvalue-like equation with respect to φu are obtained:

pu = − ρu
τu h

[
`0 ρu
ρ

φu + L(1)
0 Φ

]
and iω φu =

1

τu h

[
`0 ρu
ρ

φu + L(1)
0 Φ

]
. (D.10)

Setting the interfacial state vector su as the one-dimensional vector consisting of the velocity potential φu,
Eq. (17) can be written without difficulty.
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D.3.5 Homogeneous fluid/homogeneous elastic solid [Eq. (17), Table 3]

This case is similar to the vacuum/solid interface, keeping the same equations (D.7). The only difference is
that the Czx matrix is replaced by {Czx + [ρu/(s τu)] n ⊗ n}, assuming that the vertical slowness τu is nonzero,
i.e., the case is not degenerate. It comes from the continuity of the vertical stress vector and Eq. (D.9):

−pu n =
ρu
τu

(n · v0) n =
ρu
τu

(n⊗ n) v0 = −s Czx v0 +
1

h
Czz

(
`0 u0 + L(3)

0 U
)

.

D.4 Internal interfaces

D.4.1 Homogeneous fluid/homogeneous fluid [Eq. (11), Table 2]

For nondegenerate cases, i.e., s 6= 1/c− and s 6= 1/c+, because the local state vector is the same as that for the
fixed-wavenumber problem, the state vectors w−n and w+

0 at the interface are given by Eq. (B.12).

D.4.2 Homogeneous fluid/homogeneous elastic solid [Eq. (13), Table 2]

This case is the most difficult to handle. The two displacement and velocity vectors in the solid at the interface
have to be separated into two in-plane vectors u+

0 and v+
0 and two vertical components uz and vz, such that:

u+
0 = P

T u
[xy]
0 + uz n and v+

0 = P
T v

[xy]
0 + vz n , where P =

(
1 0 0
0 1 0

)
. (D.11)

The continuity of vertical velocity gives the following eigenvalue-like equation:

iω uz = vz =
1

h−
(
−`0 φ−n + L(1)

n Φ−
)

. (D.12)

The continuity of the vertical stress vector gives:

0 = −sP C+zx v+
0 +

1

h+
P C+zz

(
`0 u+

0 + L(3)
0 U+

)
and p−n = −n·

[
−s C+zx v+

0 +
1

h+
C+zz
(
`0 u+

0 + L(3)
0 U+

)]
. (D.13)

To separate the displacement field into the horizontal and vertical contributions, let us consider the 2d vectors
c
[xy]
λµ = P C+λµ n and the 2-by-2 matrices C[xy]λµ = P C+λµPT. Then, Eqs. (D.11) and (D.13) give the following 2d

linear system characterizing the zero normal shear stress condition at the interface:

s
(
C[xy]zx v

[xy]
0 + vz c[xy]

zx

)
=

1

h+

[
`0

(
C[xy]zz u

[xy]
0 + uz c[xy]

zz

)
+P C+zz L

(3)
0 U+

]
. (D.14)

Following a technique analogous to the one used for the vacuum/solid viscoelastic solid interface in section C.3.3,

the matrix Bxy = (−h+/`0)
(
C[xy]zz

)−1
is introduced. Then, the matrix Mxy =Bxy C[xy]zx of rank r is diagonalized

such that Mxy = X⊥xyΛxy Y⊥xy. Finally, on defining a r-dimensional state vector r⊥xy such that r⊥xy = Y⊥xy v
[xy]
0 ,

the horizontal displacement is expressed by:

u
[xy]
0 = −sX⊥xyΛxy r⊥xy + uxy , (D.15)

where uxy = Bxy
[
− s

h−
(
−`0 φ−n + L(1)

n Φ−
)

c[xy]
zx +

1

h+

(
`0 uz c[xy]

zz +P C+zzL
(3)
0 U+

)]
. Let us note that if the

rank r is zero, e.g., for orthorhombic crystals, Eq. (D.15) simply reduces to u
[xy]
0 = uxy .

The interfacial state vector sI contains the velocity potential φ−n in the fluid, the vertical displacement uz and
the in-plane vector r⊥xy of dimension in {0, 1, 2}. By using the state equation in the fluid, see Eq. (4), Eq. (D.12),
and the product by iω of Eq. (D.15), we obtain the following equations:

iω φ−n =
−1

ρ−
p−n , iω r⊥xy =

−1

s
Λ−1xy

[
r⊥xy −Y⊥xy vxy

]
and v

[xy]
0 = X⊥xy r⊥xy + X//

xy Y//

xy vxy , (D.16)
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where vxy = Bxy
[

s

ρ− h−
(
−`0 p−n + L(1)

n P−
)

c[xy]
zx +

1

h+

(
`0 vz c[xy]

zz +P C+zzL
(3)
0 V+

)]
.

The last difficulty is to eliminate the acoustic pressure p−n from Eqs. (D.11), (D.13) and (D.16). After some
algebra, we obtain the following equation:{

1− s2 h+

ρ− h−
c[z]
zx ·
[
X//

xyY
//

xy

(
C[xy]zz

)−1
c[xy]
zx

]
︸ ︷︷ ︸

c13 for orthorhombic crystals

}
p−n = q(φ−n ,Φ

−,P−, uz,U
+, r⊥xy,V

+) , (D.17)

where c
[z]
zx is the 2d vector of components of the stiffnesses c13 and c36. By construction, the function q does

not depend on the acoustic pressure p−n . This function is very complicated. This is why the right-hand side
of Eq. (D.17) is not detailed here. Note that a nonphysical singularity is unexpectedly introduced and can be
treated by changing the discretization steps h− and h+.

D.4.3 Homogeneous elastic solid/homogeneous elastic solid [Eq. (13), Table 2]

For nondegenerate cases, i.e., s 6= 1/c−i and s 6= 1/c+i for i = 1, 2, 3, the continuity of displacement gives
u−n = u+

0 , which implies v−n = v+
0 . Using the same notations as those for the fixed-frequency problem, see

Eq. (C.20) by setting ν = 0, the following set of equations is built:
u−n = −sX⊥Λ r⊥ +

(
A+ L(3)

0 U+ −A− L(3)
n U−

)
v−n = X⊥ r⊥ + X// Y//

(
A+ L(3)

0 V+ −A− L(3)
n V−

)
iω r⊥ =

−1

s
Λ−1

[
r⊥ −Y⊥

(
A+ L(3)

0 V+ −A− L(3)
n V−

)] (D.18)

to bring to light the interfacial state vector sI = r⊥.

This set of equations gives all necessary expressions to obtain the form (13). As previously, if C−zx = C+zx, there is
no interfacial state vector, i.e., its rank r is zero. Therefore, analogous to the other problems given by Eqs. (B.17)

and (C.21), Eq. (D.18) simply becomes: u−n = A+ L(3)
0 U+ −A− L(3)

n U− and v−n = A+ L(3)
0 V+ −A− L(3)

n V−.
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