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Experimental analysis of nonlinear resonances in
piezoelectric plates with geometric nonlinearities

Arthur Givois · Christophe Giraud-Audine ·
Jean-François Deü · Olivier Thomas

Abstract Piezoelectric devices with integrated actu-
ation and sensing capabilities are often used for
the development of electromechanical systems. The
present paper addresses experimentally the nonlinear
dynamics of a fully integrated circular piezoelectric
thin structure, with piezoelectric patches used for actu-
ation and other for sensing. A phase-locked loop con-
trol system is used to measure the resonant periodic
response of the system under harmonic forcing, in both
its stable and unstable parts. The single-mode response
around a symmetric resonance as well as the coupled
response around an asymmetric resonance, involving
two companion modes in 1:1 internal resonance, is
accurately measured. For the latter, a particular loca-
tion of the patches and additional signal processing is
proposed to spatially discriminate the response of each
companion mode. In addition to a hardening behavior
associated with geometric nonlinearities of the plate, a
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softening behavior predominant at lowactuation ampli-
tudes is observed, resulting from the material piezo-
electric nonlinearities.

Keywords Piezoelectric device · Nonlinear dynam-
ics · Internal resonance · Experiments

1 Introduction

Piezoelectric transduction is commonly used in numer-
ous engineering applications, such as energy har-
vesting [1,2], micro/nano-electromechanical systems
(M/NEMS) [3], and vibration control [4–6]. The trans-
ducers can be directly embedded in the mechanical
structure bymeans of piezoelectric layers, used for both
actuation and detection, obtaining a fully integrated
device. This can lead to the fabrication of low-volume
and portable systems. In this case, the transduction abil-
ity is of first importance [7–10].

In traditional approaches, nonlinearities are often
avoided, because they lead to complex dynamical phe-
nomena, undesirable as well as difficult to model
and simulate. However, it was shown that exploiting
the nonlinear behavior of electromechanical systems
can help to improve their efficiency. Possible appli-
cations are energy harvesting, for which the oper-
ating frequency bandwidth can be broaden [11–14]
and M/NEMS applications. In this latter context, non-
linear effects with softening or hardening behaviors
around resonances (e.g., [15,16]) were observed even
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at low actuation levels. They could be used to increase
the amplitude range of the devices [17,18]. It was
also shown that reaching nonlinear regimes can lead
to decrease the phase noise [19,20], in particular
by exploiting internal resonances (IRs) [21–23]. IR
denotes the particular nonlinear coupling of several
vibration modes of the system when their oscillation
frequencies f1, f2 verify commensurability relations
such that, among others, f2 � f1 (1:1 IR), f2 � 2 f1
(1:2 IR), and f2 � 3 f1 (1:3 IR). It leads to strong
exchange of energy between themodes that completely
changes the topology of their forced response [24–28].

The case of a 1:3 IR with an electrostatic actuation
has been addressed on numerous occasions recently:
The energy exchanges between flexural modes were
investigated in [29], whereas coupling between a flex-
ural and a torsional mode was extensively studied
in [21,30,31]. A 1:3 IR was also investigated on a
micromachined disk resonator [32] and for a macro-
piezoelectric cantilever beam [33]. More recent works
reported large varieties of observed IRs in MEMS (see
[34] or the review [35]). For energy harvesting appli-
cations, IRs were also explored to produce a transfer of
energy toward high frequencies [36,37].

Among the different possiblemodal interactions, we
focus here on the case of a 1:1 IR. Indeed, it appears as
the simplest one since it results in the nonlinear cou-
pling between two oscillators with close eigenfrequen-
cies. Some mechanical systems present naturally this
characteristic: two-polarized strings and beams [38–
41], two-dimensional structures (rectangular/circular
plates and membranes [42–44], or cylindrical shells
[26,27,45,46]). The symmetry properties of plate-like
structures have been identified as a promising case
study. For mass sensing application, they were used in
the linear regime in [47,48] to enhance the robustness
of a circular diaphragm, whereas a complete proce-
dure based on nonlinear modal interactions of a square
graphene membrane was proposed in [49] to improve
the sensor’s sensitivity. In [50], the authors studied dif-
ferent 1:1 IRs between companion modes of a MEMS
with a piezoelectric actuation. Another advantage of
the 1:1 IR is that the different possible bifurcation sce-
narios are well known: The investigations [43,51,52]
addressed it entirely.

Despite these numerous advantages, highlighting
experimentally a 1:1 IR can be a complex operation,
since no higher harmonic component is involved in the
response and the two interacting modes must be sepa-

rated by spatial filtering instead of frequency filtering.
In [44,45,52], the coupling between companionmodes
of a plate was clearly identified by placing the sensors
at the nodes of eachmode shape. In [47,48], the authors
took advantage of the rotational symmetry properties of
the operational mode shapes of a circular diaphragm,
to filter spatially the characteristics signal of oscilla-
tors. For this, the system was electrostatically actuated
and the locations and shapes of sensing electrodes were
chosen to be representative of the studied oscillators.

In line with recent investigations [52–54], a control
system based on a phase-locked loop (PLL) is used
to measure the geometrically nonlinear responses. A
main advantage of this method is that it can measure a
complete frequency response around a nonlinearmode,
including its unstable parts. This method was recently
used to measure nonlinear responses of MEMS [55].
However, this control method is restricted to dynami-
cal responses with monotonous phase evolution, which
can be incompatible with the emergence of an internal
resonance. For instance, the complete forced responses
could not be measured when an 1:1 internal resonance
occurs at a location of a pitchfork bifurcation [52].

In most studies mentioned above, the internal res-
onances were due to geometric nonlinearities. In the
case of a piezoelectric actuation and at high voltage,
piezoelectric material nonlinearities were reported in
[56,57], for which quadratic terms [58] and a ferroe-
lastic hysteresis [59] in the piezoelectric constitutive
law could lead to a softening behavior.

In this context, the present work focuses on the
experimental investigation of the geometrically non-
linear dynamics of a fully integrated piezoelectric sys-
tem at macroscale. Indeed, considering an integrated
system is natural at microscale (in M/NEMS, a Duff-
ing nonlinearity was identified in [7] and parametric
excitation and amplification were, respectively, high-
lighted in [60] and [61]), but is scarce for macrostruc-
tures. In this paper, we address (i) the fully integrated
measurement of the nonlinear frequency responses of a
piezoelectric structure, (ii) the experimental investiga-
tion of a 1:1 internal resonance with an original proce-
dure for discriminating the characteristic signals of the
two oscillators, and (iii) measurements with unprece-
dented levels of driving voltage to ensure the activation
of geometric nonlinearities.
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2 The investigated piezoelectric plate

We consider an elastic circular plate (Fig. 1a) similar
to one of [44,52]. Its radius and thickness are, respec-
tively, R = 0.11m and h = 1.5mm. It is made of brass
of mass density ρ = 8486 kg.m−3, Young’s modulus
Y = 110 GPa, Poisson ratio ν = 0.3. Eight rectangular
piezoelectric patches, of dimensions 40× 20× 1 mm,
with wrapped electrodes, made of PIC 151 material,
were glued on the plate with 3M Scotch-Weld DP 460
epoxy adhesive (see [62] for details about the gluing
procedure). The patches are equally spaced and placed
along an inner circumference or radius r = 70 mm.
Three holes of small radius were equally spaced near
the outer edge of the structure to hang up the plate
with nylon threads and thus to set up experimental
free edge boundary conditions (cf. Fig. 1b). A power
amplifier Trek PZD700A-M/S dedicated to piezoelec-

tric actuation enabled to amplify the voltage signals up
to ±700 V.

To verify the bonding, capacitance measurements
were first performed with a standard multimeter. The
capacitances C(p) (p = 1, . . . 8) of the eight piezo-
electric patches, measured between the top and bottom
electrodes, were estimated at 15.85+1.6%

−1.3% nF, show-
ing nearly identical patches. Then, the capacitances
between the bottom electrodes of the patches and the
elastic plate were also measured. Values between 10
and 40 μF were obtained, about 1500 times larger
than C (p), thus allowing to consider that all the bot-
tom piezoelectric electrodes are at the same electric
potential, because of electrostatic influence.

Theparticular dispositionof thepiezoelectric patches
aimed to keep as much as possible the symmetry prop-
erties of the plate. To verify our design and to pre-
liminary analyze the vibratory response of the plate, a
modal analysis was performed from velocity measure-

(a)

(c)

(b)

Fig. 1 Piezoelectric plate (a) after bonding and (b) in opera-
tion hanged with nylon threads (NT: nylon threads. W: elastic
wires to connect the patches), (c) operational mode shapes of the

measured modes. Nodal circles and diameters are plot in dashed
lines, with different dash lengths depending on the considered
mode
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Fig. 2 Frequency response of the piezoelectric plate in veloc-
ity over voltage. The excitation voltage is prescribed at the first
patch. Velocity measurements are made at a point near the edge
of the plate (solid blue line) and at the center (dashed black line).
Since the asymmetric modes have a node at the center of the
plate, the black curve favors the emergence of the symmetric
modes. The identified configurations are indicated. (Color figure
online)

ments with a scanning laser vibrometer (Polytec PSV-
400) and a piezoelectric driving from the first patch.
Structureswith a rotational symmetry are characterized
by two families ofmodes: symmetricmodeswith nodal
circles only and asymmetric modes with nodal diame-
ters, the latter appearing by pairs of so-called compan-
ion modes in the spectrum. Those modes are denoted,
respectively, by (0, n) and (m, n, 1)/(m, n, 2), with m
the number of nodal diameters, n the number of nodal
circles, and the last binary digit referring to the con-
sidered mode in a given pair of asymmetric compan-
ion modes. The experimental mode shapes and natu-
ral frequencies of modes (2, 0, 1), (2, 0, 2), and (0, 1),
considered in the remaining of the paper, are depicted
in Fig. 1c. A rotational symmetry breaking leads to a
loss of equality of the two eigenfrequencies of a given
companion mode pair. Figure 2 shows that the symme-
try properties were kept for most of the modes of the
piezoelectric plate: Indeed, most of asymmetric modes
appear by pairs of modes with very closed frequencies.

3 Modeling

This section is devoted to a reduced-order model of the
resonant system, including both piezoelectric transduc-
tion and geometrical nonlinearities. With this model-

ing, we provide a framework to predict qualitatively
the dynamical resonant behavior of the system. In par-
ticular, two reduced-order models (one oscillator for
a symmetric mode and two oscillators for two com-
panion modes) will be proposed, which are mandatory
to apply the experimental continuation procedure of
Sects. 4 and 5.

3.1 General framework

This framework is based on the modeling proposed in
[63,64], valid for any elastic structure equipped with
piezoelectric patches, and taking into account both geo-
metric nonlinearities and a linear piezoelectric consti-
tutive law. A modal expansion on N natural modes
in short circuit is used to reduce the model. With-
out mechanical forcing, the dynamical behavior of the
structure with P patches is governed by the following
equations:

q̈k + 2ξkωk q̇k + ω2
kqk +

N∑

i=1

N∑

j=i

βk
i j qiq j

+
N∑

i=1

N∑

j=i

N∑

l= j

γ k
i jlqi q jql

+
P∑

p=1

[
χ

(p)
k +

N∑

i=1

Θ
(p)
ik qi

]
V (p) = 0,

∀k = 1, . . . N (1a)

C (p)V (p) − Q(p) −
N∑

i=1

χ
(p)
i qi

− 1

2

N∑

i=1

N∑

j=1

Θ
(p)
i j qi q j = 0, ∀p = 1, . . . P. (1b)

In these equations, qk(t) denotes the modal coor-
dinates at time t , ωk the natural frequencies and
ξk the modal damping factors. C (p) is the capac-
itance of the pth piezoelectric patch, measured as
explained in Sect. 2. βk

i j and γ k
i jl are the nonlinear

stiffness coefficients of the reduced-order model stem-
ming from geometric nonlinearities, while χ

(p)
k and

Θ
(p)
i j are the piezoelectric linear and nonlinear cou-

pling coefficients. Finally, (V (p), Q(p)) denotes the
voltage/electric charge pair of the p-th piezoelectric
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patch. Notice the 1/2 coefficient in front of coefficients
Θ

(p)
i j in Eq. (1b) [64].

3.2 One-mode reduction

In this section, we assume that the system is piezo-
electrically actuated by prescribing a cosine voltage
Va(t) = VI cosΩt across the terminals of the pa-th
piezoelectric patch, with its frequency Ω close to the
natural frequency ωk of one of its symmetric modes,
the k-th one. The other patches are left in open circuit
(Q(p) = 0), one of them of number ps being used as
a sensor, by monitoring its voltage Vs(t) = V (ps )(t).
Following a normal form procedure, system (1a) can
be reduced to a single oscillator with a cubic term only.
The corresponding coefficient Γk , which embeds the
effects of all quadratic and cubic coefficients (βk

i j , γ
k
i jl)

of the initial system, can be explicitly obtained as a
function of them, following the normal form change of
coordinates (see [53,65] for details). Then, the nonlin-
ear piezoelectric terms of coefficients Θ

(p)
ik are respon-

sible for a parametric driving and have a significant
effect only around an Arnold tongue, if Ω � 2ωk . In
our study, since we are interested only in direct reso-
nant excitation of the oscillator, with Ω � ωk , these
terms are neglected. The full model thus reduces to:

q̈k(t) + 2ξkωk q̇k + ω̂2
kqk(t) + Γkq

3
k = −χ

(pa)
k Va(t),

(2a)

Vs = (χ
(ps )
k /C (ps )) qk, (2b)

where ω̂k is the natural frequency of the k-thmodewith
the ps-th patch in short circuit and all the others in open
circuit. Since the electromechanical coupling is always
small, ω̂k � ωk (see, e.g., [66]). This system has the
form of a classical Duffing oscillator, driven by a force
proportional to the voltage Va(t), which allows strictly
applying the PLL-based nonlinear mode measurement
method of [53]. Moreover, the voltage Vs(t) provides
a direct measurement of the modal coordinate qk(t).

3.3 Two-mode reduction

The plate is here driven by prescribing a voltageV (p)
a =

Vp cosΩt to a subset Pa � p of the patches dedicated
to actuation, with the driving frequency Ω close to the

natural frequencies of a pair of companion asymmet-
ric modes. Another subset Ps is used for monitoring,
with the patches in open circuit. To study the nonlin-
ear dynamics of the plate, following a normal form
reduction (see [43,52,65]), the modal equations (1) are
reduced to a pair of oscillators, denoted by k = 1, 2,
corresponding to the two nonlinear companion asym-
metric modes, that include only cubic resonant terms:

q̈1 + 2ξ1ω1q̇1 + ω̂2
1q1 + Γ11q

3
1 + Γ12q1q

2
2 = F1 (3a)

q̈2 + 2ξ2ω2q̇2 + ω̂2
2q2 + Γ22q

3
2 + Γ21q2q

2
1 = F2

(3b)

V (p) = (χ
(p)
1 /C (p)) q1 + (χ

(p)
2 /C (p))q2, p ∈ Ps .

(3c)

where the modal forcing reads:

F1 = −
∑

p∈Pa

χ
(p)
1 V (p)

a , F2 = −
∑

p∈Pa

χ
(p)
2 V (p)

a . (4)

In the above equations, in the same way than for the
symmetric mode, the nonlinear piezoelectric terms are
neglected and ω̂1 and ω̂2 are the natural frequencies
of the two companion modes with the driving patches
in Pa in short circuit and the others in open cir-
cuit. (Γ11, Γ12, Γ21, Γ22) denote the cubic coefficients
resulting from the normal form procedure in the same
manner than thatwas done forEq. (2).We assumedhere
that only four cubic resonant terms remain, as explained
in [43,52], which also present an exhaustive investiga-
tion of the obtained bifurcation scenarios. More pre-
cisely, because of the rotational symmetry, ω̂1 � ω̂2

and a 1:1 IR is activated. It results in the possible emer-
gence of a so-called elliptic mode, a particular coupled
regime that involves exchanges of energy between the
two oscillators that locks in a quadrature phase shift.
One goal of this article is precisely to measure this
coupled regime with the present fully integrated piezo-
electric plate.

4 Symmetric mode measurement

This section is concerned with the nonlinear response
measurement of the symmetric mode (0, 1).
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Fig. 3 Experimental setup for the symmetric mode (0, 1) mea-
surement

4.1 Experimental setup

As introduced in Sect. 3.2 and sketched in Fig. 3, the
piezoelectric plate was actuated around its first sym-
metric (0, 1) mode, of natural frequency 212.3 Hz, by
prescribing the voltage V (1)(t) = Va(t) to patch 1.
Patch 8 was used for sensing, by monitoring Vs(t) =
V (8)(t). Because of the rotational symmetry of mode
shape (0, 1), any of the patches could have been used.

Following the experimental procedure described in
[53], the measurements were performed thanks to the
real-time control of the phase φ between the excitation
signal Va(t) = VI cosΩt and the first harmonics of
the monitoring signal Vs(t) � VO cos(Ωt + φ), using
a dSpace MicroLabBox system with a sampling fre-
quency fs = 20 kHz. The first harmonics is estimated
via a synchronous detection.

A drawback of this acquisition device is that it does
not support voltage amplitudes larger than 10V. Conse-

quently, a voltage divider (with resistances 680 kΩ and
10 kΩ , ensuring an attenuation gain of 69) was placed
at the output of the measured signals. To reduce the
quantization noise generated by the digital to analog
converters, a low-pass filter (a RC circuit with resis-
tance 750 Ω and capacitance 69 nF) was placed at the
output of the dSpace. The cutoff frequency was around
3 kHz, much smaller than fs for an efficient smooth-
ing of the output signal. For the experiments performed
here, the integral and proportional gains of the control
loop were, respectively, fixed at KI = 3 and Kp = 100
(see [53] for details).

4.2 Frequency responses

Figure 4 shows the amplitudes and phases of the free
and the forced responses of mode (0, 1). The free
response corresponds to the backbone curve of the non-
linear mode and was obtained by prescribing a fixed
value φ = π/2 to the phase between the input and out-
put signals of the system, and by increasing the input
voltage VI . The forced response was obtained by fixing
the input voltage VI and sweeping the phase φ between
0 and π . It is worth noticing that for both amplitudes
and phases measurements, the experimental results are
found to be outstandingly clean, for both stable and
unstable parts of the curves. The result resembled to

Fig. 4 Amplitudes and phases of the free (black line) and forced
(colored lines) responses measured with piezoelectric detection.
The input voltage is the output of the piezoelectric amplifier.

Measurements are made at the output of the voltage divider.
(Color figure online)
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Fig. 5 Experimental setup for the asymmetric mode (2, 0)mea-
surement

the response of a Duffing oscillator, as expected with
the model of Sect. 3.2. These observations thus fully
demonstrate the efficiency of the piezoelectric actua-
tion and detection as well as the PLL control system.

As expected from nonlinear responses of an homo-
geneous circular plate [43,44], the nonlinear behav-
ior of the system is mainly hardening, except at low
amplitudes where a slight decrease in the frequency
with the amplitude was observed. According to [59],
piezoelectric material nonlinearities due to the piezo-
electric patches are probably responsible for this soft-
ening nonlinearity. A reduced-order model taking into
account both geometrical and piezoelectric nonlinear-
ities would probably allow for predicting this mixed
hardening–softening behavior. For this, the model of
Sect. 3.2 should be corrected. A way would be to add
a quadratic nonlinear term, but it would violate the
normal form reduction. To remain rigorously in this
framework, a fifth-order normal form reduction has to
be developed, to include the change of trend of the
mode, from softening to hardening. This is left out of
the scope of the present study.

5 Asymmetric mode measurement

In this section, we report the measurement of the non-
linear response of the companion asymmetric modes
(2, 0, 1) and (2, 0, 2).

5.1 Experimental setup

According to the modal analysis (Fig. 1c), the eigen-
frequencies of the (2, 0) companion modes are located
at f1 = 124.0 Hz and f2 = 132.8 Hz. In order to
bring these two frequencies closer to favor the 1:1 IR,
lests (magnets) were placed on the four nodes of the
first companion mode, corresponding to antinodes of

the second one, in order to significantly decrease the
natural frequency of the latter without changing too
much one of the former. This results in new natural
frequencies of f1 = 122.9 Hz and f2 = 124.8 Hz,
thus decreasing the frequency distance from 8.8 Hz to
1.9 Hz.

Since we are interested in properly characterizing
the frequency response of the two companion modes,
as it was done previously for elastic circular plates
in [44,52], we want to have an experimental mean to
separately actuate them and measure their respective
response. As presented in Fig. 1a, c, the nodal radii of
the asymmetric modes (2, 0) are not perfectly aligned
with the axes of symmetry of the piezoelectric location
pattern on the plate. With a theoretical perfect align-
ment, considering the curvature field of the deformed
shapes, the coupling coefficients would have fulfilled
particular equality relations such as χ

(1)
1 = χ

(2)
1 =

−χ
(3)
1 = −χ

(4)
1 = χ

(5)
1 = χ

(6)
1 = −χ

(7)
1 = −χ

(8)
1 and

χ
(1)
2 = −χ

(2)
2 = −χ

(3)
2 = χ

(4)
2 = χ

(5)
2 = −χ

(6)
2 =

−χ
(7)
2 = χ

(8)
2 . In this perfect case, a spatial filtering of

the two companion modes, for actuation and detection,
could have been obtained by simple sum and difference
of the voltage signals of two neighboring patches. Due
to the imperfections, this procedurewas not straightfor-
ward and we had to use weighted linear combinations
of the measured signals.

To separate the actuations of modes 1 and 2, we con-
sider the electromechanical forcing F1(t) and F2(t)
of the two modes in Eq. (3a, b), defined by Eq. (4).
To characterize the 1:1 IR, we are interested in driv-
ing mode 1 only, thus having F2 = 0. To make F2 as
small as possible, weighted linear combinations of an
actuation signal were applied on two pairs of neigh-
boring piezoelectric patches. For each pair of patches,
amplifications with gains |αp| < 1 adjusted thanks to
voltage dividers and potentiometers were applied on
the driving voltage. In this setup, the actuation patches
were Pa = {1, 2, 5, 6}, with gains α1 and α5 applied
to patches 1 and 5 and adjusted to minimize F2 (see
Fig. 5). By denoting the actuation voltage at the output
of the amplifier as Va(t) = VI cosΩt , the voltage at
patches p = 1, 5 writes V (p) = αpVa , and the modal
forcing reads:

F1(t) = −
(

α1χ
(1)
1 + χ

(2)
1 + α5χ

(5)
1 + χ

(6)
1

)
Va(t)

(5a)
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Fig. 6 Amplitudes and phases of the frequency responses for the
filtering procedure. Blue and orange curves: frequency responses
of measurement signals Vs1 and Vs2 with an actuation at patch
1. Green curve: frequency response with detection at patch 3

and prescribed voltage as described by Eq. (5). For compari-
son purpose, this driving signal was normalized so that Vd =
(2 + α(1) + α(5))VI . (Color figure online)

F2(t) = −
(

α1χ
(1)
2 + χ

(2)
2 + α5χ

(5)
2 + χ

(6)
2

)
Va(t)

(5b)

The sensing voltages V (p), governed by Eq. (3c), are
recorded at patches p = 3, 4. For the filtering pro-
cess, the combined measurements signals (Vs1, Vs2)
are defined as:

Vs1 = V (3) + α4V
(4), Vs2 = α3V

(3) + V (4). (6)

The amplification gains α3, α4, applied directly in real
time via the dSpace card, were adjusted such that Vs1
and Vs2 were, respectively, proportional to q1 and q2,
which writes:

χ
(3)
2 + α(4)χ

(4)
2 ≈ 0, α(3)χ

(3)
1 + χ

(4)
1 ≈ 0. (7)

In practice, the gainsαi , i = 1, 3, 4, 5,were adjusted
by hand to minimize the unwanted responses of the
modes, as observed in the linear frequency responses
of Fig. 6. The obtained gains were α1 = 0.7812, α3 =
−1.83, α4 = 1.25, and α5 = 0.833. The obtained
discrimination of the companion mode was perfect for
the detection since only one peak is obtained for Vs1
and Vs2. For the actuation, a correct discrimination was
obtained, with nevertheless a small response ofmode 2,
observed around 124.8 Hz, when actuating only mode
1 with the forcing pattern of Eqs. (5).

5.2 Frequency responses when driving mode (2,0,1)
and 1:1 internal resonance

In the same manner as for the symmetric mode, free
and forced responses were measured by the PLL sys-
tem. The control was made on the phase difference φ1

between the signals Vs1 and Va , corresponding to the
actuation and sensing of mode 1, with φ1 = π/2 kept
constant for the free response (Fig. 7) and a φ1 ∈ [0, π ]
sweep for the forced response (Fig. 8).

Free responsesOn the basis of theoretical and exper-
imental results reported in [52], three main character-
istics in the backbone curves shown in Fig. 7 attest
the emergence of a coupled regime and a 1:1 internal
resonance: (i) a slight change of curvature on the ampli-
tude response of Vs1 around 124 Hz, characteristic of a
degenerate pitchfork bifurcation; (ii) a fast increase in
the amplitude of the sensing signalVs2 after the bifurca-
tion; and (iii) a fast decrease in the phase of Vs2 before
the bifurcation, to reach a plateau with a phase differ-
ence close to π/2 between the two companion modes
after the bifurcation. On a perfect elastic plate, the sig-
nals Vs1 and Vs2 would be in phase quadrature in the
coupled frequency region, characteristic of the ellip-
tic mode coupling [52]. However, probably because of
the slight direct driving of mode 2 (F2 is not zero, see
Fig. 6), the amplitude of Vs2 is not zero before the bifur-
cation point, leading to an imperfect coupled regime,
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Fig. 7 Amplitudes and phases of the free frequency responses when mode (2, 0, 1) is driven. The amplitudes and phases of the signals
Vs1 and Vs2 are, respectively, plotted with solid and dashed lines

Fig. 8 Amplitudes and phases of the forced responses around
the (2, 0, 1) mode, plot with colors, with V0 = 62V. The ampli-
tudes and phases of the signals Vs1 and Vs2 are, respectively,

plotted with solid and dashed lines. The free response, plotted in
black, is kept for comparison purpose. (Color figure online)

with a topology, however, very close to one of a perfect
1:1 IR.

As for the symmetric mode, a softening behavior
was observed at low amplitudes. The phenomenon
seemed to be more significant in the present case of
the asymmetric mode than for the symmetric mode,
with a larger decrease in frequency with the amplitude
than the one observed in Fig. 4.

Forced responses Figure 8 depicts the forced responses
for different driving amplitudes. As expected, the

responses are articulated around the backbone curve,
for low amplitudes where the softening behavior pre-
dominated, aswell as for higher amplitudes,where geo-
metric nonlinearities and the 1:1 IR are activated.

An unstable behavior was encountered after the
phase resonances for the two higher amplitudes pre-
scribed on the system (green and purple curves). To
overcome this issue, the control gains were changed
during the measurements: They were progressively
increased from KI = 3 and Kp = 100 to KI = 40
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and Kp = 1000 shortly after the phase resonance
and then decreased until the end of the phase sweep.
Consequently, all the curve could be measured despite
the unstable behavior (unlike the experiments in [52],
where controller gains were not changed), even at
higher excitation levels for which a loop in the ampli-
tude curve was encountered (cf. purple curve).

6 Conclusion

In this paper, we report original experiments on a fully
integrated piezoelectric system with sufficient high
actuation levels to activate geometric nonlinearities.
Voltage amplitudes up to VI = 372 V were applied
to achieve a maximum of displacement amplitude of
w = 1 mm. The fatigue of the piezoelectric ceramics
was clearly observed during the experiment period: An
inconvenient was that the upper conductive layers of all
ceramics except one were broken, which could lead to
the emergence of electric arcs. However, it was repaired
by applying a thin graphite layer with a pencil, and
no significant effect on the mechanical properties of
the plate, particularly the stiffness and the resonance
frequencies, was observed. The results on unimodal
responsemeasurements demonstrated the effectiveness
of the PLL control systemwith a fully integrated piezo-
electric device. An experimental procedure was set up
to highlight a modal interaction between two compan-
ion modes and thus the emergence of a 1:1 internal res-
onance. Future developments could focus on predictive
models to simulate the combined effects of piezoelec-
tric and geometrical nonlinearities, thus allowing for
the accurate comparison between theoretical calcula-
tions and experiments, and leading to the estimation of
model parameters.
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