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Enhancement of a dynamic vibration
absorber by means of an
electromagnetic shunt

Michel Auleley1,3, Olivier Thomas1 , Christophe Giraud-Audine2 and
Hervé Mahé3

Abstract
In this study, we address the reduction of structural vibrations by means of an electromagnetic shunt damper (EMSD)
combined with a mechanical dynamic vibration absorber (DVA). Two architectures, that differs in the placement of the
EMSD with respect to the DVA, are tested, showing that one of them enhances the vibration control. In parallel, three
shunt architecture are tested: a resistive shunt, a resonant conservative shunt and a resonant dissipative shunt. Optimal
values of the EMSD and DVA parameters are obtained; then, the performances of all architecture, according to relevant
criteria, are estimated and compared to a single DVA or a single EMSD. The case of a conservative DVA, that creates an
anti-resonance, is particularly targeted. It is shown that the performances rely on two free parameters only: the mass
ratio for the DVA and the electromagnetic coupling factor for the EMSD, thus giving generic abacuses that can be applied
to any practical cases. Finally, experiments are proposed and a good agreement with the theoretical results is obtained,
thus validating them.

Keywords
Electromagnetic shunt damper, vibration control, electromechanical coupling factor, damping performance, tuning,
optimisation

1. Introduction

Vibrations of mechanical systems and structures can be
the cause of material fatigue, preliminary failure and
unwanted noise. To reduce them, passive mechanical
dampers are widely used (Connor and Laflamme,
2014). They consist in attaching to the host structure
one or several simple mechanical one degree of
freedom systems whose purpose is to counteract the
oscillations and to dissipate energy as heat. The most
well known principles are the Lanchester damper
(Lanchester, 1914; Snowdon, 1968), composed of an
inertia and a dashpot (Figure 1(d)) and the dynamic
vibration absorber (DVA) (Frahm, 1911; Hartog,
1956), composed, in the conservative case, of an inertia
and a spring (Figure 1(e)), or, in the general case, with
a dashpot in addition (Figure 1(f)). If those mechanical
dampers are used in many applications, their perfor-
mances are linked to the value of the added mass: the
more inertia is added to the host structure, the higher
the damping performances are. This article explores the
idea of coupling those mechanical dampers to an elec-
tromagnetic (EM) shunt damper, to enhance the

performances, or to achieve the same performances
with a reduced added mass.

Since the early 90’, electromechanical analogs of the
mechanical dampers have been proposed, giving birth
to the so-called electromechanical shunt dampers. In
the pioneering works (Forward, 1979; Hagood and
Von Flotow, 1991), a piezoelectric transduction is pro-
posed, for which piezoelectric transducers glued on the
host structure are shunted by a passive well-chosen
impedance (see, among others (Thomas et al., 2012)).
More recently (Behrens et al., 2003), the same idea has
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been proposed with an electromagnetic transducer
shunted to a given electrical impedance, to obtain an
electromagnetic shunt damper (EMSD). Because the
coil acts as an inductance (equivalent to a mechanical
inertia), one obtains a resistive shunt if the impedance
is a pure resistor (R-shunt, Figure 1(a), analog of the
Lanchester damper), a conservative resonant shunt if
the impedance is a capacitor (C-shunt, Figure 1(b), ana-
log of the conservative DVA) or a resonant shunt if a
resistor is added (RC-shunt, Figure 1(c), analog of the
DVA). Since the initial paper (Behrens et al., 2003),
EMSD has been considered in various works, for vibra-
tion reduction or energy harvesting. The interested
reader can refer to the review (Yan et al., 2017) for an
exhaustive approach, whereas only a few major works
are considered in the following. EM resonant shunts
have been compared to a mechanical DVA in (Zhu
et al., 2013) and optimum tuning parameters have been
obtained in (Ao and Reynolds, 2019, 2020; Inoue et al.,
2008; Tang et al., 2016; Zhou et al., 2019). Those works
have been extended to multimode control (Cheng and
Oh, 2009) and to adaptive tuning (McDaid and Mace,
2013; Niederberger et al., 2006). In parallel, resistive
EM shunts have been considered as so-called passive
EM dampers (Graves et al., 2000; Palomera-Arias
et al., 2008; Zhu et al., 2012) or with negative impe-
dances (Stabile et al., 2017; Yan et al., 2014). EM trans-
ducers have also been coupled to a mechanical DVA
for semi-active control (Chung et al., 2013) or for
energy harvesting (Takeya et al., 2016; Zuo and Cui,
2013). Tuned inertial dampers, associated to an

artificial increase of the mass ratio of a mechanical
DVA using a rotational inertia (Krenk and Høgsberg,
2016), have also been coupled to an EM tranducer in
(Asai et al., 2017; Nakamura et al., 2014). Finally, EM
transducers can also be used with eddy current effects
to obtain an equivalent viscous damping, directly on a
structure (Sodano et al., 2005; Zuo et al., 2011) or to
tune the dashpot of a mechanical DVA (Bae et al.,
2012; Bourquin et al., 2014).

In the EMSD, an electromagnetic transducer has to
be used to convert mechanical energy into electrical
energy. A voice coil actuator (VCA) is often used, for
which the energy transfer is obtained by means of a
magnetic interaction between a coil and a permanent
magnet (or an electromagnet) in relative motion. This
phenomenon has a fundamental reversibility like piezo-
electricity. The advantage of an electromagnetic trans-
ducer, in comparison to a piezoelectric transducer, is
the possibility to oversize it in order to increase the
electromechanical coupling. Indeed, in the case of a
piezoelectric transducer, the electromechanical coupling
mainly depends on the piezoelectric material properties,
which limits it. On the contrary, the coupling factor for
electromagnetic transducers is an increasing function of
its mass, as shown in (Elliott and Zilletti, 2014). The
other difference between piezoelectric and electromag-
netic shunts is the placement of the transducer on the
host structure. Since piezoelectric materials are sensible
to mechanical strains, they are suitable for deformable
structures and they have to be located at the maxima of
strains. On the contrary, electromagnetic transducers

(a) (b) (c)

(d) (e) (f)

Figure 1. Classical dampers: electromechanical (EM) shunts (first row) and mechanical dampers (second row). The symbols are
described in the text and the European standards are used for resistors.
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are sensible to a relative motion between the coil and
the magnet and have to be located on maxima of dis-
placement of the host system. They are thus naturally
suitable for rigid solid assemblies as well as elastic
structures. Finally, a major difference between piezo-
electric and electromagnetic transducers is the non neg-
ligible internal resistance of the latter, which is
sometimes too high and which requires the use of nega-
tive resistance to optimise the shunts.

In this paper, we investigate the addition of an elec-
tromagnetic shunt damper (EMSD) to a mechanical
damper to increase the performances of vibration
reduction. The study is limited to forced vibrations in
the vicinity of a given resonance of the host system,
which is thus modelled for simplicity as a single
degree of freedom mechanical oscillator. Naturally, we
have two solutions to place the EMSD, as shown in
Figure 2. In architecture 1 (Figure 2(a)), the EMSD is
placed within the DVA, in parallel of its stiffness ; in
architecture 2 (Figure 2(a)), the EMSD is placed
between the primary system and the frame. In practice,
those two architectures lead to different designs since
for architecture 1, one would modify the design of the
DVA to include the EM transducer, whereas in archi-
tecture 2, the DVA design is not changed and the trans-
ducer has to be included in the primary structure. We
mainly focus on a conservative or nearly conservative
mechanical damper, because of its particular property
of creating an anti-resonance an thus of cancelling the
vibrations of the primary system at this particular fre-
quency. By analysing the frequency responses, we
obtain that architecture 2 shows better performances
with a nearly conservative mechanical damper. Then,
focusing on architecture 2, both conservative and dissi-
pative cases for the EMSD are considered. It is shown
that the effect of the EMSD is to mitigate the negative
effect of the two side resonances, by increasing their
distance to the anti-resonance and by decreasing
their sharpness. In each case, we determine the optimal
values of the parameters of the two dampers (the
mechanical and the EMSD) to maximise the vibration
reduction. In addition, some generic charts are

proposed to characterise the vibration damping perfor-
mances as a function of the two free parameters of the
system: the mass ratio of the mechanical damper and
the electromechanical coupling factor of the EMSD.

The paper is organised as follows: in section 2, the
main properties of the basic mechanical and EM dam-
pers are introduced, in term of frequency response, tun-
ing and performances. Then, in section 3 and 4, the
theoretical behaviour of the two coupled architectures
is addressed in details, focusing on exhibiting closed
form solutions for their tuning, to improve the vibra-
tion reduction. Finally, some validation experiments
are proposed in section 5.

2. Mechanical dampers and
electromagnetic shunts

In this section, we consider separately the two families
of dampers: on the one hand the mechanical dampers
(Figure 1(d)–(f)) and on the other hand the electromag-
netic shunts (Figure 1(a)–(c)). The purpose is to briefly
recall already known results about the tuning of the
dampers, to extend them to derive the performance of
those dampers in forced vibrations and to compare
them. The free parameters that governs the perfor-
mances (the mass ratio and the electromechanical cou-
pling factor) are introduced and characterised as figure
of merit of the dampers. This section is a preliminary
to sections 3 and 4, in which the coupling of those two
elementary dampers will be studied. Moreover, the pro-
posed comparison of all the six dampers of Figure 1, in
term of figure of merit, attenuation performance and
design charts, is original to the knowledge of the
authors.

2.1. Governing equations for the mechanical
dampers

We first consider the system of Figure 3(a), composed
of a primary host system of mass m1, stiffness k1 and
viscous damping constant c1 coupled to a mechanical
damper of mass m2, stiffness k2 and viscous damping

(a) (b)

Figure 2. Scheme of the proposed architectures to couple a mechanical DVA and an electromechanical damper.
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constant c2. The displacement of m1 is denoted by x1(t)
and the relative displacement of m2 with respect to m1

is denoted by xd(t) as a function of time t. Those displa-
cement being measured with respect to the equilibrium
state of the system, they verify the following equations:

(m1 +m2)€x1 +m2€xd + c1 _x1 + k1x1 =F, ð1aÞ

m2€xd +m2€x1 + c2 _xd + k2xd = 0: ð1bÞ

Depending of the type of damper considered
(Lanchester, conservative DVA (CDVA) or DVA,
Figure 1(c)–(e)), the parameters c2 or k2 can be set to
zero. By dividing the above equations by respectively
m1 and m2, they are rewritten as:

(1+m)€x1 +m€xd + 2j1v1 _x1 +v2
1x1 =F=m1, ð2aÞ

€xd +€x1 + l _xd = 0, Lanchester ð2bÞ

€xd +€x1 +v2
2xd = 0, CDVA ð2cÞ

€xd +€x1 + 2j2v2 _xd +v2
2xd = 0: DVA ð2dÞ

The three last equations are relative to a given type of
mechanical damper, as mentioned. The introduced
parameters are:

m=
m2

m1

, v1 =

ffiffiffiffiffiffi
k1

m1

r
, v2 =

ffiffiffiffiffiffi
k2

m2

r
, j1 =

c1

2
ffiffiffiffiffiffiffiffiffiffi
k1m1

p ,

j2 =
c2

2
ffiffiffiffiffiffiffiffiffiffi
k2m2

p , l=
c2

m2

:

ð3Þ

where m is the mechanical damper mass ratio, the ratio
between the added mass m2 to the mass of the primary
system m1. Moreover, v1, j1 are respectively the natu-
ral frequency and the damping ratio of the primary sys-
tem; v2, j2 are respectively the natural frequency and
the damping ratio of the DVA and l is the decay rate
of the Lanchester damper (homogeneous to the inverse
of a time).

It is convenient to introduce the natural frequency
v1,‘ of the primary system in the limit case of a damper
mass m2 blocked on m1 (obtained if c2 !+‘ or
k2 !+‘), that writes:

v1,‘ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

m1 +m2

r
: ð4Þ

One can then easily show that the mass ratio can be
written as follows:

m=
v2

1 � v2
1,‘

v2
1,‘

, ð5Þ

which shows that it depends on the limit natural fre-
quencies of the primary system only.

2.2. Governing equations for the EMSD

We now consider the EMSD of Figure 3(b) for which
the primary system is coupled to an electronic circuit (a
resistor R and a capacitance C) through an electromag-
netic transducer. The governing equations are:

m1€x1 + c1 _x1 + k1x1 +f _Q=F, ð6aÞ

L€Q+V � f _x1 = 0: ð6bÞ

Equation (6a) is the second Newton’s law applied to
mass m1, subjected to the action of the EM transducer.
The latter produces a force f _Q proportional to the cur-
rent intensity in the electrical circuit, where Q(t) is the
electric charge in the EM transducer. Equation (6b) is
the Kirchhoff’s law applied to the electrical circuit, in
which the EM transducer is equivalent to an inductor
of constant L and an electromotive force f _x1 propor-
tional to the relative velocity of the coil and the magnet
in the transducer. Here, we consider a perfect EM
transducer, with no internal resistance, the whole resis-
tance of the circuit being modelled by the resistance of
the shunt R. Since in practice (see section 5) EM

(a) (b)

Figure 3. Standard passive dampers coupled to a one degree of freedom host structure: (a) a DVA; (b) a RC-shunt.
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transducer have an internal resistance, in the model
and without loss of generality, it is considered as a part
of R. Parameter f (of units N/A or V/(m/s)) is the force
factor of the EM transducer. For a simple moving coil
actuator, with a coil of N turns of length l coupled to a
permanent magnet creating a magnetic flux B, the force
factor is f=BNl.

To obtain generic equations, it is convenient to scale
the electrical quantities to obtain equivalent mechanical
variables. Q(t) and V (t) are replaced by:

�Q=

ffiffiffiffiffiffi
L

m1

r
Q, �V =

1ffiffiffiffiffiffiffiffiffi
m1L
p V , ð7Þ

where �Q is homogeneous to a displacement and �V to a
force per unit mass. Equations (6(a,b)) then become:

€x1 + 2j1v1 _x1 +v2
1x1 + kv1

_�Q=
F

m1

, ð8aÞ

€�Q+ �V � kv1 _x1 = 0, ð8bÞ

where the dimensionless electromechanical coupling
factor (EMCF) k has been introduced.

k=
f

v1

ffiffiffiffiffiffiffiffiffi
m1L
p : ð9Þ

This last parameter can also be obtained as a function
of the natural frequencies of the primary system with
the electric circuit in open circuit (OC, _Q= 0)
v1, oc =v1 and in short circuit (SC, V = 0) v1, sc. In
SC, imposing V = 0 in equation (6b) implies after time
integration :

_Q=
f

L
x+ i0, ð10Þ

with i0 an integration constant. If there is no displace-
ment (i.e. x1 = 0), there is no electric current induced
(i.e. _Q= 0), so this integration constant is zero (i.e.
i0 = 0). Using equation (10) into equation (6a), one
obtains:

€x1 + 2j1v1 _x+v2
1, scx=

F

m
, ð11Þ

with:

v1, sc =v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ k2
p

: ð12Þ

which finally shows that the EMCF can be written:

k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1, sc � v2
1, oc

v2
1, oc

s
: ð13Þ

The above formula is analogous to the one that defines
the effective EMCF in the case of a piezoelectric trans-
ducer (ANSI/IEEE Std 176-1987, 1988; Thomas et al.,
2009), except that in the present case, the roles of the

OC and SC natural frequencies are exchanged.
Moreover, it shares a clear similarity with equation (5)
in the case of the mechanical damper, with m playing
the role of k2.

Considering the RC electrical circuit,
V (t)=R _Q+Q=C, and the three types of shunts
(Figure 1(a)–(c)), equation (8b) is replaced by:

€�Q+ le
_�Q� kv1 _x1 = 0, R� shunt ð14aÞ

€�Q+v2
e
�Q� kv1 _x1 = 0, C� shunt ð14bÞ

€�Q+ 2jeve
_�Q+v2

e
�Q� kv1 _x1 = 0, RC� shunt

ð14cÞ

where each equation is relative to a given type of shunt,
as mentioned. The introduced parameters are the decay
rate le of the electrical circuit in the resistive case, its
damping ratio je and natural frequency ve in the reso-
nant case:

le =
R

L
, ve =

1ffiffiffiffiffiffiffi
LC
p , je =

R

2

ffiffiffiffi
C

L

r
: ð15Þ

2.3. Tuning, performances and comparison

Both family of dampers (mechanical and EMSD) have
the same behaviour of coupling the primary resonant
system to either a resistive or a resonant secondary sys-
tem (compare equations (2a–d) for the mechanical dam-
pers and equations (8a)–(14a–c) for the EMSD). Their
optimisation, that is, the choice of optimal values for
the parameters of the dampers to maximise the vibra-
tion reduction of the primary system has been already
published in many texts and only the results are recalled
here. First of all, the choice of the optimisation criteria
has to be specified and the dissipative cases (resistive or
resonant dampers, Figure 1(a), (c), (d) and (f)) are dif-
ferent than the conservative case (conservative resonant
dampers, Figure 1(b) and (e)).

We consider periodic oscillations of the system under
harmonic forcing F(t)=F0 cosOt, at frequency O.
Fourier transforms of the time functions are denoted by
a hat (for instance, x̂1(O) is the Fourier transform of
x1(t)).

2.3.1. Dissipative cases. In the dissipative cases, we
choose to optimise the vibration damping by reducing
as much as possible the maximal amplitude of the pri-
mary system jx̂1(O)j as a function of the excitation fre-
quency O, a so called H‘ optimisation. In the case of
the resistive dampers, Figure 4 shows the frequency
response of x1, defined by equations (2a,b) and (8a)–
(14a) in the frequency domain, for several values of the
absorber viscous damping parameters l and le. It is
found that the curves have always the shape of a reso-
nance and that the resonance point follows a particular

Auleley et al. 5



curve in the (jx̂1j,O) plane, shown in dotted line in
Figure 4. It has been computed numerically. Its mini-
mum corresponds to the optimised response. It is found
for particular values lopt and le, opt of l and le,
obtained by the fixed point method (Snowdon, 1968;
Thomas et al., 2012; Vakilinejad et al., 2019). Briefly, if
the damping of the primary system is neglected
(j1 = 0), it is found that all the frequency response
curves crosses each other at a single ‘fixed’ point
(labelled F1 for the Lanchester damper and F2 for the
R-shunt in Figure 4). The coordinates of this point are
known in closed form and enable to find the optimised
response whose maxima lie exactly at this fixed point.
If j1 6¼ 0, it is found that this optimisation gives excel-
lent results even if the resonance point of the optimal
response is slightly below the fixed points F1 and F2

(the case shown in Figure 4) (see e.g. Thomas et al.,
2012; Vakilinejad et al. 2019). The optimal values lopt

and le, opt are given in Table 1.
Figure 4 also shows the system’s frequency response

in its three limit cases: (i) the host structure without the
mechanical absorber (‘naked’), equivalent to the case
with the EM transducer in open circuit (OC). The

response has a resonance close to O=v1; (ii) the sys-
tem with the absorber mass m2 glued to the primary
mass (‘blocked damper’ case); it resonates at O ’ v1,‘,
which is lower than v1 (see equation (4)); (iii) the sys-
tem with the EM transducer in short circuit (SC), that
resonates at O ’ v1, sc, which is greater than v1 (see
equation (12)).

In the case of resonant dampers, Figure 5 shows the
frequency response of x1, defined by equations (2a,d)
and (8a)–(14c) in the frequency domain, for several val-
ues of the absorber viscous damping parameters j2 and
je. When j2 = 0 or je = 0, the conservative dampers
cases are obtained and two resonances appear instead
of one in the naked/OC case. When j2 or je are varied,
the resonance points of the system moves in the (jx̂1j,O)
plane and optimal cases are obtained. They can be esti-
mated by the fixed point method, analogous to the
resistive case, for which two fixed point are obtained
(labelled (F1,G1) for the DVA and (F2,G2) for the RC-
shunt in Figure 5) (Connor and Laflamme, 2014;
Hartog, 1956; Inoue et al., 2008; Krenk, 2005; Liu and

Table 1. Optimum parameters and characteristics of mechanical, electromagnetic shunts and coupled dampers of architecture 2.

Damper Mechanical
Figure 3(a)

EM shunt
Figure 3(b)

CDVA + EM shunt
Figure 2(b)

Resonant conservative v
opt
2 =v1 vopt

e =v1 vopt
e =v

opt
2 =v1

Dv ’ v1
ffiffiffiffi
m
p

Dv ’ v1k Dv ’ v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m+k2

p
Resitive lopt =v1

ffiffiffiffiffiffiffiffiffi
2

2+m

q
lopt

e =v1

ffiffiffiffiffiffiffiffiffiffi
2+ k2

2

q
lopt =v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ m

2 + k2

4

q
v1,‘ = v1ffiffiffiffiffiffiffiffiffi

1+m
p v1, sc =v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+k2
p

Resonant dissipative v
opt
2 = v1

1+m vopt
e =v1

ffiffiffiffiffiffiffiffi
2�k2

2

q
vopt

e =v
opt
2 =v1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�k2

2(1+m)

q
j

opt
2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3m

8(1+m)

q
jopt

e =
ffiffiffiffiffiffiffiffiffiffiffiffi

3k2

4(2�k2)

q
No simple expression

When a ‘=’ sign is used, the expression is exact, whereas when ‘;’ is used, it means that it is approximated, with m� 1 and/or k2 � 1.

Figure 4. Frequency response jx̂1j=jx̂1(O= 0)j of the system
with resistive dampers, for j1 = 0:01, m= k2 = 0:05. The type
of damper is specified close to the corresponding curve.

Figure 5. Frequency response jx̂1j=jx̂1(O= 0)j of the system
with resonant dampers, for j1 = 0:01, m=k2 = 0:05,
v2 =v2,opt, ve =ve,opt. The type of damper is specified close
to the corresponding curve.
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Liu, 2005; Thomas et al., 2012; Zhou et al., 2019). The
optimal DVA or RC-shunt curves have the shape of a
smooth curve for which the two resonances have almost
disappeared and are close to the fixed points. The opti-
mal values of (v2, j2) for the DVA and (ve, je) for the
RC-shunt are given in Table 1.

To measure the performance of the damping, we
define the following performance indicator referred to
as the attenuation (in decibels):

AdB= 20 log
X0,max

Xopt,max
, ð16Þ

with X0,max the displacement amplitude of the primary
system without absorber at its resonance

v1, r =v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2j2

1

q
,

X0,max =
F0

m1v2
1

1

2j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2

p , ð17Þ

and Xopt,max the same with the primary system con-
nected to the optimally tuned absorber. Following the
same ideas as in (Berardengo et al., 2016; Ducarne
et al., 2010; Thomas et al., 2012; Vakilinejad et al.,
2019) for piezoelectric shunts and Lanchester dampers,
a good estimation of AdB is obtained by approximating
Xopt,max by the amplitude of the damped frequency
response (with j1 6¼ 0) at the frequency of the fixed
points F1, F2, G1, G2 for optimal values of the para-
meters l, v2, j2, le, ve and je of Table 1. Whereas ana-
lytical expressions for AdB could be exhibited, we simply
compute it numerically in the present text, using the val-
ues of the fixed point frequencies given in Appendix 1,
for the four dampers (Lanchester, DVA, R-shunt and
RC-shunt).

A major result is that AdB depends on only two para-
meters: the primary damping ratio j1 and the coupling
factor (m for the mechanical dampers and k for the
EMSDs). Figure 6 shows AdB as a function of these
two parameters. First, on can remark that for a given
j1, AdB is an increasing function of the coupling
factor m or k. It thus demonstrate that m (for the
mechanical dampers) and k (for the EMSDs) are the

sole optimisation parameters that guarantee the damp-
ing performances. Furthermore, similar damping per-
formances are obtained between equivalent mechanical

damper and EMSD when k2 =m, with a slight advan-
tage for the EMSD. This further demonstrates the
equivalence between the mechanical dampers and the
EMSDs, as shown in (Zhu et al., 2013) in the case of
the resonant dampers (DVA and RC-shunt). Also, the
weaker j1 is, the larger the attenuation AdB is. In addi-
tion, one observes that the resonant damper is more
efficient than the resistive one for a same j1.

2.3.2. Conservative cases. In the case of conservative reso-
nant dampers (equations (2a,c) and (8a)–(14b)), the sit-
uation is different since it is not possible to attenuate a
given resonance peak thanks to an addition of viscous
damping. The principle is to create an anti-resonance
for x1. Namely, a particular excitation frequency var

exists for which the amplitude of the host structure is
zero: jx̂1(var)j= 0. This is a strict zero even if j1 6¼ 0

and this anti-resonance frequency is exactly the natural
frequency of the damper: var =v2 for the CDVA and
var =ve for the RC-shunt, as shown in Figure 5 with
labels ARm and ARe. To prove this result, one has just
to write x̂1(O) from equations (2a,c) and (8a)–(14b):

x̂1(O)=
F0

m1

�O2 +v2
2

O4 � v2
1 + 1+mð Þv2

2

� �
O2 +v2

1v2
2 + 2jj1v1O(v2

2 � O2)
, (CDVA) ð18aÞ

x̂1(O)=
F0

m1

�O2 +v2
e

O4 � (1+ k2)v2
1 +v2

2

� �
O2 +v2

1v2
e + 2jj1v1O(v2

e � O2)
, (C� shunt) ð18bÞ

where j=
ffiffiffiffiffiffiffi
�1
p

and for which the numerators vanish at
O=var. The optimisation consists in tuning the dam-
per in order to generate the anti-resonance at a fre-
quency of interest. Here, we choose var =v1 (v2 =v1

for the CDVA and ve =v1 for the C-shunt) to

Figure 6. Attenuation AdB of the displacement x1 as a function
of the coupling factor(m for the mechanical dampers; k2 for the
EMSD) for the dissipative dampers, for several values of the
primary system damping ratio j1, as specified. The blue curves
correspond to the mechanical dampers (‘—’: DVA; ‘- -’:
Lanchester) and the red curves to the EM dampers (‘—’: RC-
shunt; ‘- -’: R-shunt).
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transform the resonance of the primary system into an
anti-resonance.

However, as shown in Figure 5, two adjacent reso-
nances appear on the sides of the anti-resonance, whose
frequencies can be obtained with the poles of equations
(18a,b). If j1 is small, those resonance frequencies are
close to the natural frequencies of the whole system,
obtained with j1 = 0:

v26=v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2+m

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m+m2

4

rs
’ v1 16

ffiffiffiffi
m
p

2

� �
, (CDVA)

ð19aÞ

ve6=v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2+ k2

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 + k4

4

rs
’v1 16

k

2

� �
, (C� shunt)

ð19bÞ

where the approximations in the above equations are
valid for small m and k. One can observe that the reso-
nance frequencies ratio v26=v1 and ve6=v1 depend
solely on the coupling factors m and k2. Then, a perfor-
mance indicator for those absorbers can be chosen as
the frequency distance Dv between the two resonance
peaks, that can be approximated for small m and k by:

Dv ’ v1
ffiffiffiffi
m
p

, (CDVA) Dv ’ v1k, (C� shunt) ð20Þ

summarised in Table 1. As a consequence, the same
conclusions as in the dissipative case can be given here.
First, the coupling factors m and k are the design para-
meters that guarantee the performances: the larger they
are, the larger is the useful frequency band Dv around
the anti-resonance. Then, m and k2 have an equivalent
effect on the mechanical dampers and the EMSDs,
respectively.

2.4. Analogies between dampers

All throughout the paper, we consider the dampers
depicted in Figure 1 and combinations of them. To
compare mechanical and electromechanical dampers,
we use the Maxwell analogy (Maxwell, 1865) (also
called impedance analogy (Busch-Vishniac, 1999)), in
which an electric current is considered as the analog of
a mechanical velocity and a voltage as the analog of a
mechanical force. In this analogy, inductance and capa-
citance are analogous respectively to a mechanical mass
and a compliance and electrical equations, which write
as function of electric charges, are directly comparable
to mechanical equations written in term of displace-
ments. This point of view justifies the equivalence
between the EM dampers and the mechanical dampers
in Figure 1.

One can also choose the opposite convention, lead-
ing to the Firestone (or mobility) analogy, in which
electrical current and voltage are analogous respectively

to a force and a velocity (Firestone, 1933). In this case,
inductance and capacitance are analogous respectively
to a stiffness and a particular mechanical element called
an inerter (Smith, 2002) and the EM dampers of the
first row of Figure 1 are analogous to mechanical dam-
pers built with inerters, springs and dashpots in series.

In the present study, we choose to gather the dam-
pers in families in which they share similar dynamical
behaviours. For instance, the DVA (Figure 1(f)) is
equivalent to an inerter based absorber, as proved in
(Krenk and Høgsberg, 2016), and also to other archi-
tectures in which the mechanical elements are in series
rather than in parallel (Høgsberg, 2020). Those
mechanical absorbers are also analogous to the reso-
nant EM shunt damper of Figure 1(c), or the same
shunt with C and R in parallel. There is also an analogy
with a piezoelectric resonant shunt, with the circuit in
series or in parallel (Caruso, 2001; Thomas et al.,
2012). All those dampers, called here resonant, share
similar response curve such as the one of Figure 5.
With the same logic, the dampers of Figure 1(a) and
(d) are called resistive and the ones of Figure 1(b) and
(e)resonant conservative since no dissipative element (an
electrical resistance or a dashpot) is used in the damper.
One must notice that all those equivalence are not per-
fect: this justify the slight differences of behaviour
noticed in Figure 6, between on the one hand the
mechanical dampers (DVA and Lanchester) and on the
other end the EM dampers (RC-shunt and R-shunt).

3. Coupled architecture 1: EMSD between
the host structure and the mechanical
damper

We consider in this section the first coupled DVA/
EMSD architecture, shown in Figure 2(a), for which
the EMSD is placed in parallel of the stiffness of the
DVA. In the litterature, this kind of architecture has
been considered for energy harvesting application, in
which the EM transducer is used to convert the vibra-
tion energy of the DVA into electrical energy (Liu
et al., 2016; Tang and Zuo, 2011; Zuo and Cui, 2013).
Here, we restrict ourselves to the case of vibration
reduction of the primary system. We also consider here
only the case of purely conservative absorbers, that is,
a CDVA and a C-shunt (c2 = 0, R= 0) coupled to a
dissipative primary system (j1 6¼ 0). The case of dissi-
pative absorbers has been considered previously in
(Barredo et al., 2018; Høgsberg, 2019), with respec-
tively inerter based absorbers and piezoelectric shunts.
Using the same approach as in section 2 for equations
(2a–d), (8a,b), (14a–c), the governing equations of this
system are:

(1+m)€x1 +m€xd + 2j1v1 _x1 +v2
1x1 =

F

m1

, ð21aÞ
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€xd +€x1 +v2
2xd + k2v2

_�Q= 0, ð21bÞ

€�Q+v2
e
�Q� k2v2 _xd = 0, ð21cÞ

with �Q the equivalent electrical charge, �V the equivalent
voltage and k2 the EMCF:

�Q=

ffiffiffiffiffiffi
L

m2

r
Q, �V =

1ffiffiffiffiffiffiffiffiffi
m2L
p V , k2 =

f

v2

ffiffiffiffiffiffiffiffiffi
m2L
p : ð22Þ

The frequency responses of this system are:

x̂1 =
F0

m1

O4 � (1+ k2)v2
2 +v2

e

� �
O2 +v2

2v2
e

D1(O)
, ð23aÞ

x̂d =
F0

m1

O2(� O2 +v2
e)

D1(O)
, ð23bÞ

�̂Q=
F0

m1

jk2v2O
3

D1(O)
, ð23cÞ

where:

D1(O)=� O6 + v2
1 +(1+m)(1+ k2

2)v
2
2 +v2

e

� �
O4

� (1+ k2
2)v

2
1v2

2 +v2
1v2

e +(1+m)v2
2v2

e

� �
O2

+v2
1v2

2v2
e

+ 2jj1O O4� (1+ k2)v2
2+v2

e

� �
O2 +v2

2v2
e

	 

:

ð24Þ

In the case of the present conservative systems, as
already considered in section 2.3.2, we are interested in
possible anti-resonances in the response of the primary
system. Observing the numerator of x̂1 in equation

(23a), one can deduce that two anti-resonances var, + ,
var,� are possible, at the frequencies:

var,6 =
1ffiffiffi
2
p

(1+ k2
2)v

2
2 +v2

e6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½(1+ k2

2)v
2
2 +v2

e �
2 � 4v2

2v2
e

q� �1
2

,

ð25Þ

As done for simple conservative dampers in section
2.3.2, to optimise the system, we choose to enforce one
of the anti-resonance frequencies to be equal to the nat-
ural frequency v1 of the primary system. Enforcing
var,6 =v1 in equation (25) leads to the following con-
ditions for ve:

ve =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4

1 � (1+ k2
2)v

2
1v2

2

v2
1 � v2

2

s
, 8v2 62 I ð26Þ

that is valid only if v2 is not in the open interval
I = �v1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ k2

2

p
, v1½ to have a positive radicand of

the square root. Consequently, in such a condition,
enforcing equation (26) requires to detune the DVA of
the primary system: v2 62 I ) v2 6¼ v1.

To check the efficiency of the present architecture 1,
Figure 7 shows the frequency response of the primary
system in several conditions: (i) alone (without any
damper); (ii) coupled to only a CDVA, tuned with
v2 =v1; and (iii) with both a CDVA and a C-shunt for
various values of v2, k2 and with equation (26) fulfilled.
One can verify that in the latter case, equation (26)
enables to generate an anti-resonance at v1. However,
for all those conditions, there is always a resonance of

Figure 7. Frequency response jx̂1j=jx̂1(O= 0)j of the primary mass displacement for architecture 1, for some values of the DVA
natural frequency v2 and the EM coupling factor k2, as specified in the legend. The electrical frequency ve is chosen according to
equation (26) to enforce an anti-resonance at v1. The mass ratio is m= 0:05 and the damping ratio j1 = 0:002.
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the system that is close to v1, inside the Dv frequency
band defined by the CDVA.

To verify this point, Figure 8 shows the evolution of
the three resonance and the two anti-resonance fre-
quencies of the primary mass frequency response x̂1 as
a function of v2 when ve is chosen according to equa-
tion (26) to enforce an anti-resonance at v1. The band
gap I is clearly visible and one can observe that for
every possible tuning of the CDVA (a particular choice
of v2), the presence of the C-shunt decreases the damp-
ing performances obtained by a single CDVA, since
there is always a resonance frequency in the Dv fre-
quency band. For other value of the coupling factors m

and k2 than the ones chosen in Figure 8, the situation
is qualitatively the same. This plot also shows that if v2

is in the low frequencies (lower than the band gap,
v2\v1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ k2

2

p
) ve and the two anti-resonance fre-

quencies are also in the lower frequency band (lower
than v1), with at the limit of I , ve = 0. The opposite is
observe for v2 . v1 in the high frequencies, with
ve ! +‘ at the limit of I .

As a conclusion, using a C-shunt in architecture 1 is
not a solution to increase the performances of a
CDVA. The solution of using dissipative dampers (non-
zero values of R and c2) would lead to another situation
that is out of the scope of the present article and that
has been explored in (Barredo et al., 2018; Høgsberg,
2019) in the case of inerter based absorbers and piezo-
electric shunts. The remaining of the article will focus
on architecture 2.

4. Coupled architecture 2: EMSD between
the host structure and the frame

In this section, we investigate the response and the
damping performances of the second coupled DVA/
EMSD architecture, shown in Figure 2(b), for which

the EMSD is placed between the primary structure and
the frame. This kind of coupling seems original since, to
the knowledge of the authors, no other publication con-
sider it. We recall here that our purpose is to enhance
the performance of a single DVA, described in section
2.3, by adding an EM shunt to the system. We consider
here four cases, depending on the dissipative or conser-
vative nature of the dampers. The primary structure is
always considered slightly dissipative (j1 6¼ 0 is small),
and coupled successively to:

� two conservative dampers: a CDVA and a C-
shunt;

� a conservative mechanical damper (CDVA)
coupled to a resistive shunt (R-shunt);

� a conservative mechanical damper (CDVA)
coupled to a resonant shunt (RC-shunt);

� two dissipative and resonant dampers (DVA and
RC-shunt).

4.1. A primary system with a CDVA and a C-shunt

We consider in this section the system of Figure 2(b)
with both dampers assumed perfectly conservative, that
is, with c2 = 0 and R= 0. Keeping the notations of sec-
tion 2, the governing equations of the system are:

(1+m)€x1+m€xd+2jj1v1 _x1+v2
1x1+kv1

_�Q=
F

m1

, ð27aÞ

€xd +€x1 +v2
2xd = 0, ð27bÞ

€�Q+v2
e
�Q� kv1 _x1 = 0, ð27cÞ

with the same variables and constants as those defined
in section 2 (equations (3), (7), (9) and (15)). The fre-
quency responses of this system can be written as:

x̂1 =
F0

m1

(v2
e � O2)(v2

2 � O2)

D2(O)
, ð28Þ

x̂d =
F0

m1

O2(v2
e � O2)

D2(O)
, ð29Þ

�̂Q=
F0

m1

jkv1O(v2
2 � O2)

D2(O)
, ð30Þ

with:

D2(O)= � O6 + (1+ k2)v2
1 +(1+m)v2

2 +v2
e

� �
O4

� (1+ k2)v2
1v2

2 +v2
1v2

e +(1+m)v2
2v2

e

� �
O2

+v2
1v2

2v2
e

+ 2jj1v1O(v2
2 � O2)(v2

e � O2)

Again, like in sections 2.3.2 and 3, we are interested in
creating anti-resonances in the frequency response of
x1. Observing the numerator of x̂1(O), it appears that

Figure 8. Resonance and anti-resonances frequencies of the
frequency response of the primary mass x̂1 for architecture 1 as
a function of the DVA natural frequency v2, when ve is chosen
according to equation (26) to enforce an anti-resonance at v1.
ve is also plotted (equation (26)) as well as the natural
frequencies of the system with a CDVA (equation (19a)). The
band gap I is specified in light gray. Mass ratio m= 0:05; coupling
factor k2 = 0:2.
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the two dampers generate two anti-resonances at their
natural frequencies, at v2 and ve. We choose to tune
the dampers to replace the resonance of the
primary system around v1 by an anti-resonance. This
is possible if

v2 =v1 or ve =v1 ð31Þ

Only one of those conditions is necessary to generate
the anti-resonance at v1.

We choose here to preserve the symmetry of the sys-
tem and to generate a double anti-resonance at v1 by
tuning the CDVA and the C-shunt so that both rela-
tions (31) are fulfilled at the same time. It is then worth
predicting the location of the resonances of the system.
The three eigenfrequencies of this architecture are deter-
mined by finding the zeros of D2(O) with j1 = 0, that
writes in this case:

D2(O)= � O6 +(3+m+ k2)v2
1O

2(O2 � v2
1)+v6

1:

ð32Þ

One obtains the frequencies vr�, vr+ and vr0:

vr0 =v1, vr6 =v1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2+m+ k26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m+ k2)2 + 4(m+ k2)

q
2

vuut
:

ð33Þ

One of the eigenfrequencies of the system is precisely
located at the anti-resonances v1, which means that the
associated mode shape has a node at x1: the primary
mass is inert whereas the DVA and the C-shunt oscil-
late in phase opposition. Since, as established in section
2, the C-shunt and the CDVA are equivalent, the pres-
ent case is analogous to coupling the primary structure
to two identical DVAs in parallel and tuning them at
the same frequency v1.

Figure 9 shows the frequency responses of x1, xd and
Q for several values of the EM coupling factor k. One
can observe the double anti-resonance at O=v1 and
that the qualitative behaviour of the system remains the
same as with a single CDVA: the anti-resonance at v1

is surrounded by the two resonances at vr6, whose fre-
quency distance Dv increases with k. This frequency
distance can be estimated by:

Dv ’ v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m+ k2

p
, ð34Þ

where the approximation holds if m+ k2 � 1.
Comparing the above equation with equation (20) as

well as the natural frequencies equation (33) with equa-
tions (19a,b) leads to conclude that the present archi-
tecture 2 is equivalent to a single damper (CDVA or C-
shunt) with its coupling factor (m or k) replaced by
m+ k2. The effect of the C-shunt is thus to increase the
frequency distance Dv, which therefore increases the
performances of the CDVA (and symmetrically, the
presence of the CDVA increases the performances of a
single C-shunt).

Another fruitful aspect of the addition of the C-
shunt is the decrease of the amplitude of xd around the
anti-resonance at v1: the larger the coupling factor is,
the smaller the amplitude of xd is. For applications for
which large amplitudes of the CDVA are necessary at
the operating point O=v1, this property is a clear
advantage for the practical design of the CDVA.
However, in some other applications, a given perfor-
mance is targeted, measured by a given Dv associated
to a given value of m+ k2. Then, decreasing m by
increasing k while keeping constant their sum m+ k2

will lead to a decrease of the added mass m2 of the
CDVA at constant performance Dv, without decreas-
ing xd at resonance, since exactly the same response for
x1 and xd would be obtained (see equations (28), (29)
and (32) that depend solely on m+ k2). On the con-
trary, for a given value of m, the normalised electric
charge �Q amplitude at O=v1 is almost a constant as a
function of k. Hence, enlarging Dv does not imply an
increase of current in the EM transducer, as long as the
inductor value L is kept constant (see equation (7) for
the definition of the normalised electric charge �Q).
However, increasing k in practice is often related to an
increase of f without keeping L constant (see the defi-
nition (9) of k).

4.2. A primary system with a CDVA and a dissipative
shunt

4.2.1. A primary system with a CDVA and a R-shunt. We con-
sider in this section the system of Figure 2(b) with the
mechanical damper assumed perfectly conservative
(c2 = 0) and an EM resistive shunt: C = 0 and R 6¼ 0.
The governing equations of the system are, for the
mechanical part, similar to those of section 4.1: equa-
tions (27a,b), that are coupled to the one for a R-shunt
defined in section 2.2: (14a).

Our reference case is the primary system coupled to
the sole CDVA, that we first consider perfectly tuned,
which means that v2 =v1 (see section 2.3.2). In this
case, the frequency response of the primary system dis-
placement is:

x̂1 =
F0

m1

(� O2 + lejO)(� O2 +v2
1)

�O2 O4 � 2+m+ k2ð Þv2
1O

2 + 1+ k2ð Þv4
1

� �
+ lejO O4 � 2+mð Þv2

1O
2 +v4

1

� � : ð35Þ
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To simplify the above expression, it has been written in
the case of a conservative primary system (i.e. with
j1 = 0). Considering a nonzero j1 simply adds a few
terms to the denominator of x̂1.

This case is very similar to the canonical case of a R-
shunt coupled to a simple one degree of freedom pri-
mary system, studied in section 2.3.1. Two limit cases
can be considered. The first one is the case with no
resistive shunt, associated to an EM transducer in open
circuit (R! +‘ ) le ! +‘). This case has been
studied in section 2.3.2 and is characterised by two
resonance frequencies v26, defined by equation (19a).
The corresponding frequency response is shown in
black in Figure 10. The second limit case is the one with
the EM transducer in short-circuit (R= 0 ) le = 0).
In this case, the two resonances in v26 are shifted to
the high frequencies and replaced by:

vsc6 =v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2+m+ k26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m+ k2)

2
+ 4m

q
2

vuut
: ð36Þ

This case is shown in blue in Figure 10.
It can be shown that when j1 = 0, all the curves

obtained by varying the value of le crosses in two fixed
points, labelled F and G in Figure 10. The frequencies
of those two points verify the equation
jx̂1jle = 0 = jx̂1jle = +‘, which leads to the two frequen-
cies (see Appendix 2):

vF,G =
1

2
v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4+ 2m+ k26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2m+ k2)2 + 16m

qr
: ð37Þ

Then, a remarkable result is that the amplitude of the
frequency response at the fixed points is the same, of
value :

jx̂1(O=vF,G)j=
F0

m1v2
1

2

k2
ð38Þ

It must be noted that the above results are correct only
in the case of (i) a perfectly tuned CDVA (v2 =v1) and
(ii) a perfectly conservative primary system (j1 = 0).
The case of a detuned CDVA will be considered in the

Figure 9. Frequency response jx̂1j=jx̂1(O= 0)j of the primary mass displacement, jx̂dj=jx̂1(O= 0)j of the DVA relative
displacement and j �̂Qj=jx̂1(O= 0)j of the equivalent electric charge in the EM circuit, for architecture 2, with conservative dampers
(c2 = 0, R= 0), for some values of the EM coupling factor k, as specified in the legend. The DVA natural frequency v2 and electrical
frequency ve are chosen according to equation (31) to enforce a double anti-resonance at v1. The mass ratio is m= 0:05 and the
damping ratio j1 = 0:002.
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following. Moreover, if j1 6¼ 0 but remain small, there
are no fixed points but the overall shape of the curves
remains the same.

Having in mind the above results, the H‘ optimisa-
tion of this case is straightforward: one wants to find
the value of le that conducts to a frequency response
with two maxima simultaneously close to F and G. As
in the case of simple dissipative absorbers (single DVA
or single RC-shunt, see section 2.3.1), it is not possible
to have the two maxima in F and G for a single value
of le. However, following the result obtained for a R-
shunt or a Lanchester damper (see Appendix 1;
Snowdon, 1968; Thomas et al., 2012; Vakilinejad et al.,
2019) for which the optimal value of le is the frequency
of the fixed point, one can verify by symbolic computa-
tions that taking le =vF (resp. le =vF) leads to a jx̂1j
curve with a maxima at point F (resp. G). A good
approximation of the optimal value le, opt of le is then:

lopt
e =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

F +v2
G

2

r
=v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

m

2
+

k2

4

r
ð39Þ

The three frequency responses (for le =vF ,vG, le, opt)
are shown in orange in Figure 10, validating qualita-
tively our computations.

It should be noticed that a performance indicator
AdB, the attenuation with respect to the naked absorber
resonance, can be defined in the same way as in section
2.3.1 by equation (16). In the present case of a R-shunt
coupled to a primary system and a CDVA, the com-
mon amplitude at the fixed points (equation (38)) does
not depend on m and is identical to the one for a sole
R-shunt (equation (A.2)). Consequently, AdB is exactly
the same as in the case of a sole R-shunt and the pres-
ence of the CDVA only adds an anti-resonance to the
R-shunt case, without changing its attenuation prop-
erty. AdB as a function of k2 is thus given by the red
dashed curve of Figure (6), whatever be the value of m.

Finally, another important result comes from the
case for which the CDVA is detuned, namely if
v2 6¼ v1. This situation, shown in Figure 10, is very
similar to the tuned case addressed above: there is a
strict anti-resonance at O=v2 and the two fixed points
F and G still exist, at frequencies:

vF,G =
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1+m)v2

2 +(2+ k2)v2
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1+m)v2

2 +(2+ k2)v2
1

� �2 � (2+ k2)v2
1v2

2

qr
: ð40Þ

Figure 10. Frequency response jx̂1j=jx̂1(O= 0)j of the primary mass displacement in the case of a primary system with a CDVA
and a R-shunt, for some values of the EM decay rate le , as specified in the legend. The common amplitude of the fixed point is
shown by a horizontal dotted line. The mass ratio is m= 0:02, the coupling factor is k= 0:4, the damping ratio is j1 = 0 and the
CDVA frequency is v2 = 0:98v1.
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But the most interesting result is that both fixed point
still have the same amplitude and that it does not
depend on v2, which means that the common ampli-
tude of the fixed points is still the one of equation (38),
whatever be the value of v2. All details of the proof of
this results can be found in Appendix 2

4.2.2. A primary system with a CDVA and a RC-shunt. We
consider in this section the system of Figure 2(b) with
the mechanical damper assumed perfectly conservative
(c2 = 0). The governing equations of the system are,
for the mechanical part, similar to those of section 4.1
(equation (27a,b)) and the one for a RC-shunt is
defined in section 2.2 (equation (14c)).

Our reference case is still the primary system coupled
to the sole CDVA, but we don’t consider it perfectly
tuned, so that v2 6¼ v1. The frequency response of the
primary system displacement is:

x̂1 =
F0

m1

(� O2 + 2jjeveO+v2
e)(� O2 +v2

2)

D3(O)
, ð41Þ

with

D3(O)=� O6 + (1+m)v2
2 +(1+ k2)v2

1 +v2
e

� �
O4

� (1+ k2)v2
1v2

2 +(1+m)v2
2v2

e +v2
1v2

e

� �
O2 +v2

1v2
2v2

e

� 2jjeveO O4 � v2
1 +(1+m)v2

2

	 

O2 +v2

1v2
2

� �
ð42Þ

To simplify the above expression, it has been written in
the case of a conservative primary system (i.e. with
j1 = 0). Considering a nonzero j1 simply adds a few
terms to the denominator of x̂1.

This case shows similarities with the canonical case
of a RC-shunt coupled to a simple one degree of free-
dom primary system, studied in section 2.3.1. Two
independent electrical parameters have to be chosen:
the electrical natural frequency ve and the electrical
damping ratio je. To choose the first one, Figure 11
shows the evolution of the frequency response of the
primary system amplitude jx̂1j for several values of ve,
for a fixed (and low value) je. It is observed that an
anti-resonance is always present at O=v2, due to the
CDVA, and that another anti-resonance, close to
O=ve, is also present, due to the EM shunt. This is
explained by the zeros of the numerator of x̂1 (equation
(41)). Thoses anti-resonances are flanked by three reso-
nances peaks, that degenerate to only two resonances
in the particular case of ve =v2 in the case of a conser-
vative shunt (i.e. with je = 0, see section 4.1). In the

present case of je 6¼ 0, even if we didn’t look for a
mathematical proof (it would have involved computing
the minima of jx̂1j and verify if O=ve is one of them),
we will assume that ve =v2 still leads to the cancella-
tion of the central resonance, which is the criteria we
choose in the following to tune ve.

To go on, Figure 12 shows the frequency response of
the primary system amplitude jx̂1j for several values of
je in the case of a tuned EM absorber (ve =v2). Two
limit cases can be considered. The first one is the case
with no resonant shunt, associated to an EM transdu-
cer in open circuit (R! +‘ ) je ! +‘), and is
characterised by two resonance frequencies v26. The
corresponding frequency response is shown in black in
Figure 12. This case is the CDVA case considered in
section 2.3.2 with v2 =v1, for which v26 are given by
equation (19a). The second limit case is the one with a
conservative resonant shunt (R= 0 ) je = 0), and is
also characterised by two resonance frequencies vr6.
The corresponding frequency response is shown in blue
in Figure 12. This case correspond to the two conserva-
tive absorbers perfectly tuned, considered in section 4.1
in the case v2 =v1, for which vr6 are given by equa-
tion (33).

It could be shown that when j1 = 0, all the curves
obtained by varying the value of je crosses in two fixed
points, labelled F and G in Figure 12, defined by the
intersection of the blue and the black curves. The fre-
quencies of those two points verify the equation
jx̂1jje = 0 = jx̂1jje = +‘. To obtain the coordinates of
those points, we proceed as explained in (Thomas
et al., 2012) for a classical resonant shunt and we
obtain for the frequencies (see Appendix 3):

vF,G =
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1+m)v2

2 +(2+ k2)v2
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2(1+m)v2)

2 +(2+ k2)v2
1

� �2 � 16v2
1v2

2

qr
ð43Þ

Figure 11. Frequency response jx̂1j of the primary mass
displacement in the case of a primary system with a CDVA and a
RC-shunt, for several values of the electrical angular frequency
ve. The CDVA angular frequency is v2 = 0:98v1, the mass ratio
is m= 0:01, the coupling factor is k= 0:2 and the damping
ratios are je = 0:005, j1 = 0:001 and j2 = 5 � 10�4.
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One can verify that the corresponding amplitudes of
jx̂1j are not equal and that their relative location
depends on v2. It is thus possible to find a value v

opt
2

that guarantee two equal amplitude for the fixed points
F and G. As shown in Appendix 3, we obtain:

v
opt
2 =v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� k2

2(1+m)

s
: ð44Þ

This value is different from v
opt
2 =v1 (only slightly

since k and m are small in practice), which means that
the present optimisation of the CDVA with the RC-
shunt imposes to slightly detune the CDVA from v1.
Then, imposing v2 =v

opt
2 leads to:

v
opt
F,G =v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 2m

2(1+m)

svuut , ð45Þ

for the frequencies of the fixed points and

jx̂1(O=v
opt
F,G)j

=
F0

m1v2
1

2

k2

(1+m)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(k2 + 2m)

p
� (k2 + 2m)

ffiffiffiffiffiffiffiffiffiffiffiffi
1+m
p

(1+m)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(k2 + 2m)

p
� 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1+m
ph i

ð46Þ

for their common amplitude.

Then, the H‘ optimisation of this case is straightfor-
ward: one wants to find the value of je that conducts
to a frequency response with two maxima simultane-
ously close to F and G. As in the case of simple dissipa-
tive absorbers (single DVA or single RC-shunt, see
section 2.3.1, or the previous case of section 4.2.1), if
j1 = 0, it is not possible to have the two maxima in F

and G for a single value of je. Symbolic manipulation
lead to very complex analytical expressions for j

opt
F,G

(the value of je for which a maxima occurs in F,G) and
their mean value jopte =(joptF + j

opt
G )=2, that we where

not able to simplify. Only a graphical plot is reported
here, as the contour lines of Figure 13. Here, a simpli-
fied expression of jopte when m and k are small seems
not convenient, due to its non monotonous shape of
the function jopte = f (m, k2), especially as a function of
m for a fixed k (remark the curved contour lines in
Figure 13). The corresponding frequency responses are
shown in orange in Figure 12, showing that jopte is a
good approximation of the optimal electrical damping
for a H‘ optimisation.

4.3. A primary system with two resonant dissipative
dampers

Now, we investigate the combination of a two dissipa-
tive resonant dampers, a DVA and a RC-shunt,
coupled to a primary system, as shown in Figure 2(b).

Figure 12. Frequency response jx̂1j=jx̂1(O= 0)j of the primary mass displacement in the case of a primary system with a CDVA
and a RC-shunt, with tuned absorbers ve =v2 =ve and for some values of the EM damping ratio je, as specified in the legend.
The amplitudes of the fixed point F an G are shown by a horizontal dotted lines. The mass ratio is m= 0:01, the coupling factor is
k= 0:2 and the damping ratio j1 = 0.
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The governing equations of this system are the follow-
ing set of equations:

(1+m)€x1+m€xd+2j1v1 _x1+v2
1x1 + kv1

_�Q=
F

m1

, ð47Þ

€xd +€x1 + 2j2v2 _xd +v2
2xd = 0, ð48Þ

€�Q+ 2jeve
_�Q+v2

e
�Q� kv1 _x1 = 0: ð49Þ

In this case, it would be interesting to investigate the
optimal tuning of both dampers to obtain a maximum
amplitude attenuation effect. Since both dampers are
dissipative, one has to find the optimal value of four
parameters: (v2=v1, ve=v1, j2, je) as a function of m, k

and j1. This work is left apart from the present article
and we just give here some results obtained by numeri-
cal trial and error investigations.

First, we remarked that with both dissipative dam-
pers, the fixed point property seems lost: when j2 and
je are varied with ve =v2, there is no more fixed point
that appear. Then, Figure 14 gives the primary mass
frequency response x̂1 in the case of an optimally tuned
DVA + RC-shunt situation, obtained by varying
ve =v2, je and j2. It appears that a good resonance
attenuation is obtained.

4.4. Comments on architecture 2. Observing Figures 10
and 12 leads to evaluate the benefit of adding a dissipa-
tive shunt (R-shunt or RC-shunt) to a conservative
DVA. The presence of the shunt does not alter any ben-
efit of having a conservative DVA since it keeps the
anti-resonance. It just helps to attenuate the negative
effects of the two side resonances, with a more pro-
nounced effect with the RC-shunt. This can be observed
in Figure 14 where a gain of about 15 dB is obtained
between the maxima of the frequency responses of the
R-shunt and RC-shunt coupled to the CDVA, with
m= 0:01 and k= 0:2. This figures also lead to conclude

that the benefit of two dissipative absorbers (a DVA
and a RC-shunt) does not bring a large improvement of
the vibratory behaviour corresponding to the case of a
conservative mechanical absorber (CDVA) plus a resis-
tive shunt (RC-shunt). It only slightly reduces the max-
ima (of about 2.4 dB) with the drawback of completely
eliminating the anti-resonance. The CDVA + RC-
shunt configuration seems then very interesting for
application for which the amplitude of vibration must
be drastically reduced in a narrow frequency band,
without increasing so much the amplitude in the side
resonances.

5. Experiments

This section aims at presenting an experimental valida-
tion of the theoretical results exposed in the previous
sections. Only architecture 2 of Figure (2b), addressed
in section 4, is considered here, since it has been shown
that architecture 1 is less interesting than architecture 2
in practice.

5.1. Experimental setup

An electromagnetic transducer in the form of a voice
coil (VCA, model PKM 1715, Pack Aero, France),
shown in Figure 15, enabled to couple the vibrations of
the structure to an electronic circuit (labelled ‘shunt’). It
is composed of a coil in the form of a solenoid, fixed to
the upper plate of the structure, free to move in a radial
magnetic field created by a permanent magnet clamped
to the frame. The measured electrical characteristics of
the VCA are following: inductance L= 664mH, internal
resistance RL = 3:2O and force factor f= 2:98N=A
(see Figures 16 and 19 for the equivalent model of the
EM transducer). The first two were estimated by an
impedance measurement. To measure the force factor,
a voltage signal V (t) was imposed to the terminals of

Figure 13. Contour lines of the optimal electrical damping ratio jopt
e as a function of the mass ratio m and the coupling factor k2, in

the case of a conservative primary system (j1 = 0) with a CDVA and a RC-shunt.

16



the coil and the corresponding differential mechanical
velocity v(t), between the coil and the magnet, was mea-
sured. A plateau in the modulus of the frequency
response function V̂=v̂ leaded to the value of f.

A mechanical DVA could also be added to the top
of the structure, in the form of a cantilever beam with a
mass fixed at its free end. The beam acts as a spring and
the end mass as an inertia. The clamping of the DVA to

Figure 14. Frequency response jx̂1j=jx̂1(O= 0)j of the primary mass displacement in the case of a primary system with a DVA and
a RC-shunt optimally tuned (green curve), compared to other dampers, as specified in the legend. All dampers are tuned with
v2 = 0:98v1, which gives the best optimisation for the DVA + RC-shunt situation. je = 0:154 in this latter situation. The electrical
frequency is ve =v2 in all cases and the mass ratio is m= 0:01, the coupling factor is k= 0:2 and the damping ratio j1 = 0.

Figure 15. Scheme, picture and CAD view of the structure under test and the EM transducer. Three first eigenmodes of the
‘naked’ structure, without the DVA and the transducer, measured with a laser vibrometer (Polytec PSV-400).
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the top plate of the structure was designed to adjust the
desired length of the beam to tune the stiffness of the
DVA on a particular frequency. The whole device was
carefully machined so that the equivalent damping ratio
of the DVA was very weak (of the order of 0.45%), to
obtain a device as close as possible to a conservative
DVA (CDVA).

5.2. Results with an analog resistive shunt

The first test reported in this article is the simplest
shunt that can be realised: a simple resistive shunt.
Using the optimal value of the electrical time constant
lopt

e of Table 1, it was possible to obtain the optimal
value of the shunt resistance R. Remember that R refers
to the whole resistance of the circuit and that it thus
includes RL. We obtained 0:145O for mode B1 and
0:355O for mode B2 (see Table 3), which is less than the
internal resistance of the coil RL = 3:2O. Consequently,
it was necessary to artificially lower the resistance of
the shunt circuit. As a proof of concept, we present in
this section the use of a synthetic negative resistance
realised by an analog electronic circuit, based on an
operational amplifier (op-amp). The circuit is shown in
Figure 16. If the op-amp is assumed perfect, the equiva-
lent impedance of the circuit of Figure 16 is �Rn\0

with Rn =Rp R2=R1.0, where R2 and R2 are two fixed

resistors and Rp is a tunable resistor, made with poten-
tiometers, used to adjust the value of the equivalent
negative capacitance Rn. Since this component can
become unstable if the negative resistance becomes
larger in absolute value than the resistance of the cir-
cuit, which is small (’ 3:5O), we added a larger positive
resistance R0 = 28O in series in the circuit to facilitate
the experimental tuning of the negative resistance.

An experimental structure, shown in Figure 15, was
designed to test the vibration absorber concepts pre-
sented in the previous sections. It is composed of
three identical plates, the bottom one being clamped to
a frame, sustained by four identical beams, all built
in aluminium. The geometrical characteristics (see
Table 2) were chosen to obtain a structure for which its
two first vibration modes are two bending modes
(modes B1 and B2 in Figure 15) with the twisting modes
(the first one being mode T1 in Figure 15) shifted to
higher frequencies. A coil magnet exciter (with a fixed
coil and a small cylindrical magnet glued on one of the
vertical beams, not shown in Figure 15, see Thomas
et al. (2003) for details) was used to drive in vibrations
the structure. Measuring the current intensity signal
Idrive(t) in this coil, assumed proportional to the force
applied to the structure, gave a reference for the fre-
quency response functions measured in the experiments
presented in this article.

Figure 16. Electronic circuit used to create the resistive shunt, including a negative resistance realised with an operational amplifier.
The electromagnetic transducer is classically modelled as an inductor L in series with an internal resistance RL and an electromotive
force f _x.

Table 2. Geometrical and material details of the components of the host structure.

Mass [g] Length [m] Width/external diameter [m] Thickness [m]

Plate 1628 240 200 12
Beam 219:4 400 40 5
Coil assembly* 42:1 25:9 26 –
Magnet assembly* 131:6 35 29:8 –
Exciter magnet 6 10 10 –
DVA built 161:1 – – –
DVA mobile mass 149:8 40 40 34
DVA beam 48:7 <300 20 3

*
The measured mass is the mass of the item and its fixture.
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The frequency response of the structure with a resis-
tive shunt is shown in Figure 17 for several values of
the resistance of the shunt. The velocity _x1 of the top
plate of the structure was measured by a laser vibrom-
eter and the reference signal was the current intensity in
the driving coil Idrive. The open circuit condition (OC)
was obtained by leaving the terminals of the coil open.
Since no current flows in the coil, it corresponds to the
natural response of the structure. Then, short circuiting
the coil is equivalent to impose a shunt resistance R

equal to RL = 3:5O, the internal resistance of the coil.
This case is shown in red in Figure 17. In addition, by
increasing the negative capacitance Rn from zero, it was
possible to obtain an optimal response for the system
(in green), the response with the lowest amplitude.
Increasing further Rn and thus lowering the whole resis-
tance in the circuit until the limit of stability, it was
possible to reach the orange (Limit SC) curve. Finally,
the blue dashed curve gives the theoretical response of
the system if it had been possible to fully cancel the
internal resistance of the coil, to obtain a theoretical
R= 0 shunt resistance. The theoretical locus of the
peak amplitude of the response when R is varied is
shown in dashed grey showing an excellent agreement
with theory (Figure 4), especially with the peak of the
optimal curve being located just below the fixed point
F because of the nonzero damping j1.

In the present case, because of the high internal
resistance of the EM transducer, it was not possible to
estimate directly the EMCF with equation (13) as it is
traditionally done for piezoelectric transducers (see e.g.
Thomas et al., 2012), since v1, sc is defined as the natu-
ral frequency of the system short circuited with a per-
fectly zero shunt resistance R= 0, the blue curves of

Figure 17(a) and (b), which is here only theoretically
predicted. However, using the experimental value of R

obtained for the optimal situation of Figure 17 (green
curves), one can deduce lopt

e with Table 1 and obtain k

by:

k ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
(lopt

e )
2 � v2

1

v2
1

s
: ð50Þ

The two estimated values of k are 0:314 and 0:085 for
mode B1 and B2, respectively, as indicated in Table 3.

Finally, considering these experimental values k and
the ones of j1 (see Table 3), it is possible to compare
the attenuation AdB brought by the resistive shunt
between experiments and theory, see Figure 18. In

(a) (b)

Figure 17. Experimental frequency response jx̂1=̂Idrivej of the structure coupled to a resistive electromagnetic shunt (R-shunt), with
the negative capacitance realised with the analog circuit of Figure 16. (a): R-shunt tuned to mode B1; (b) R-shunt tuned to mode B2.

Figure 18. Attenuation AdB due to R-shunt as a function of the
EMCF k, for values of eigenmodes damping j1, for mode B1 and
B2. Theory from section 2.3.1 and Figure 6 is in solid line and
experimental values are shown by points.

Auleley et al. 19



regards to those graphs, we can conclude a good agree-
ment between this experimental values and the theory,
that validate this R-shunt and its application.

5.3. Results with a digital shunt

Because we are interested in validating resonant shunts,
we also need to add a capacitor C in the circuit.
Following Table 1, the electric natural frequency
ve = 1=

ffiffiffiffiffiffiffi
LC
p

of the resonant shunt has to be chosen
very close to the natural frequency of the targeted
mode of the primary system. To target the resonance of
the first mode f1 =v1=(2p)= 33:3Hz with a coil induc-
tance L= 664mH, the optimal value of the capacitance
is C ’ 35mF. Since this value is huge for a simple elec-
tronic component, we chose to synthesise it. Otherwise,
it would require the use of an electrolytic capacitor for
which a bias voltage would be necessary to avoid bipo-
lar voltages. Moreover, since we also need a negative
resistance in the shunt, using an op-amps based elec-
tronic circuit was found difficult to master and we
chose to test another strategy: the use of a real time
digital controller (RTC). In this case, both the negative
resistance and the capacitance were simulated by the
RTC.

The electronic circuit is shown in Figure 19. Since
the RTC (a dSPACE MicroLabBox DS1202) is used to
simulate a particular impedance, its input should be the
current in the circuit and its output a voltage.
Consequently, the input of the RTC is connected to the
shunt through a current measurement circuit, built with
a Texas Instrument OPA445 op-amp. It is an inverting
amplifier of gain 21 (because the same resistance
R4 = 74:9O is used at the inverting input and for the
negative feedback) which delivers an input voltage to
the RTC VADC = � RmI , with I = _Q the current inten-
sity in the shunt. Knowing the measuring resistance
Rm = 28:4O enables to obtain an input proportional to
I . At the output of the RTC, a voltage follower is used,
built with a second op-amp (a Texas Instrument
OPA547T). The two op-amps are supplied by a DC
power supply (FI 1333, Francxaise d’Instrumentation,
France). Finally, the RTC was programmed to simu-
late an impedance equivalent to:

ZRTC= � Rn +
1

jCO
: ð51Þ

The sampling frequency of the RTC is 30 kHz, which is
enough for the frequency band of interest of our struc-
ture, with the second mode at about 85 Hz.

Using the above described digitally synthesised
shunt, we tested four shunt configurations. For each
configuration, the mechanical frequency response
jx̂1=Îdrivej of the structure was measured in the same
way than in the previous section. Figure 20(a) shows
the results for the first configuration: a sole EM shunt.T
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All possible configuration are shown optimally tuned: a
R-shunt, a C-shunt and a RC-shunt. An excellent
agreement with theory is obtained since the curves cross
each other at the particular fixed points (see section 2.3
for details). In particular, one can remark the creation

of a remarkable anti-resonance in the case of the C-
shunt, for which the negative capacitance Rn has been
increased to be as close as possible to the instability
limit. Another remark is that the RC-shunt is slightly
detuned with respect to the perfect equal peak

Figure 19. Electronic circuit used to synthetise a resonant shunt with dSpace.

(a) (b)

(c) (d)

Figure 20. Experimental frequency response jx̂1=̂Idrivej of the structure coupled to several shunt configurations realised with a real-
time controller, around mode B1 resonance. (a) primary structure coupled to a single EM shunt absorber (R-shunt, RC-shunt and C-
shunt are shown); (b) primary structure coupled to a CDVA and a C-shunt; (c) primary structure coupled to a CDVA and a R-shunt;
(d) primary structure coupled to a CDVA and a R-shunt. The electromechanical coupling factor is k= 0:24 and the CDVA mass
ratio is m= 0:05.
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situation, since the same electrical frequency ve (and
thus the same value of C) as in the C-shunt case has
been used, that is, ve =v1. Considering theory, the
RC-shunt has to be slightly detuned with respect to v1

to be optimal (vopt
e =v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� k2)=2

p
, see Table 1) and

to have the two fixed points at the same amplitude.
Figure 20(b)–(d) show the frequency response of the

structure coupled to a CDVA and various shunts (a C-
shunt, a R-shunt and a RC-shunt). For the three situa-
tions, the CDVA is tuned to create an anti-resonance
in place of the primary system resonance v2 =v1. For
the C-shunt and the RC-shunt, the electrical frequency
is also tuned in the same way, so that ve =v2 =v1.
An excellent agreement is obtained with the theory
exposed in section 4: Figure 20(b)–(d) can be compared
to their theoretical counterparts, Figures 9, 10 and 12.
It is remarkable to observe that the theoretical fixed
points are present as predicted by theory. Moreover, in
the case of Figure 20(b), the addition of the C-shunt to
the CDVA increases the distance between the two reso-
nances, while keeping the anti-resonance, as predicted
by theory. For Figure 20(d), since the tuning is
ve =v2 =v1, it is not optimal and we can observe that
the left (low frequency) fixed point has an amplitude
slightly higher than the right (high frequency) one. A
right tuning would have been to slightly detune
ve =v2 with respect to v1 (see equation (44)) to obtain
the two fixed points at the same amplitude.

6. Conclusion

This article presented the possible performance
enhancement of a classical dynamic vibration absorber
(DVA) using an electromagnetic (EM) shunt. The focus
was on the use of a conservative DVA (CDVA),
because of its property to create a strict anti-resonance
at its natural frequency. It was shown that the addition
of an EM shunt does not break this remarkable prop-
erty, even if it is dissipative. Moreover, it was shown
that a properly tuned EM shunt was able to substan-
tially damp the two adjacent resonances of the CDVA,
thus obtaining a damping system able to create an anti-
resonance without creating sharp anti-resonances. It
was also discovered that fixed points are also present in
the frequency response of a CDVA with an EM-shunt,
enabling to derive simple analytical formulae, giving a
clear design methodology for this kind of coupled
absorbers.
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Appendix 1

Fixed points for the simple dampers

To optimise all the dampers, the method used in (Liu
and Liu, 2005; Snowdon, 1968) is followed. The fre-
quencies of the fixed points and the corresponding
amplitude of jx̂1(O)j are given by:

� Lanchester damper:

vF =v1

ffiffiffiffiffiffiffiffiffiffiffiffi
2

2+m

s
, jx̂1(vF)j=

F0

m1v2
1

2+m

m
ðA:1Þ

� R-shunt:

vF =v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2+ k2

2

r
, jx̂1(vF)j=

F0

m1v2
1

2

k2
ðA:2Þ

� DVA:

vF,G =v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=(2+m)

p
1+m

s
,

jx̂1(vF)j=
F0

m1v2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
2+m

m

s ðA:3Þ

� RC-shunt:

vF,G =v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
26

ffiffiffi
2
p

k

2

s
, jx̂1(vF)j=

F0

m1v2
1

ffiffiffi
2
p

k
ðA:4Þ

Appendix 2

Optimisation of the CDVA coupled to the R-shunt

We consider the case of architecture 2 with a CDVA
and a R-shunt, considered in section 4.2.1. The fre-
quency response of the system is obtained by writing
equations (27a,b) and (14a) in the frequency domain:

x̂1 =
F0

m1

(� O2 + lejO)(� O2 +v2
2)

DCDVA�R(O)
ðB:1Þ

with

DCDVA�R(O)=� O2½O4 � (1+m)v2
2 +(1+ k2)v2

1

� �
O2 + 1+ k2

	 

v2

1v2
2�

ðB:2Þ
+ jleO O4 � v2

1 +(1+m)v2
2

� �
O2 +v2

1v2
2

� �
: ðB:3Þ

This can be rewritten:

x̂1 =
F0

m1

A(O)+ jleB(O)
C(O)+ jleD(O)

: ðB:4Þ

The frequencies of the fixed points F and G of Figure
10, which are common to all the curves obtained by
varying le, in particular if le = 0 and le ! +‘, are
the O solutions of:

jx̂1(O)jle=0 = jx̂1(O)jle=+‘ ) A

C
=6

B

D

) A(O)D(O) 6 B(O)C(O)= 0:
ðB:5Þ

The equation AD+BC = 0 has the trivial solutions
O= 0 and O=v2. The equation AD� BC = 0 can be
written �O3(O2 � v2

2)K(O)= 0 in which K(O) is a sec-
ond order polynomial in O2, whose positive roots are
given in equation (40). Then, substituting equation (40)
in equation (B.1) and simplifiying the result using sym-
bolic computations gives equation (38) for the common
amplitude of the fixed points.

Finally, we are interested in the value of le that gives
the frequency response with a horizontal tangent at
point F (resp. at point G). We write:

jx̂1j2 =
A2 + l2

eB2

C2 + l2
eD2

, ðB:6Þ

so that ∂jx̂1j2=∂O(O=vF,G)= 0 is equivalent to

(BB0D2 � DD0B2)l4
e +(BB0C2 +AA0D2 � DD0A2 � CC0B2)

l2
e +AA0C2 � CC0A2 = 0:

ðB:7Þ

This equation can be solved analytically for le, which
leads to huge expressions in term of v2, k and m (v1 can
be set to one without loss of generality). However, it was
numerically verified that le=vF,G enables to exactly verify
equation (B.7), which gives the solution.

Appendix 3

Optimisation details for the CDVA/RC-shunt coupling

The same procedure as in the previous section is applied
to the CDVA/RC-shunt case, with le replaced by je in
equations (B.4), (B.6) and (B.7). The method initiated
in (Brock, 1946) and successfully used in (Liu and Liu,
2005; Snowdon, 1968) for the simple absorbers was
tested and gave no better results here, since the orders
of A(O), B(O), C(O) and D(O) in O are higher.
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