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A feed-forward neural-network-based model is presented to index, in real time,

the diffraction spots recorded during synchrotron X-ray Laue microdiffraction

experiments. Data dimensionality reduction is applied to extract physical 1D

features from the 2D X-ray diffraction Laue images, thereby making it possible

to train a neural network on the fly for any crystal system. The capabilities of the

LaueNN model are illustrated through three examples: a two-phase nano-

structure, a textured high-symmetry specimen deformed in situ and a

polycrystalline low-symmetry material. This work provides a novel way to

efficiently index Laue spots in simple and complex recorded images in <1 s,

thereby opening up avenues for the realization of real-time analysis of

synchrotron Laue diffraction data.

1. Introduction

Laue microdiffraction is an X-ray scattering technique for the

determination of local microstructural parameters (strain and

orientation) in materials (Tamura et al., 2002; Chung & Ice,

1999). It is based on the recording and analysis of the ‘Laue

pattern’ made from the digital image of the angular distribu-

tion of the scattering intensities on a 2D detector using a

polychromatic incident X-ray beam. In materials science and

Laue microdiffraction beamline setups worldwide [e.g. ALS

(Tamura et al., 2002), APS (Ice & Larson, 2000), ESRF (Ulrich

et al., 2011)], the Laue pattern from a single crystal is typically

composed of a number of peaks ranging from �20 for a cubic

unit cell to 500–1000 for a low-symmetry crystal. Each peak or

‘Laue spot’ is related to reflecting lattice planes defined by

their Miller indices (hkl) [including harmonic (nh nk nl)

planes where n is a positive integer]. The standard Laue

microdiffraction experiment is a scanning X-ray scattering

technique. It offers many experimental advantages when

investigating bulk or microstructured specimens: high spatial

resolution (from a few 100 nm to 1 mm), no sample rotation

required to record the X-ray scattering signal (single-shot

experiment), and high angular resolution on unit-cell shape

parameters and crystal orientation. The standard data analysis

has three main steps: peak search (image segmentation to a list

of peaks), indexing (assigning Miller indices to peaks) and

unit-cell parameter (or equivalently deviatoric strain) refine-

ment (Barabash et al., 2001; Plancher et al., 2016; Zhang et al.,

2017; Petit et al., 2015). For single-crystal Laue patterns and/or
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cubic structures, fast and reliable data analysis is available with

several software packages. However, the Laue pattern

complexity increases critically for low-symmetry crystals and/

or when the X-ray-probed volume comprises several crystals,

leading to superimposed patterns in a single image. Then, the

data workflow is obstructed at the indexing step, which must

segment the set of Laue spots into subsets, each corresponding

to a single-crystal Laue pattern. The indexing of superimposed

Laue patterns is thus of crucial importance for the reliability

of the crystal orientation and lattice strains. In parallel, the

production rate of data on synchrotron beamlines has

increased several-fold during the past decade with increased

photon flux of sources and very significant improvement of the

detectors (speed, size, sensitivity). In a typical experiment

performed at the French CRG-IF BM32 beamline at the

European Synchrotron (ESRF) (Ulrich et al., 2011), when

investigating a polycrystalline material (depending on scat-

tering power, grain size and level of disorder), anywhere from

3000 to almost 10 000 images of 8 MB can be collected per

hour (sCMOS 2016 � 2018 pixels, 16 bit detector) during a

sample raster scan, each image containing a superimposition

of several single-crystal Laue patterns.

Several analysis tools have been developed by different

groups dedicated to the interpretation of the Laue pattern

originating from single-crystal (Dejoie & Tamura, 2020; Gupta

& Agnew, 2009; Ouladdiaf et al., 2006) and polycrystalline

materials, for example, XMAS and by-products (Tamura,

2014; Kou et al., 2018; Song et al., 2019) and LaueTools

(Robach & Micha, 2015). In these tools, after the spots have

been precisely located on the detector frame, the indexing step

relies on the comparison of the angle between two diffraction

scattering vectors from two Laue spots, by means of a look-up

table (LUT) calculated in advance for the crystal of interest.

The LUT is built between fairly small numbers of hkls to limit

the computation requirements. In many cases, the indexing

step is the most time consuming within the workflow. It can

last several minutes (depending on the length of the LUT)

using standard indexing parameters (number of tested pairs of

spots, Laue pattern simulation and decision parameters from

the analysis of some successfully indexed images) or even fail

when dealing with low-symmetry structures such as poly-

crystalline monoclinic ZrO2 (Örs et al., 2018). To address the

speed-up related to the indexing step, other methods such as

template matching and auto-encoder-based convolution

neural network have been employed in recent years. Template

matching involves comparing sections of experimental images

with simulated images (Gonzalez et al., 2004; Gupta & Agnew,

2009), whereas the auto-encoder-based neural network (NN)

(Song et al., 2019) relies on extracting features on a set of Laue

images from a 2D raster scan and labelling them directly by

skipping the indexing process. However, first the template

matching or iterative classical indexing requires powerful

parallel CPU/GPU clusters to index thousands of Laue

patterns in a reasonable time. Also, such computational

resources are often not readily available for researchers.

Second, the labelling by Song et al. (2019) is not applicable to

the analysis of a single image, even if it is a useful step to

perform a partition of a set of Laue images for further stan-

dard indexing on a reduced number of images.

In this paper, we apply an NN-based model to the indexing

of Laue images. Instead of intuitively applying the classical

image-based convolution neural network (CNN), we

employed a data reduction approach to convert the 2D Laue

images to 1D angular distributions to enable a reliable clas-

sification. As a consequence, learning and predictive

computing times are also reduced. The LaueNN model

described in this paper has been optimized and tested to work

with a maximum of 2000 experimental Laue spots per image.

During the training, this model was able to achieve high

training and validation accuracies in �25 s to �15 min for

cubic and triclinic crystal systems, respectively, and it is able to

recognize the hkl Laue indices of all spots in a Laue image,

thereby allowing an efficient determination of orientation and

unit-cell parameters of all the crystals probed. The model

trained with synthetic data is based on the distribution of

mutual angles between a Laue spot and its neighbouring spots

in the Laue image. Details of the proposed method are given

in Section 2. The validity and relevance of the model are then

demonstrated through several case studies of experiments

with increasing levels of complexity in Section 3.

2. Methodology

In this paper, the raw detector image is referred to as a Laue

image, whereas Laue pattern refers to a set of Laue spots

defining a single crystal. Thus in the case of a polycrystalline

material, a Laue image is a superimposition of several Laue

patterns of different diffracting crystals. This article will

consider the Laue reflection geometry (detector on top of the

sample, collection angles centred on 2� = 90�) used by the

BM32 beamline and other beamlines worldwide. This config-

uration will be employed for simulating Laue patterns that will

form the basis of the training data set for the NN model, but it

is straightforward to apply the same procedure to other

geometries such as transmission.

2.1. Classical approach to indexing Laue patterns

Before discussing the proposed NN, in this section we

present the classical method of indexing Laue patterns by

peak-pair recognition (Heizmann & Baro, 1967; Riquet &

Bonnet, 1979), which is implemented in most Laue indexing

tools. This recognition works by finding several experimental

peak-pair angles in the theoretical LUT of angular distances

between hkl pairs. Prior knowledge of the unit-cell lattice

parameters helps to restrict the tolerance angle to consider a

valid recognition. We briefly explain the different elements of

classical analysis here; interested readers will find more details

in the literature (Petit et al., 2015; Örs et al., 2018).

The classical indexing in Laue diffraction consists of three

main steps (illustrated in Fig. 1).

(1) The first step is to locate the diffraction peaks. It

involves first resolving the local maxima in the recorded Laue

image by image processing and then using these local



maximum locations as initial guesses for the refinement of a

2D fit with a Gaussian peak shape model. Thus sub-pixel

resolution can usually be achieved.

(2) In the second step, the spot positions are converted/

projected in the angular space (two scattering angles 2�, �).

The angular distance between an arbitrary pair of spots (s1, s2)

is then compared with an extended LUT of the considered

(unstrained) crystal structure within a given tolerance. From

any matching pair of theoretical spots (hkl1, hkl2), two possible

orientation matrices can be derived: fs1 ¼ hkl1; s2 ¼ hkl2g or

fs1 ¼ hkl2; s2 ¼ hkl1g. Accordingly, two possible Laue

patterns can be simulated and compared with the experi-

mental one. A matching score Mr ¼ Nmatch=Ntheo can be

computed, where Nmatch is the number of simulated spots

whose positions match the experimental spots within a given

tolerance and Ntheo is the total number of simulated spots. The

accepted orientation matrix is the one with the highest

matching score. Often multiple theoretical lattice plane pairs

can be found in the LUT for a single selected pair of spots; for

example, in a cubic system the angles between the normals of

(111) and (100), (211) and (011), and (221) and (111) are all

equal to 54.736�. Hence, due to crystal symmetry, the number

of potential pairs-of-spots solutions can increase significantly

with the tolerance angle of the LUT recognition. In order to

ensure we find the highest Mr, a large number of experimental

spot pairs are tested following a screening approach of this

trial and error brute-force method.

(3) In the final step, the retained orientation matrix is used

as a guess to refine the crystal lattice parameters and crystal

orientation. If lattice parameters for the unstrained lattice (i.e.

strain free) are known, the deviatoric strain tensor compo-

nents can be determined. Evidently, it is of highest importance

to index unambiguously the spots belonging to the same

crystal, otherwise the strain computation and crystal para-

meters will be prone to errors.

The classical indexing process works efficiently in the case

of a high-symmetry crystal lattice and Laue images containing,

in practice, only a few (<5) patterns coming from crystals

probed by the X-ray beam simultaneously. To increase the

indexing success, this procedure is nevertheless CPU inten-

sive: the theoretical LUT is set to be sufficiently large, such

that any two randomly chosen experimental spots will find

their angular distances in the LUT. The time of computation is

proportional to the number of trials of spot pairs which scales

with N2
exp following a brute-force approach (where Nexp is the

number of experimental spots found on the image). There are

some workarounds to tackle having a large LUT and a large

set of spots to be screened, such as considering only the high-

intensity spots (whose hkl indices are likely to be small).

However this becomes less evident and effective when the

Laue image contains a few hundred spots, leading to

ambiguously close spots belonging to a different crystal, which

cannot be distinguished given the matching tolerance angle.

2.2. A neural-network-based approach to predict Laue spot
hkls

We propose here an alternative way to index the Laue

pattern with improved speed and efficiency by employing a

model based on a deep learning technique. Among the many

other approaches available in deep learning, we used feed-

forward neural networks (FFNNs) also referred as ‘multilayer

perceptrons’ (MLPs). FFNN is a classification algorithm

inspired by biological constructs and is a widely adapted

network in different practical applications (Senthilkumar,

2010). The intention of this article is not to detail the FFNN

model, which is reviewed elsewhere (Sazli, 2006); we report on

the considerable speedup of this new procedure over the

classical indexing technique for multi-grain and/or multi-phase

Laue images recorded.

The FFNN is a type of family of NNs where the information

only travels in one direction along the network, i.e. forward

through multiple layers and finally to the output layer. There is

no feedback from the output of the network back to the input.

Figure 1
Classical single Laue diffraction pattern analysis steps. (a) Peak/spot detection by image processing in the detector space. (b) Laue spots represented in
the angular space (scattering angles 2�, �); the mutual angle between a pair of spots is then compared with the theoretical LUT. (c) Result of the indexing
(hkl Miller indices assigned to each spot). Illustrative example for a Ge single crystal.



The reasons for choosing to work with reduced dimensionality

data were twofold: firstly the training time of the NN should

be kept as low as possible, thereby raising the possibility of

training an NN for any material during the experiments; and

secondly, the prediction time of an NN should be very fast, i.e.

on the order of several hundred milliseconds, to be able to

catch up with the detector read-out speed and index each

Laue pattern in real time during an experiment. Another

motivation was to be able to work with low-end standard

computers (without a dedicated GPU), i.e. avoiding proces-

sing images (or 2D data) during training.

The architecture of the FFNN model used in the current

study is illustrated in Fig. 2. The input is the 1D vector x (no

computations are performed at the input layer). The input

vector x corresponds to a Laue descriptor/feature, corre-

sponding to the angular distribution of peaks around a given

reference peak (see details in Section 2.3). Three hidden layers

of different neuron lengths are included between the input

and output layers, each connected to the previous layer by

their respective weight (W) and a bias constant (b). The

choices pertaining to the number of neurons per layer and

number of hidden layers are detailed in the next sub-section.

Each hidden layer has an accompanying activation function

and dropout ratio. The activation/transfer function defines

whether a neuron should be activated or not, while dropout

randomly deactivates a neuron during the training of the

model. The rectified linear activation function (ReLU) was

chosen to handle vanishing gradient for efficient learning and

improved performance (Nair & Hinton, 2010), except in the

final layer where softmax activation was used. A way of

regularizing the model learning was to introduce dropouts

between hidden layers (Srivastava et al., 2014). Here a 30%

dropout is introduced between each hidden layer. During the

training process by back-propagation (Hecht-Nielsen, 1992),

the weights in each of the neurons in these hidden layers are

optimized to get the desired output class (y) for each x vector

of input. In our case, the components (y) of the final output

layer represent the probabilities of being the Laue indices hkl.

In other words, it is the probability that the index of the

reference peak chosen to build the input vector x is hkl.

The number of output classes depends on the crystal

symmetry considered. The output classes of several materials

can be concatenated to allow the indexing of peaks in a multi-

material environment (where a Laue image can be composed

of contributions from more than one material). The number of

outputs (Laue indices hkl to be recognized) can be multiplied

by the number of distinct materials to be recognized (in Fig. 2

‘i’ is used to distinguish the material).

In a general sense, one can write the output vector y as an

activation/transfer function of the input vector x and various

weights (W) and biases (b) of respective hidden layers:

y ¼ factivationðx;W; bÞ: ð1Þ

For each layer, one defines a single scalar bias b and weight

vector W that has as many components as the number of

neurons in that layer. The complete formulation of the NN

presented in Fig. 2 is as follows:

y ¼ fsoftmax M3W4 þ b4ð Þ;

M3 ¼ fReLU M2W3 þ b3ð Þ; M2 ¼ fReLU M1W2 þ b2ð Þ;

M1 ¼ fReLU xW1 þ b1ð Þ:

ð2Þ

fReLU is the ReLU activation function which outputs the input

only if the input is positive and formulated as follows:

Figure 2
Generalized dense fully connected FFNN architecture for hkl indexing. The output class (h, k, l, i) refers to the hkl indices of crystallographic structure i.
The hkl indices are reconstructed up to an index n. The parameter i is used to distinguish concomitant crystal structures.



fReLUðxÞ ¼ maxð0; xÞ: ð3Þ

fsoftmax is the softmax activation function which converts a

vector of real numbers into a vector of probabilities (i.e. the

sum of its coordinates is 1) and is formulated as follows:

fsoftmaxðxÞ ¼
expðx1ÞPK
j¼1 expðxjÞ

; . . . ;
expðxKÞPK
j¼1 expðxjÞ

" #
; ð4Þ

where K is the number of output classes (Laue indices

hkl). The training of the NN is carried out by minimizing the

cross-entropy loss function which is well suited for multi-

classification purposes. The cross-entropy loss is the sum of the

negative log-likelihood of probabilities and is defined as

L ¼ �
PK
j¼1

yTrue
j log yPredicted

j

� �� �
: ð5Þ

2.3. Meaningful feature for indexing Laue spots

The ability of an NN to learn efficiently depends strongly on

the data features used. Just like for the classical indexing

approach, our NN-based indexing relies on the recognition of

mutual angular distances between Laue spots. We then used

the mutual angular distances between spots as the input

descriptor for the NN.

Fig. 3 illustrates the process of generating 1D reduced data

from the 2D data for the NN. For the training data set, we

generate a large number of simulated Laue patterns from a

uniform distribution of orientation. Then for each Laue

pattern (each crystal orientation), the radial angular distri-

bution around all simulated spots is computed to build the

distribution for all Laue indices (hkl) found in the training set.

This distribution is used as discriminative features for the NN.

For better recognition results, Laue images are simulated

consisting of the union (superimposition) of several individual

Laue patterns from randomly oriented crystals [Fig. 3(b)] and

Figure 3
Simulated Laue image, ground truth indexing and angular distribution around a single peak for (a) a Cu single crystal, (b) Cu polycrystals (three
crystals), and (c) Cu and Si single crystals. The leftmost subplots present the Laue spots in pixel coordinates, the middle plots present the Laue spots in
scattering angle coordinates (the ellipse is a guide for eye to represent the spots within 20� of angular distance from the red spot), and the rightmost plots
are the histograms of radial angular distributions (with fixed bins of 0.1�) of neighbouring spots around a single Laue spot.



even of different crystal structures in the case of multiphase

materials [Fig. 3(c)]. In Fig. 3, the angular distribution is shown

for one selected spot; the 100 spot in Fig. 3(a) has only

neighbouring spots of the same crystal, whereas in Fig. 3(b)

the same 100 spot has additional neighbouring spots coming

from the other two crystals, and Fig. 3(c) shows the angular

distribution for the same 100 spot when another phase (single-

crystal Si here) is present. The advantage of using a real

experimental geometry for data set generation is also to

capture the location dependency of the spots, i.e. the angular

distribution varies significantly if the spot is in the centre or at

the edges of the detector. Only spots lying within the detector

bounds are accounted for in the histogram of angular distri-

bution. Hence by simulating many random orientations, the

NN is able to recognize the hkls of spots even if they lie close

to the detector edge (partial neighbouring).

In the NN framework, input vector x is the distribution of

angular distance (with a bin size of 0.1�) for any given spot and

the output/target neuron components of y will be the Laue

indices hkl. Since each crystal structure is well defined by its

space group, taking into account symmetries, Laue indices hkl

in the output layer represent a crystal form made of the

equivalent families of planes (hkl) whose indices are permuted

or inversed according to symmetries. Let us illustrate this with

copper. Copper belongs to the Fm3m space group, i.e. each hkl

can be expressed by its 48 equivalent hkls. That is, a copper

100 reflection is indistinguishable from 010, 001, 100, 010 and

001 along with their harmonics. This has to be taken into

account during the generation of a training data set for the

NN. In the case of the copper 100 reflection, all the equivalent

hkls and their harmonics are clubbed together and are

represented by a single output neuron. Consequently, the 1D

distribution of angular distance of the equivalent hkls of (100)

will be represented by a single neuron in the output layer.

2.4. Generation of training and validation data sets

To match real collected Laue patterns (finite recording

exposure time, high-energy cut-off of incoming polychromatic

beam), the synthetic Laue patterns have been partly modified

and filtered. The Laue spot intensity scales mainly with the

grain size, level of disorder and structure factor. An experi-

mental Laue pattern can be composed of a fraction of all

possible Laue spots, hereafter referred to as a ‘partial’ Laue

pattern. We include the partial Laue pattern in the training

data set by displacing the synthetic Laue spots following a

normal distribution with � = �0.5 pixels, as well as removal of

spots whose energies are larger than 20 keV to mimic real

experimental conditions.

We were careful to generate a training data set without

introducing bias by considering a uniform sampling of orien-

tations when simulating the Laue patterns. We used the Neper

code (Quey et al., 2011) to generate a list of uniformly

distributed orientations by taking into account the crystal

symmetry (Quey et al., 2018). For higher-symmetry structures,

500 orientations are often sufficient to describe the orientation

space uniformly, whereas more orientations are required for

low-symmetry structures (e.g. �2000 orientations for mono-

clinic symmetry). Of the total generated orientations, 20% are

kept aside for the validation data of the NN. Care was also

taken to avoid overlap between the training and validation

data sets, as this could lead to strong overfitting.

Once the list of orientations is defined, the training and

validation data sets of Laue images in single and polycrystal-

line configurations are generated by randomly picking the

sampled orientations from their respective lists. From the

generated Laue images, the 1D distribution of angular

distances is constructed for each set of Laue indices hkl. Also

the (synthetic) ground truth, i.e. the hkl indices for all spots in

the validation data set, is stored to evaluate the performance

of the model at the end of each training step.

2.5. Neural network architecture

The number of input and output neurons is fixed in the case

of an FFNN architecture and there is no transfer of knowledge

from the output to the input layer. In the current study, the NN

model is constructed with the Keras (version 2.8; Chollet,

2015) backed by TensorFlow (version 2.8; Abadi et al., 2015)

Python libraries. The Adam (Kingma & Ba, 2014) optimiza-

tion algorithm was used for the training. Grid search was

performed to optimize the number of hidden layers, dropout

ratio and number of neurons per hidden layer required to

efficiently address the complexity of indexing. Details of the

Python notebook scripts corresponding to the grid search

optimization are provided in the supporting information. The

number of hidden layers was varied between one and ten, and

it was observed that one hidden layer was not sufficient to

obtain the desired accuracy, while anything more than three

hidden layers gave no visible improvement and increased the

risk of overfitting and the training and prediction times by a

factor of 2. Similarly a dropout ratio of 30% with the following

number of neurons per layer was found to be satisfactory:

Hidden layer 1 has the same number of neurons as input x.

The number of neurons is 7 times the number of neurons in

input x for hidden layer 2 and 15 times for hidden layer 3. And

for the output layer, the number of neurons depends on the

number of Laue indices hkl found in the training data set.

Owing to crystal symmetries, some hkls appear more often

than others in the Laue image, leading to an imbalance and

possible overfitting. Here we use a penalty associated with the

frequency of having an hkl within the training data set which is

introduced in the cross-entropy loss function [equation (5)].

Fig. 4 shows the training and validation accuracies [Fig. 4(a)]

and losses [Fig. 4(b)] for different crystal symmetries. Accu-

racy is a straightforward metric for model performance.

Accuracy is computed at the end of each epoch. An epoch

here refers to one complete cycle of the training data set

passing through the network. At the end of each epoch, the

training accuracy is calculated as the ratio of total good

predictions over the total number of predictions on the

training data set, and the validation accuracy is similarly

calculated over the validation data set. The training loss is

calculated and updated as each sample passes through the

�



network. The loss function [equation (5)] is minimized by

updating the weights of the neurons in the NN during the

learning. At the end of each epoch both training and valida-

tion losses are calculated on the training and validation data

sets, respectively. For cubic, hexagonal (not shown here) and

tetragonal crystal systems, validation accuracies >95% were

reached quickly, whereas for monoclinic and triclinic systems,

validation accuracies close to 90% were recorded. For lower-

symmetry crystals (more spots are present per Laue pattern),

the architecture can be further optimized and higher accura-

cies should be achievable. However, validation accuracies of

�90% are still very good for our purpose.

All training and predictions were carried out on a standard

8 core (2.40 GHz) laptop. Table 1 presents the figures of the

NN training. Training a model for higher-symmetry crystals

takes seconds to minutes, whereas for a triclinic system it takes

approximately 20 min. The prediction time for all spots in a

Laue image for all crystal systems is <1 s.

To evaluate the trained model performance on synthetic

data, multiple random simulation runs (1000) were performed

with single-crystal/polycrystalline copper simulated Laue

images. The statistics of these runs are presented in Table 2.

Note that the NN training data set included only Laue images

comprising one to a maximum of five crystals and yet the NN

manages to predict the hkls in a Laue image comprising ten

crystals with >90% accuracy. We also observed that the time

for prediction increased with the number of spots per Laue

image. This can be reduced by employing multiprocessors

during prediction, thus making the on-the-fly indexing of Laue

patterns a reality.

Here we summarize the procedure of LaueNN before

application to experimental cases.

(i) To simplify and accelerate the training and prediction of

Laue patterns, as a first step we provide a data reduction

approach to convert the 2D detector images (2000 � 2000

pixels) from pixel coordinates to a more meaningful 1D

angular distribution descriptor. As a result, the NN model

requires less processing power.

(ii) Often NNs require large data sets with manual labelling

of data by experts. By using purely simulated data taking

advantage of crystallographic symmetries we avoid any bias or

mistakes during the generation of training data sets. Instead of

training data sets of a few hundreds of thousands of samples,

we reach validation accuracies of >95% with only a few

thousand samples. The procedure to build the training and

validation data sets for all crystal systems is provided.

(iii) A single NN architecture has been optimized to work

for all crystal systems. Generation of training data to train the

NN model to higher accuracies takes <20 min and can be done

at the start of data collection experiments or beforehand at the

user laboratory or the beamline. The Python notebook scripts

that describe the various steps from the generation of the

training data set to predicting Laue spots are provided in the

supporting information.

(iv) The NN model provides the prediction of the hkls of

spots and not the orientation itself. Prediction of all hkls in a

single Laue image takes <1 s. Selected pairs of recognized hkls

Table 1
Neural network training statistics of different polycrystalline (up to five
crystals) crystal systems.

Prediction time for one Laue image is also provided.

Compound
Crystal
system

Maximum
number
of spots
per Laue
image

Model
training
time (s)

Total
trainable
parameters

Validation
accuracy
of the
model
(%)

Time to
predict
hkls in
one
Laue
image
(s)

Cu Cubic 225 � 5 25 2711518 99.7 0.25
Ti Hexagonal 525 � 7 180 10304228 98.2 0.33
Sn Tetragonal 806 � 8 180 10304228 98.6 0.40
ZrO2 Monoclinic 2060 � 27 750 59130894 94.4 0.65
Li2VOPO4 Triclinic 5200 � 25 1200 182766262 88.2 0.86

Figure 4
(a) Training and validation accuracy; (b) losses for hkl recognition in
different crystal systems

Table 2
Statistics of model performance on 1000 random simulation runs for Cu.

Number of
crystals simulated

Total spots per
Laue image

Prediction time
per Laue image (s)

Accuracy of
prediction (%)

1 45 � 2 0.23 � 0.015 100
2 90 � 3 0.42 � 0.025 99.99 � 0.008
3 135 � 3 0.62 � 0.022 99.99 � 0.01
4 180 � 5 0.82 � 0.028 99.87 � 0.2
5 225 � 5 1.00 � 0.036 99.64 � 0.4
6 270 � 5 1.21 � 0.036 99.09 � 0.5
7 315 � 6 1.42 � 0.039 98.27 � 0.7
8 360 � 6 1.62 � 0.047 96.71 � 1.0
9 404 � 6 1.82 � 0.055 94.60 � 1.25
10 450 � 7 2.01 � 0.049 92.26 � 1.34



are tested to propose an orientation matrix. The proposals are

validated and sorted via the matching rate Mr defined in

Section 2.1.

(v) The above-mentioned methodology is optimized to

enable real-time indexing of Laue patterns during experi-

ments, thereby making it possible to locate interesting features

in specimens and adapt experiments during beam time.

3. Application to experimental data

So far we have demonstrated the validation of the NN on

simulated Laue patterns. In the following we present the NN

performance obtained as an experimental Laue image data set

collected on the BM32 beamline. The configuration of the

experimental setup is illustrated and explained by Ulrich et al.

(2011) and Örs et al. (2018): top reflection geometry, sample

tilted by 40�, 5–22 keV energy range of the incoming beam,

and �70 mm detector-to-sample distance. Three illustrative

cases will be shown: a two-phase material (microcrystal on a

substrate), a polycrystalline textured metallic alloy (cubic

lattice) deformed in situ, and a polycrystalline material with

sub-micrometre-sized crystals and a low-symmetry unit cell.

3.1. GaN nanowires on an Si substrate

This first illustrative example consists of GaN nanowires

deposited on an Si substrate and demonstrates the ability of

LaueNN to detect several crystallographic phases in a single

Laue image measurement. The wires have been designed for

UV emission and are grown by metal–organic vapour phase

epitaxy on c-sapphire substrate using a silane-assisted method

(Koester et al., 2010, 2011). The experimental details related to

growth conditions and structural characterization are given by

Grenier et al. (2021). The diameter of the wires is about 1 mm

and the length is 13 mm. An important feature is that they are

grown in two parts as shown by the contrast in the optical

microscopy view in Fig. 5(a). The bottom, in white contrast, is

heavily doped with silane and has a selective layer coating that

suppresses lateral growth. In the top part [in dark contrast in

Fig. 5(a)], a quite complex stacking optimized for strain

management and UV emission is grown laterally, i.e. a GaN

spacer, two AlGaN gradients increasing the Al content from

0 to 30% then to 60%, and then the active emitting region

made of 5 � (2.5 nm GaN/5 nm Al60%Ga40%N) quantum

wells. This core–shell growth occurs on non-polar m-plane

{1010} wire sidewalls and is associated with a non-regular

hexagonal section. The long direction is oriented along the

Figure 5
Laue diffraction on GaN embedded in an Si substrate. (a) Optical microscopy image of the scanned region (the white spot corresponds to the beam
position), (b) recorded Laue image from the scanned region centre, (c) Laue image in scattering angle space (the spot size is proportional to the
intensity), (d) NN indexing and classification of phases in a Laue image, (e) reconstructed IPF-Z map of highest matching score for GaN crystal in the
scan region, and ( f ) "33 (c axis of GaN) strain component.



c-axis direction of the GaN hexagonal crystal. These nano-

wires were mechanically dispersed on a silicon (001) substrate.

When they do not interact with each other (stacking, elec-

trostatics . . . ), the m-plane sidewall facet of the wires is

parallel to the (001) silicon surface.

The whole area of Fig. 5(a) (41 � 41 mm) was scanned with

the beam (beam size V � H was 300 � 700 nm). Since the

X-ray beam can illuminate the Si substrate through the

nanowires, the Laue image always has spots coming from the

Si substrate, and possibly from the GaN phase. At some places

a few nanowires overlap on top of each other, thus producing

superimposed Laue patterns. Using the procedure explained

before, a single NN model was trained with a combination of

one crystal of Si and a maximum of three GaN crystals. The

training data set consisted of the following combination (500

uniform orientations were sampled for Si, while 1000 uniform

orientations were sampled for GaN): single-crystal patterns of

Si in the absence of GaN, a single crystal of GaN with a single

crystal of Si, two crystals of GaN with a single crystal of Si and

three crystals of GaN with a single crystal of Si. The training

took 15 min and the resulting model had a validation accuracy

>95%. Fig. 5(a) shows the Laue scan region of the micro-

structure taken with the beamline optical microscope, Fig. 5(b)

shows the Laue image (in pixel coordinates) for one of the

measurements coming from the centre of the scan region,

Fig. 5(c) shows the Laue spots in scattering angle space and

Fig. 5(d) shows the identification of the crystal orientation

from the NN.

Indexing was performed by means of the LaueNN method;

following the procedure of Section 2.2, the matching score of

all possible orientation matrices is evaluated from all the hkl

predictions. The indexing procedure was repeated for all Laue

images recorded during a sample raster scan. The NN was able

to identify up to three distinct Laue patterns (successfully

separating the spots belonging to the Si and the GaN crystals)

from experimental images. Fig. 5(e) shows the reconstructed

map of the highest matching score for a GaN crystal per Laue

image in inverse pole figure (IPF) colour (along the z axis;

normal to the substrate surface) for hexagonal symmetry.

The identified orientations are coherent with a very good

matching score for both GaN (c axis lying in the surface plane)

and Si(001). Once the diffraction spots of each crystal in each

Laue image are identified with good confidence, the next step

is to refine the lattice parameters of the crystals or equiva-

lently the components of the deviatoric strain with respect to

the reference lattice parameters (for GaN the following

reference lattice parameters were used: a = 3.189, b = 3.189, c =

5.185 Å, �= 90, �= 90, � = 120�). As expected, the strain in the

Si wafer (not shown here) is negligible (on the order of 10�5),

whereas for GaN a gradient of strain is observed along the

nanowire axis [as shown with the map of longitudinal strain

"33, Fig. 5( f)]. The "33 strain evaluated from the identified

orientation presents a bi-modal distribution, which is a

consequence of the way the nanowires were grown, as

mentioned before. The strain resolution is estimated at 0.01%.

The heavily doped silane regions (white contrast in the optical

image) are unstrained along the c axis as expected, and the

dark contrast region of the nanowire presents a clear

compressive (i.e. negative) strain level of about 0.2%. This

demonstrates that LaueNN can work directly with multi-phase

Laue images and neither post- nor pre-processing of data to

handle the Si peaks is necessary anymore (as was done

previously with the classical indexing scheme).

Here, the duration for data acquisition was about 1 h (61 �

61 Laue images, 1 s exposure per image). The total time to

extract Laue spots from the images, predict and construct

three orientation matrices, and refine strains (five iterative

step strain refinement) with an 8 CPU standard laptop was

about 30 min (0.5 s per image). The individual time of each

sub-process on a single CPU was as follows: extraction of Laue

spots from the images (�0.4 s), prediction of hkl (�0.4 s),

construction of the orientation matrix (cycling through high

prediction accuracy spots �1.5 s), strain refinement (�0.2 to

1.5 s depending on the number of strain refinement steps).

3.2. In situ deformation of high-symmetry polycrystals

This case study demonstrates the efficiency of the LaueNN

model for fine-grain polycrystalline material exhibiting a

crystallographic texture. We used a polycrystalline sample of

tungsten (W) deformed in situ at room temperature with a

dedicated tensile rig mounted on the Laue microdiffraction

setup at BM32. The reason for investigating W is twofold.

First, the yield stress for tungsten is large so that the specimen

can be loaded in situ to high stress without initiating plastic

strain. Second, the elastic behaviour of W crystals is isotropic,

so that there is no spatial discontinuity in the mechanical

behaviour between different grains. As a result, a tensile test

should add a uniform stress field in the specimen, whatever its

microstructure. According to the electron backscatter

diffraction (EBSD) analysis [Fig. 6(a)], the crystallographic

texture of the specimen shows two main components: 100 and

111. The microstructure constitutes large clusters of grains

with similar orientations, either 100 (blue on the figure) or 111

(red). The average grain size is 5 mm. We used an earlier setup

of BM32 where the beam size was 1.4� 3.5 mm (V�H). Even

if the penetration of the X-ray beam into W is small for the

energy range of the incident beam (<10 mm), we observed that

each Laue image [Fig. 6(b)] contains the superimposition of

about ten Laue patterns, indicating a complex substructure of

each grain made of a number of small crystals slightly misor-

iented from each other. The specimen was loaded in situ under

uniaxial tension, from 5 to 500 MPa in steps of 100 MPa, and

raster scans of 50 � 50 mm with a 1 mm step along x and a

2.5 mm step along y were carried out with the X-ray beam. We

used markers on the specimen surface to consistently scan the

same region of interest (ROI) during the tensile test (1 mm

precision on the ROI position). The scan ROI mostly

comprises grains with a 100 orientation.

Here the LaueNN model was trained for tungsten material

with a combination of up to ten crystals per Laue image,

knowing that experimentally we may have sometimes more

than ten crystals per Laue image. The training took 15 min in

total and the resulting model had a validation accuracy >95%.



As shown in Fig. 6(c), the number of experimental spots per

Laue image is around 700 (a single crystal of tungsten creates

around 60 spots for the experimental setup and the energy

band used). The model comfortably indexes ten tungsten

crystal as shown in Fig. 6(d). Fig. 6(e) shows the reconstructed

map of the highest matching score for a tungsten crystal per

Laue image in inverse pole figure (IPF) colour (along the z

axis; normal to the specimen surface) for cubic symmetry. To

avoid uncertainties in the strain calculations, only the top five

highest matching score crystals are kept per Laue image. This

is based on the observation that the top five highest matching

score indexed results are very likely from the crystals close to

the surface and not too deep in the probed volume in order to

reliably assess strain. The five indexed crystal per Laue image

are provided in the accompanying IPF in Fig. 6(e), which

suggests a strong (100) orientation cluster, in good agreement

with the EBSD analysis.

Fig. 6( f) shows the distribution of the deviatoric elastic

strain ("22) along the tensile direction in the scanned zone for

six applied stress levels. The mean of the local strains (other

principal components not shown here) is in good agreement

with the applied macroscopic stress levels (Young’s modulus

of tungsten is around 400 GPa). As a result of the elastic

isotropy of the W crystal, one could have expected a uniform

stress field at each loading level, which is not the case. Here,

the width of the strain distribution [shown in Fig. 6( f)] is much

larger than the accuracy of the Laue technique, which is better

than 10�4 (Plancher et al., 2016; Petit et al., 2015). The

observed stress distribution has to be related to the manu-

facturing process of the W plate used to machine the

specimen, involving complex thermal treatments and plastic

deformation, known to be at the origin of a complex field of

residual stresses at the intragranular scale.

This case demonstrates the ability of the LaueNN model to

predict hkls of spots in complex Laue images of polycrystalline

materials for further strain refinement. Individual Laue

images contained more than 700 spots, coming from at least

ten crystals per scan point. The indexing and strain refinement

of five crystals per image with an 8 CPU standard laptop took

125 min for 1071 images, i.e. �7 s per image (prediction of hkl

indices for all spots for each Laue image averages at 0.8 s per

image).

3.3. Strains in low-symmetry polycrystals

This case study demonstrates the capability of the LaueNN

model to resolve complex Laue images acquired on low-

symmetry monoclinic zirconia polycrystalline material that

has undergone the solid-state martensitic phase transition

(from tetragonal to monoclinic) and thus exhibits a very

Figure 6
(a) EBSD IPF-Z map of tungsten, with a black box marking the approximate area scanned during Laue diffraction; (b) recorded Laue image from the
scan region centre; (c) Laue image in scattering angle space (the spot size is proportional to the intensity); (d) NN indexing of polycrystals in a Laue
image (ten crystals of W are indexed); (e) reconstructed IPF-Z map (pixel size: 1 � 2.5 mm) of the highest matching score for a W crystal in the scanned
region along with all the indexed orientations presented in an IPF; ( f ) principal deviatoric "22 (tensile direction) strain component.



subdivided and complex microstructure with microcracks (Ors

et al., 2021; Guinebretière et al., 2022). Low-symmetry crystal

Laue patterns are often difficult to index using the conven-

tional approach described in Section 2.1, as screening of a

large number of spots is necessary to ensure a result. This can

take several minutes to index a single Laue pattern. With the

images considered here from a polycrystal, the standard

procedure often did not succeed with a set of parameters for

several tens of minutes. An indexing based on prior knowl-

edge of the orientation needed to be developed (Örs et al.,

2018), wherein the orientation information coming from

EBSD mapping performed ex situ on the same area was used

as an initial guess to index the Laue patterns of monoclinic

zirconia. This reduced the indexing time from hours to

�15 min per image. Here we demonstrate that, by employing

the LaueNN model, the indexing time can be reduced to <10 s

per image for zirconia, without requiring any additional prior

information. Each experimental Laue image for zirconia

consists of 700–1000 spots, corresponding to several crystals of

sub-micrometre size diffracting in the X-ray-probed volume.

The samples were probed with a beam size of 300 � 300 nm.

However, many of the diffraction spots formed ‘partial’ Laue

patterns (see definition in Section 2.4); a full Laue pattern of a

monoclinic zirconia single crystal should contain around 700

spots.

The model was trained with a data set consisting of up to

five crystals per Laue image. Due to the low symmetry of the

crystal, 2000 orientations were sampled uniformly for the

training data set. The NN took 25 min to reach validation

accuracies of >95%. Fig. 7(a) shows the EBSD map of the

region probed by X-rays. Fig. 7(b) shows the Laue image of a

single measurement coming from the centre of the scanned

region (the cloudy pattern on the right side of the detector

image is an artefact on the detector as a result of humidity).

Fig. 7(c) shows the Laue image in scattering angle space,

multiple partial Laue patterns are present and the model

comfortably indexes two crystals of ZrO2 with a good

matching score [Fig. 7(d)]. The remaining non-indexed spots

are few and it is difficult to associate them with any orientation

with good confidence. Fig. 6(e) presents the IPF-Z (Z being

normal to the specimen surface) map of the highest matching

score for the zirconia crystal per Laue image. The EBSD

image in Fig. 6(a) was generated using the Channel5 software

from HKL Technology (HKL colour code), while Fig. 6(e) was

plotted with the open-source MTEX software (Bachmann et

al., 2010), hence explaining the difference in colours. However

Figure 7
(a) EBSD map of the monoclinic zirconia polycrystal [taken from Fig. 4 of Ors et al. (2021) with permission from Elsevier], (b) recorded Laue image from
the scan region centre, (c) Laue image in scattering angle space (the spot size is proportional to the intensity), (d) NN indexing of polycrystals in a Laue
image (two crystals of ZrO2 are indexed), (e) reconstructed IPF-Z map of the highest matching score for a ZrO2 crystal in the scan region (black pixels
are non-indexed Laue images), and ( f ) typical Laue image in the non-indexed region.



the orientations are similar. The non-indexed data present a

complicated Laue image with faint streaks and no proper spots

[Fig. 6( f)]. Since the model was never trained with streaking

or large displacement of spots, it fails to index such cases. Note

that for the classical method the streaks present similar diffi-

culty during indexing.

Strain refinements were carried out for the indexed grains,

and the distributions of the principal deviatoric strain

components are presented in Fig. 8. The resulting distribution

is very much coherent with the distribution obtained

previously using the EBSD plus conventional approach [refer

to Fig. 4 of Ors et al. (2021)]. The very heterogeneous distri-

bution of strains hints at the presence of micro-cracks as a

result of the solid-state phase transition experienced by

zirconia, revealing huge internal stresses in the gigapascal

range.

This case demonstrates the ability of the proposed LaueNN

model to predict hkls in complex polycrystalline low-

symmetry material. The indexing of two crystals of zirconia

per image with an 8 CPU standard laptop took 30 min for 1681

images (i.e. �1 s per image).

4. Discussion

As mentioned before, the objective of this work was to

introduce a methodology to speed up the indexing of Laue

patterns reliably. A feed-forward-based NN, LaueNN, is

successfully employed for the prediction of Laue spots. The

LaueNN method is available as an open-source GUI under the

name LauetoolsNN on the PYPI repository (https://pypi.org/

project/lauetoolsnn/). One could also employ other NN

architectures such as the CNN model (LeCun et al., 2015) for

the problem of indexing. A CNN-based autoencoder has been

proposed recently at the Advanced Light Source beamline

(Song et al., 2019) to extract features from Laue diffraction

data to aid in the process of indexing. CNN models work

directly on the 2D images and can be both memory and CPU

demanding. The advantage of CNN models is that they extract

features automatically and then classify them. However, the

2D nature of the Laue pattern signal is only apparent for the

purpose of orientation recognition. It comes from the parti-

cular geometrical projection of 3D reciprocal space directions

(from the origin to reciprocal space nodes) onto a detector.

Due to the limited range of measurements (energy range,

finite size of the detector), there is only a partial perspective of

the crystal structure and its orientation. Moreover, experi-

mental Laue images made of superimposed Laue patterns

prevent CNN models from an efficient detection of all indi-

vidual Laue patterns. Consequently, instead of using a CNN to

extract features, we identified the main feature that affects the

indexing of Laue patterns, i.e. angular distribution between

spots. By employing this data reduction, we keep only the

relevant features/variables that are provided to a fully

connected dense NN. This helps us to design and train an NN

for any material in very short time with just synthetic data.

Similarly by employing a simpler NN architecture the time

taken by the NN to predict the hkls of spots is also reduced.

Note that one can employ the 1D CNN-based model for

similar problems by employing fewer trainable filters

compared with the neurons in the MLP model employed here.

Figure 8
Principal deviatoric strain in the crystal reference frame for zirconia: (a) strain distribution for the highest matching score crystal per Laue image and (b)
strain distribution for all the indexed grains.



In this work, importance was given to a network that is less

memory intensive and quicker in terms of both training and

prediction, hence the choice of MLP over 1D CNN. However,

the advantages of CNN-based models are significant and both

1D and 2D CNN-based models will be tested in future work,

for example, to identify lattice defects such as geometrically

necessary dislocations from the 2D peak shapes of the Laue

pattern. Apart from the machine learning models, several

other approaches such as Hough transform (Wenk et al., 1997)

to index the Laue zone axis (similar to EBSD indexing),

template matching (Gupta & Agnew, 2009) or pattern

matching (Dejoie & Tamura, 2020) have been applied

successfully for the indexing of Laue patterns. However their

efficiency reduces as soon as multiple grains are probed

simultaneously, leading to complicated superimposed Laue

patterns. For example, template matching is very efficient for

single-crystal indexing, but as soon as polycrystals are

measured in the Laue image, the accuracy drops below 80%.

This article provides an easier and better way to index more

than ten crystals in a Laue image at good speed without

compromising the accuracy. Even though the LaueNN model

can index spots in <1 s, finding the crystal orientation can add

up to several seconds to the total process of indexing. The total

time per Laue image can be reduced to 1 s per image by

employing parallel jobs. The model can be coupled with

Hough transform or node/graph methods to further speed up

the indexing process.

In situ or operando studies where any structural (phase

transition, thermal expansion etc.) or microstructural

(appearance of defects, strain relaxation etc.) evolution takes

place can really benefit from the present model, with which

real-time indexing is possible. The LaueNN model provides

validation accuracy >95% for Laue images comprising up to

2000 spots. For materials science applications, the number of

spots in Laue images is often well within 2000. For low-

symmetry crystal systems such as triclinic, higher validation

accuracy (i.e. >95%) could be reached by increasing the

number of hidden layers. The input feature of angular distri-

bution for the model can be further tuned depending on the

Laue image. For example, in the current study we used a fixed

bin width of 0.1� with the mutual angles of spots within a 20�

radius when building the angular distributions. The choice of

bin width also influences the results: very well defined peaks in

the Laue image can be detected with sub-pixel resolution

(0.1�). In addition, a much larger radius (�20�) can be used to

capture the distinct angular distribution of a spot of interest

with respect to its neighbours. The model can be further tuned

according to the complexity of the Laue images to achieve the

desired accuracy of the hkl predictions.

The ability of the NN to successfully index the hkls of spots

depends strongly on the peak-search process (step 1 of the

data workflow). This works well in the case where the Laue

images are composed of nice round and isolated peaks/spots.

But in some cases, due to crystalline defects and strain, the

shapes of the diffraction spots in the Laue image are far from

perfect circles, which can be seen in the zirconia Laue image in

Fig. 7( f). In the case of streaks or elongated peaks, the peak

search looks for the barycentre of the 2D peak. Currently in

the training data set, data augmentation is carried out only by

displacing peaks at the sub-pixel level. One way to include

elongated peaks would be to include a strained simulated data

set in the training data for better indexing.

The input for the NN can also include additional data such

as intensities (namely based on structure factors but also

models taking into account the changing absorption of X-rays

in the materials with respect to Laue spot energy) or round-

ness/profile of the spot to extract more information and not

just their hkl. Further research is underway to develop

multiple neural-network-based models to create an automated

pipeline for Laue data treatment and analysis.

5. Conclusions

In this paper we have proposed LaueNN, an NN model for the

hkl indexing of Laue spots recorded on polycrystalline mate-

rials, which works even for crystals belonging to low-symmetry

space groups. This was done with dimensionality reduction of

data from a 2D Laue image to a 1D radial angular distribution

of spots. An FFNN model was then used to learn from these

1D angular distributions to recognize hkls of spots in Laue

images. By employing synthetic data (subsequently avoiding

any bias on ground truth labelling), the whole process of

training and indexing was made free of any user intervention.

The ability of this NN to index superimposed Laue patterns

with very high speed and good accuracy was demonstrated

with three experimental case studies of varying complexities.

We demonstrated that the model can learn very well from

multi-phase superimposed Laue patterns and can index and

classify them to the proper phase. The proposed approach

supersedes the conventional brute-force indexing method

based on screening the recognition of the mutual angle of two

spots. In particular, the analysis time for the Laue image with

multiple crystals from a low-symmetry crystal is reduced down

to �1 s.

Real-time/on-the-fly indexing of synchrotron polycrystal-

line or complex superimposed Laue patterns is now possible

with the proposed LaueNN model, thereby providing users

with valuable and rapid feedback during data collection on the

beamline and accelerating the data treatment from raw data to

reliable and interpretable structural parameters. The following

model has already been implemented at the BM32 beamline,

ESRF. Real-time indexing of several users’ experiments on the

BM32 beamline has already been successful. In addition,

predictions can be made offline in standard laptop multi-

processors in user laboratories. Future improvements are

foreseen by combining the reported single-image analysis with

new methods to treat a data set of images based on the rela-

tionships between images to index a set of Laue patterns (from

a raster scan or in situ monitoring) by means of machine

learning tools.

The data for the results presented in the article as well as

the NN model and complete GUI source code can be accessed

via the PYPI repository using pip install lauetoolsnn

or via https://github.com/ravipurohit1991/lauetoolsnn. Additional



information regarding the reproducibility of the results

presented in the article and example Jupyter notebooks are

provided in the supporting information.
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