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Machine Learning-Based
Reverse Modeling Approach for
Rapid Tool Shape Optimization in
Die-Sinking Micro Electro
Discharge Machining
This paper focuses on efficient computational optimization algorithms for the generation of
micro electro discharge machining (µEDM) tool shapes. In a previous paper, the authors
presented a reliable reverse modeling approach to perform such tasks based on a crater-
by-crater simulation model and an outer optimization loop. Two-dimensional results
were obtained but 3D tool shapes proved difficult to generate due to the high numerical
cost of the simulation strategy. In this paper, a new reduced modeling optimization frame-
work is proposed, whereby the computational optimizer is replaced by an inexpensive sur-
rogate that is trained by examples. More precisely, an artificial neural network (ANN) is
trained using a small number of full reverse simulations and subsequently used to directly
generate optimal tool shapes, given the geometry of the desired workpiece cavity. In order
to train the ANN efficiently, a method of data augmentation is developed, whereby multiple
features from fully simulated EDM cavities are used as separate instances. The perfor-
mances of two ANN are evaluated, one trained without modification of process parameters
(gap size and crater shape) and the second trained with a range of process parameter
instances. It is shown that in both cases, the ANN can produce unseen tool shape geometries
with less than 6% deviation compared to the full computational optimization process and at
virtually no cost. Our results demonstrate that optimized tool shapes can be generated
almost instantaneously, opening the door to the rapid virtual design and manufacturability
assessment of µEDM die-sinking operations. [DOI: 10.1115/1.4045956]

Keywords: die-sinking micro-EDM, tool shape optimization, process simulation, reduced
modeling, artificial neural network, machine learning, artificial intelligence,
computational geometry, computer-aided manufacturing, engineering informatics,
machine learning for engineering applications, multiscale modeling and simulation

1 Introduction
1.1 Background. Micro and nano manufacturing technologies

are widely recognized as promising sources of innovation for the
decades to come [1]. However, manufacturing outputs at small
scales become increasingly sensitive to variations in manufacturing
strategies and machine parameters. Due to multiple interactions
between phenomena such as large tool/part deformations, incon-
sistent material removal rates (MRRs), and spurious process insta-
bilities at smaller scales, the development of micro and nano
technologies is largely impaired by today’s lack of predictive and
control capabilities for the quality of manufacturing outputs. The
solution is, of course, to develop predictive computer models for
these technologies [2]. Such models would enable engineers to
design micro/nano manufacturing virtually, thereby facilitating
manufacturability studies and reducing the need for physical
trial-and-error calibration procedures. Additionally, simulators
could be used to automatically optimize manufacturing strategies
and help control processes on-the-fly, using virtual twinning
approaches.
The study presented in this paper is relevant to this category of

developments. The digital optimization of micro/nano thermal abla-
tion processes such as laser milling or micro electro discharge

machining (µEDM) is of particular interest. Modeling strategies
in this area fall in several complementary categories. Most studies
in this area attempt to represent individual discharges of energy
using detailed mathematical models of the physics, enabling the
prediction of MRRs as a function of machining parameters [3–5].
Alternatively, such physics-based models may be replaced by
purely data-driven statistical regressors [6], which require more
data and risk a certain lack of generalization but circumvent the
need for deriving a physical model and devising an appropriate cal-
ibration strategy. In turn, MRRmodels may be used as inputs for the
automatic design of manufacturing strategies using layer-by-layer
toolpath generation algorithms, the material removal rate being
required to characterize the parameters of an “equivalent mechani-
cal mill.” Alternatively, one may wish to make use of MRR models
to perform crater-by-crater simulations [7–9]. Although the result-
ing transient simulators are numerically expensive, they are ex-
pected to predict the effect of sharp, localized features more
accurately than models employing a spatially homogeneous
removal rate. Let us also notice that very detailed multiphysics
modeling strategies are currently being employed to better under-
stand the physics involved in precision thermal manufacturing
[10]. However, the inherent complexity of such models (larger
number of parameters) makes them less suitable to blind predictions
in today’s operational environment.
Goal: The present study follows a previous contribution from the

authors on crater-by-crater simulations of µEDM die-sinking pro-
cesses, which will be fully detailed further below. As mentioned
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in the previous paragraph, such time-dependent simulations are
extremely time-consuming, making them unusable in practical
computer-aided manufacturing. Following modern approaches in
model order reduction [11], meta-modeling [12–14], and using
appropriate elements of statistical learning, the aim is to create an
efficient and goal-oriented model compression algorithm that will
be capable, based on a reasonably low amount of full-scale
µEDM simulations, to produce new simulation results at a fraction
of the cost.

1.2 Wear Challenge in µEDM Die Sinking. Electrical dis-
charge machining (EDM) is a manufacturing process where mate-
rial removal is due to successive electrical discharges. Its main
interest lies in the possibility of machining any conductive material
regardless of its hardness. Without discussing the details of specific
variants of EDM, the principle of this technology is as follows. The
tool and the workpiece (or electrodes) are immerged in a dielectric
fluid and submitted to an electrical current. The gap between them is
reduced until the dielectric reaches its breakdown voltage. The
current is then free to flow from one electrode to the other, creating
a plasma channel. In the process, part of the tool and workpiece
evaporate in the region where the electric discharge happens,
leading to the formation of craters.
µEDM is the application of EDM to manufacturing operations

involving micrometric dimensions. In this context, tool wear is of
importance: as the process goes on, material is removed from the
tool, which modified its shape. While tool wear of manageable con-
sequences in classic EDM, its influence is most notable in its micro
counterpart as shown in µEDM drilling [15] (Fig. 1) and results in
unavoidable changes in electrode shape and dimensional errors.
Indeed, while tried-and-tests methods exist for µEDM milling to

compensate for the tool wear, this is not easily achieved in die-
sinking µEDM. Compensation method have been considered,
such as the use of a self-repair method [16] which can reduce the
machining error caused by the bottom and corner wear of the elec-
trode through a carefully controlled tool motion that attempt to
influence tool wear location. But such approach is limited to
simple shape electrode rather that true 3D shapes. Thus, generally
die-sinking µEDM would often require the use of multiple tools
to obtain the desired geometries within specific tolerances, for
instance to achieve sharp corners at micro scale.

1.3 µEDM Simulation and Tool Optimization. The ability to
predict the location and intensity of wear in die-sinking µEDM
would enable the design of optimal tools able to compensate for
the upcoming wear and reduce the number of electrodes required
for a successful machining.
The optimization of tool electrode to compensate for tool wear is

used regularly in drilling and in µEDM milling. For instance, when
producing blind holes using µEDM drilling without wear

compensation, because of tool wear, the real depth of the hole
will be significantly smaller [17]. In this case, a method to
achieve a specific depth is to compensate for wear by constant elec-
trode feeding in the z-axis [18], which is equivalent to extending the
working length of the tool using the expected wear ratio.
In µEDM milling, the use of simple shaped electrode (generally

cylindrical) makes the wear prediction relatively straightforward
[19]. It uses specific layer-by-layer machining strategies, such as
the uniform wear method [20], which ensures that the machining
occurs only on the bottom surface of the electrode and results in a
relatively linear wear on the z-axis. Therefore, only feeding the elec-
trode in z-axis can do the wear compensation, which is again equiv-
alent to extending the working length of the tool.
In the case of die-sinking µEDM, where more complex shapes are

used as electrodes, the compensation is not as straightforward
because the way electrode geometries are affected by the wear is
complex.
This was addressed by developing a crater-by-crater simulator in

Ref. [7] where the final shape of tool electrode was predicted in one
step using a “reverse simulation” technique. In this simulation, the
removal of volume on both workpiece and electrode is achieved
using voxels’ representations and appears to be performed per spe-
cific time periods on large areas rather than discharge by discharge.
In addition, the machining gap is not taken into account and it is not
clear if this method can be applied to micro-EDM, in particular due
to resolution that can be applied to the voxels’ representation used.
This was achieved by the authors with the production of an

efficient simulation method [21] using voxels in an octree data
structure, which allows for high resolution µEDM simulation.
Later, this simulation method was used as a building block for
the development of a tool electrode shape optimization framework
[22] which uses an iterative loop method to create an optimum tool
shape from a given target workpiece cavity. This method is applica-
ble to both 2D and 3D simulation and was successfully validated
for 2D application but proved highly computationally expensive
for the optimization of 3D shapes, making it not directly scalable
to industrial problems where an end-user would aim at efficiently
designing optimal tools in 3D as they would require access to high-
performance computing. In this paper, a new optimization frame-
work is proposed based on the use of an artificial neural network
(ANN), trained to generate directly an optimal tool shape from a
given targeted workpiece cavity shape and thus replacing the
costly iterative optimization method.
The paper is organized as follows: Sec. 2 introduces the voxel-

based die-sinking µEDM simulation framework and the tool
shape optimization framework. Both are used to generate the
instances used to define and tune an ANN presented in Sec. 3.
Section 4 presents more results while considering the machining
parameters as additional attributes. It also compares the classical
tool shape optimization and the advanced machine learning-based
tool shape optimization proposed in this paper. Finally, the last
section ends this paper and provides conclusion and future works.

2 Die-Sinking Micro Electro Discharge Machining
Simulation Framework and Tool Shape Reverse
Modeling
This section introduces the voxel-based die-sinking µEDM simu-

lation framework (Sec. 2.1) and the tool shape optimization frame-
work (Sec. 2.2). The optimization algorithm makes use of the
simulation tool to iteratively reverse model the tool shape in order
to anticipate and compensate for the wear phenomenon. Advantages
and limitations are stressed and the opportunity of using a machine
learning approach to speed-up the tool shape reverse modeling is
first discussed in Sec. 2.3.

2.1 Voxel-Based Die-Sinking µEDM Simulation
Framework. As it plays a central role within the optimization
framework, the basics of the previously developed die-sinking

Fig. 1 Electrode shape changes on a Ø 150 µm electrode after
two erosion depths



µEDM simulator are briefly recalled in this section [23]. This algo-
rithm simulates and keeps track of the progress of wear on the tool
and workpiece electrodes using a microscale geometrical modeling
approach.
Given the initial geometric models of the tool and workpiece at

the start of the process, the die-sinking is simulated by altering
the geometry of the electrodes during every one of a series of sim-
ulated discharges. This is done by introducing, for each discharge,
conjugate pairs of craters, modeled geometrically by spheres, at the
location where the distance between the electrodes is minimum,
which is where the appearance of an electric spark is physically
the most likely.
An overview of the overall µEDM simulation algorithm is given

in Fig. 2. An individual discharge is simulated as follows. First, the
minimum distance d between the tool and the workpiece is com-
puted, and then:

− If this distance is larger than the machining gap (i.e., the
minimum between the workpiece and the tool required for
electric discharges to take place, which is a parameter of
the die-sinking manufacturing process), the tool electrode
is moved downwards by a small increment.

− If this distance is smaller than the machining gap, pairs of
conjugate craters are crated on both the tool and the work-
piece, at the location of the minimum distance. Two addi-
tional parameters of the model are required for this
operation, namely, the workpiece crater volume and the
tool crater volume, which are, respectively, the volume of
“material” removed from the workpiece and the tool during
each discharge.

The algorithm is stopped once the targeted depth of the tool elec-
trode is reached. Throughout the simulations, all geometric data are
represented by means of voxels embedded in a voxel octree. The
octree is a tree structure in which each node can have up to eight
children. A node without any children is called a leaf node, while
nodes are called roots. In this way, the modeling is purely volumet-
ric and the computation times are significantly reduced, while octree
structures allow to control the amount of memory required to repre-
sent the electrodes at the scale of individual craters.
The minimum distance search exploits the hierarchical data struc-

ture of the octree tree. The algorithm starts with the root nodes of
each electrode and computes the minimum distance between the
possible couples of their children:

− If both children are leaves, the minimum distance between
them can be immediately found.

− If not, the minimum distance can be bounded between a
maximum dmax and a minimum value dmin.

All the couples of nodes for which dmin≤ dsmallest Max (where
dsmallest Max is the smallest of all the dmax) are kept. All the

remaining couples’ children are then compared in an identical
manner until only couples of leaves remain. A fast exist condition
is used in the case where a couple of nodes has an upper bound
dmax that is smaller than the machining gap.
The crater insertion algorithm also uses the hierarchical data

structure of the octree structure. At the relevant location, the inter-
sections between a sphere and the root node’s children are com-
puted and the following rules are applied:

− if a child node does not intersect, nothing happens,
− if a node is completely inside the sphere, it is deleted,
− nodes on the boundary of the sphere are kept for the next

iterations.

The algorithm is then reapplied on the new candidate nodes until
a certain resolution is met. Figure 3 shows a cross-sectional view of
a crater and the result of a full simulation on a workpiece can be
seen in Fig. 4.

2.2 Optimization Framework for Tool Shape Reverse
Modeling. This section introduces the basics of the previously
developed optimization framework that uses the µEDM simulator
to predict the tool shape that would be required for a die-sinking
process to produce a given target workpiece [21]. The algorithm
proposed to achieve this goal is so far, purely computer based. It
could be applied to a particular in situ die-sinking operation once
the parameters of the simulator (i.e., crater volumes and machining
gap) are calibrated from data, which is not covered in this paper.
It should be mentioned that although the simulation tool pre-

sented in the previous section deals with three-dimensional simula-
tions to demonstrate and validate the optimization concept more
efficiently and rapidly, it was decided to perform optimizations
using the simulation with two-dimensional profiles. However,
since all the algorithms have been developed taking this fact into
account, the method can easily be adapted for use with three-
dimensional shapes. This is further discussed in Sec. 2.3.
The simulator described in Sec. 2.1 can be seen as an implicit,

complex function that, for given initial geometries of the tool and
workpiece electrodes and for fixed parameters of the µEDM wear
simulator, associates the resulting geometry on the workpiece,
together with, incidentally, the resulting geometry of the worn
tool. When attempting to achieve a specific target cavity on the

Fig. 2 Overall µEDM simulation framework
Fig. 3 Cross-sectional view of a crater at a resolution of one
voxel per 125 nm



workpiece and therefore looking for the initial geometry of the tool
that would produce this cavity, it is required to formally invert this
complex function.
Such inversions are ill-posed in general, a first step of this new

approach is to recast it as finding the solution of an optimization
problem, whereby the shape of the workpiece delivered by the
simulator is required to be as close as possible to its nominal
target. Then, the solution of this optimization problem is found
using a specifically developed predictor/corrector algorithm. The
predictor step is a direct simulation of the die-sinking µEDM
process, for a given iterate of the tool geometry, while the corrector
step changes the shape of the tool, in an attempt to reduce the dis-
tance between the nominal target geometry of the cavity and its sim-
ulated counterpart. Intuitively, an excess of material removal on the
workpiece indicates that material should be removed from the tool
during the correction step, while insufficient material removal on
the workpiece would require adding material to the tool. One itera-
tion of the optimization algorithm is as follows (Fig. 5):

− Error computation and convergence estimation: The dif-
ference ɛ between the target workpiece Wtarget and the work-
piece profile Wresult that was delivered by the simulator
during the previous iteration is computed. For the first itera-
tion, Wresult is the initial workpiece without any feature.
Hence, the first difference ɛ represents the actual overall
target area (or volume in 3D) to be removed.
The accuracy of the optimization process, A%, is measured
using the following metric:

A% =
AWtarget − ε

AWtarget

× 100 (1)

where AWtarget is the area (in µm2) of the target workpiece
feature and ɛ is the mismatch area (in µm2) previously
defined. In all examples shown in this paper, the optimization
algorithm is stopped once A% ≤ 0.5%.

− Corrector: Using the mismatch ɛ between simulated and tar-
geted workpiece profiles (Fig. 6), a corrected tool profile Tc is
computed. This is done by updating an intermediate object,
the “virtual workpiece” profile Wvirtual, which corresponds
to the profile of the workpiece that would be generated if
no tool wear occurred and if the effect of micro-craterization
could be neglected (i.e., negative of the tool, taking into
account the machining gap). Once the modification ofWvirtual

has been performed, a corrected iterate of the tool profile Tc is

computed by applying the machining gap to the “virtual
workpiece.”

− Predictor: An EDM simulation using the current tool profile
T is performed and generates the workpieceWresult; the accu-
racy of which will be evaluated at the beginning of the next
iteration of the algorithm.

An illustrative example of the capabilities of the tool shape opti-
mization process is given in Fig. 7. Elements (a) and (b) represent,
respectively, the targeted workpiece profile Wtarget to be produced
on the workpiece and the initial tool shape. The initial tool shape
is chosen as the negative of the target profile, accounting for the
expected machining gap. Element (c) is the optimized tool shape,
while element (d) is the resulting workpiece. This result has been
obtained after five iterations of the optimization algorithm, and it
corresponds to a target error of A% = 98.2% (deviation between
(a) and (d)).

2.3 Machine Learning Opportunity. Section 2.2 has briefly
recalled the basics of the tool shape optimization framework
based on an iterative loop method. In addition to converging
quite rapidly, the algorithm was found to be quite efficient achiev-
ing high accuracy values (in the range of 95%). However, this
method was developed with the idea that it would be implemented
in three dimensions. Thus, considering the length of a single 3D
simulation, around 2 h for a 100 µm deep machining, a single opti-
mization process that could take 4, 5, or more iterations could be
potentially lengthy.
From this emerged the idea to train a neural network using the

optimized profiles from the iterative optimization method in order
to limit the number of loops to be done and instead use a predictive
neural network model that would be able to output directly an
optimal tool shape.

3 Machine Learning-Based Tool Shape Optimization
This section details the proposed machine learning-based tool

shape optimization framework, which makes use of the previously
introduced simulation and optimization tools to generate a large
number of instances for training purpose. In this paper, to demon-
strate the feasibility of this approach and to enable an efficient eval-
uation of its performance, these instances will be generated using
2D profiles. Once validated, the same approach will be tested in
3D as part of future development.

3.1 Introduction. The idea behind using ANNs to propose
optimal tool shapes is to be able to train it once and with a specific
set of optimized shapes/profiles and to make use of the resulting
acquired model to estimate the optimal tool shape for a given
unseen target workpiece. Figure 8 provides with the overview of
the proposed framework.
The algorithm will try to maximize its performance P while

accomplishing a task T, through learning from experience E. The
features of the algorithm are as follows:

− Task (T ): Predict the optimal virtual workpiece for a target
profile.

Fig. 4 Spherical feature obtained by simulation (left) and detail
of the craters (right)

Fig. 5 Tool shape optimization process with iterative calls to the µEDM simulator



− Experience (E): A corpus of target profiles with their respec-
tive optimal virtual workpieces.

− Performance (P): Prediction accuracy, i.e., the relative differ-
ence (expressed as a percentage) between the predicted
virtual workpiece and the actual virtual workpiece obtained
through the iterative optimization.

The first approach is to only consider a specific set of machining
parameters and focus on the prediction of optimal tool shapes in the
case of a different target workpiece rather than different machining
parameters. The reasoning behind it is to first verify that a machine
learning method can be used in this simple test case before being
extended to a more general environment that would include the
machining gap and crater dimensions as input variables for the
training of the model. The machining parameters are therefore
constant, during the generation of the data for the initial machine
learning model training, and their values are tabulated in Table 1.
In Sec. 4, those parameters are not anymore considered as constant.

3.2 Multiplying the Training Data. Given the little training
set instances available and the requirements when considering the
use of a neural network, it is important to look at the problem dif-
ferently and to redefine the instances the algorithm will train with.
Throughout the optimization process, modifications regarding

virtual workpiece profiles are applied strictly vertically via the
shape optimization function that is based on the mismatch of each
iteration. Furthermore, the first mismatch considered is the area of
the target profile. This means that the virtual workpiece profile is
indirectly a modified version of the target profile. Each point of
the target profile can be considered to be individually moved verti-
cally to form the virtual workpiece profile. Given the point-to-point

Fig. 6 A single iteration of the correction process

Fig. 7 Tool shape optimization capabilities. Left (top and
bottom): the non-optimized tool and target profile. Right (top
and bottom): the optimized tool and the cavity it produces.

Fig. 8 Overview of the proposed framework

Table 1 The machining and simulation parameters considered
as constant

Parameter Value

Machining gap (µm) 10.0
Workpiece crater radius (µm) 3.00
Workpiece crater depth (µm) 2.25
Tool crater radius (µm) 2.25
Tool crater depth (µm) 1.50
Resolution (µm/voxel) 0.5



correlation between the target profile and the virtual workpiece
profile, it is possible to redefine the problem as follows: for a
given point on the target profile, predict the vertical position of
the respective point on the virtual workpiece profile. Therefore,
the predicted optimal virtual workpiece profile is the combination
of the predictions of all the points of the optimal workpiece
profile from all the points of the target profile. Thus, the features
of the estimation algorithm can be redefined as follows:

− Task (T ): Predict the position on the optimal virtual work-
piece for a point of a target profile.

− Experience (E): A corpus of points from target profiles with
their respective counterpart on the optimal virtual workpiece.

−⍰⍰Performance (P): Prediction accuracy, i.e., the relative dif-
ference (expressed as a percentage) between the predicted
virtual workpiece position and the actual virtual workpiece
position.

An overview of the propose machine learning model is depicted
in Fig. 9. It clearly shows the inputs and the output to be correlated.
During the training phase, for each point of the target profile, the
algorithm tries to correlate the underlying attributes to the vertical
position of the respective point on the virtual workpiece profile.
The adopted attributes are further detailed in Sec. 3.3. For sake of
clarity, Fig. 9 does not detail all the attributes used as inputs of
the learning model, but they can be found in Sec. 3.3.
Given the maximum sizes of the profiles and the resolution, each

test profile will provide up to 600 points as data to work with. Thus,

using 30 different profiles (Fig. 10) results in approximately 18,000
instances to distribute in the following sets:

− The training set (60%): 10,800 instances
− The validation set (20%): 3600 instances
− The test set (20%): 3600 instances

More precisely, the data points extracted from each of the fully
simulated test cases are shuffled randomly and distributed to the
training, validation, and test sets according to the proportions
reported earlier.

3.3 Feature Selection. Considering that each point is now
considered separately from the rest of the profile, every attribute
will have as a purpose to give valuable information regarding
the environment the given point is in, i.e., information regarding
the whole target profile. Thus, the attributes can be grouped into
three input categories and one output category as follows (see
Fig. 9 where in some of those attributes are illustrated):

• Attributes providing information on the local context (i.e., the
point and its surroundings):
− yValue: Y-value of the point on the target workpiece

profile (in µm).
− parametricDescription: Three of the four parameters

describing the third degree Lagrange interpolating polyno-
mial [24] that approximates the neighborhood of the given
point with a window width equal to two machining gaps
(Fig. 9, in blue). The constant parameter is excluded

Fig. 9 A detailed overview of the machine learning model together with examples of its inputs and its output



since the interpolation is centered on the given point,
making the constant always equal to 0.

• Attributes providing information on the global context (i.e.,
the target workpiece):
− profileWidth: Total width of the target workpiece (in µm).
− profileHeight: Total height of the target workpiece (in µm).
− mean: Mean Y-value of the target workpiece points (in µm).
− area: Total area (or volume in 3D) of the target workpiece

(in µm2).
− sd: Standard deviation of the Y-values of the target cavity

points (in µm).
• Attributes providing information on the point relative to the

rest of the target cavity:
− xValueRel: X position of the point relative to the rest of the

profile (0 being the center and 1 corresponding to an
extremity of the profile).

− yValueRel: Y position of the point relative to the rest of the
profile (0 being the base and 1 corresponding to the
maximum height of the profile).

− dirToLocalMax: Slope toward the closest local maximum.
− distToLocalMax: Distance to the closest local maximum

(in µm).
− equivalents: Number of times the target workpiece profile

goes through the point’s altitude.
• Output variable:

− yValuePattern: Y-value of the respective point on the
pattern workpiece profile.

This results in 14 input attributes and 1 output variable, all of
which are continuous real values without any missing data.

3.4 Machine Learning Model

3.4.1 Model Selection. Machine learning has a large variety of
models that come with their respective advantages and disadvan-
tages. When it comes to supervised learning for regression
models like in our case, there are two types of model that usually
perform best: ANNs and support vector machines (SVMs).
It has been decided to use ANNs because they can discover the

most complex relationships between inputs and outputs and thus
have the potential to give excellent results. However, they are to
be used carefully. Indeed, the model complexity of ANNs rises
quickly with the number of features, making it slow to train and
prone to suffer from multiple local minima. As a consequence,
SVMs are usually favored when dealing with high dimension
input vectors. Fortunately, this is not the case presently since only
14 input attributes are to be considered.
Furthermore, the simulation tool has been developed in C#. In

order to make use of the tool prediction process, it is advantageous
that the model can be implemented inside the application itself.
However, this language only has a few machine learning frame-
works compared to other more computationally oriented languages
like PYTHON, R, or MATLAB. None of these available machine learning
frameworks have a good support for SVMs, whereas the C# frame-
work Encog [25] supports a large variety of neural network

algorithms making it possible to optimize the performances of the
model with already available features.
As a consequence, ANN has been deemed the most adequate can-

didate model in this context.

3.4.2 Model Configuration. One of the crucial steps when
using ANNs is determining the model’s configuration, meaning
choosing how many hidden layers and hidden neurons the networks
should have. This task is very complex and has a huge impact on the
performance of the network. If the hidden structure is too complex,
the model will take long to train, will be prone to overfitting, and
will have a hard time dealing with local minima. If the hidden
structure is too simple, the model will not learn the problem
(underfitting).
The incremental pruning technique [26] was implemented to

determine the hidden structure to use. The objective of incremental
pruning is to figure out the most promising hidden layer configura-
tion out of a variety of potential configurations.
First, some basic rules of thumb were used to determine the rea-

sonable ranges for the number of hidden layers and their ranges of
neurons. Then, every network configuration was tested three times
for 300 iterations, then the five networks giving the best scores were
saved. Finally, only the network with the simplest configuration
of all is selected for training efficiency as well as overfitting
prevention.
The most promising model in this case turned out to be a network

with a single hidden layer composed of 14 neurons. Now that the
model configuration is set, the network is ready to be trained.

3.4.3 Training Criteria. The method used for training is the
resilient backpropagation algorithm (RPROP) for feedforward
ANN. RPROP is one of the best general-purpose training
methods for neural network and have the advantage of having no
parameters to tune [27].
In order to reach the minimum error possible, the training method

makes use of the cross-validation set. While iterating through the
training set and adjusting the weights of the network accordingly
to the RPROP method, the algorithm computes the error of the
network on the validation set. As long as the validation error
keeps improving by a certain amount over multiple iterations, the
training goes on. This method ensures that the training continues
as long as it is effective even on unseen data while preventing over-
fitting. Indeed, overfitting occurs when the model starts fitting the
training data too well and does not generalize well anymore on
unseen data (the cross-validation set).

3.4.4 Model Performances. Once it is trained, the model per-
formances can be evaluated with various metrics on the test set.
Here are the two commonly adopted metrics considered in this
work:

− Mean absolute error (MAE) gives the mean absolute error of
the predicted values.

− Coefficient of determination (R2) indicates how well the
model predicts the values.

Fig. 10 The 30 shapes used to train the neural network to estimate the optimal tool shape



The values present in Table 2 mean that on average each pre-
dicted point of the pattern cavity is 3.88 µm away from its actual
position (given by the iterative optimization process).
Although these error measures provide insight on how well the

model can predict the pattern cavity, the end goal is the performance
of the resulting tool. In order to evaluate the performance of the pre-
dicted tool, the accuracy metric introduced in Sec. 2.2 is used. By
simulating the µEDM machining of the predicted tool and the
actual optimized tool, it is possible to compare their accuracy and
measure the mean absolute error between them.
The figures in Table 3 indicate that, on average, the predicted tool

for a new target workpiece would be 3.06% less accurate than the
actual optimized tool.
Also, it is good to know that, on average, the predicted tool is as

accurate as an optimized tool that would be halfway through the
iterative optimization process. In other words, the prediction does
half the work of the optimization process. Thus, one way to make
use of the prediction model is to start the tool optimization
process with the predicted tool right from the beginning. Doing
so will save a considerable amount of time, especially if 3D
shapes were to be involved.

4 Experimentations and Discussion
Section 3 has introduced the details of the proposed machine

learning-based tool shape optimization without considering the
machining parameters as potential attributes to be taken into by
the machine learning model. Such a possibility is addressed in
this section thus extending the capabilities of the proposed
approach.

4.1 Data Generation. The previous section focused on
applying a machine learning method for a single set of machining
parameters while focusing on varying the target workpiece profiles.
This section explores the possibility of varying other parameters
while studying the change on the method’s accuracy.
In order to get a sufficient amount of data to obtain robust

results, multiple tool shape optimizations were performed using a
large variety of target profiles, machining gaps, and crater
dimensions:

− Target profiles: 30 shapes (shown in Fig. 10).
− Machining gaps: 4 values (5 µm, 10 µm, 15 µm, 20 µm).
− Crater dimensions: 45 combinations (see Table 4).

The crater dimensions have been generated starting with five
values for the workpiece crater radii: 2, 2.5, 3, 3.5, and 4 µm.
Each of those is associated with three crater depths generated
from three values called crater ratios γ: 1, 1.5, and 2 such as:

γ =
Re

De
(2)

where Re andDe are, respectively, the radius and depth of the craters
for the tool (e= t) and the workpiece (e=w).
The dimensions for the tool crater radii and depth are found using

the following system of equations:

γ =
Rw

Dw
=
Rt

Dt

β =
Vt

Vw

⎧⎪⎪⎨
⎪⎪⎩

(3)

where β is the tool wear ratio which is here the ratio between the
volume of the crater of the tool and the area (or volume in the 3D
case) of a crater of the workpiece. It yields

Rt =
��
β

√
Rw

Dt =
��
β

√
Rw

γ

⎧⎨
⎩ (4)

Table 4 Crater dimension combinations used for the generation
of the training data

No.

Workpiece crater Tool crater

γ βRw (µm) Dw (µm) Rt (µm) Dt (µm)

1 2 2.00 2.44 2.44 1 1.5
2 2 2.00 2.00 2.00 1 1
3 2 2.00 1.41 1.41 1 0.5
4 2 1.33 2.44 1.63 1.5 1.5
5 2 1.33 2.00 1.33 1.5 1
6 2 1.33 1.41 0.943 1.5 0.5
7 2 1.00 2.44 1.22 2 1.5
8 2 1.00 2.00 1.00 2 1
9 2 1.00 1.41 0.707 2 0.5
10 2.5 2.50 3.06 3.06 1 1.5
11 2.5 2.50 2.50 2.50 1 1
12 2.5 2.50 1.76 1.76 1 0.5
13 2.5 1.66 3.06 2.04 1.5 1.5
14 2.5 1.66 2.50 1.66 1.5 1
15 2.5 1.66 1.76 1.17 1.5 0.5
16 2.5 1.25 3.06 1.53 2 1.5
17 2.5 1.25 2.50 1.25 2 1
18 2.5 1.25 1.76 0.884 2 0.5
19 3 3.00 3.67 3.67 1 1.5
20 3 3.00 3.00 3.00 1 1
21 3 3.00 2.12 2.12 1 0.5
22 3 2.00 3.67 2.44 1.5 1.5
23 3 2.00 3.00 2.00 1.5 1
24 3 2.00 2.12 1.41 1.5 0.5
25 3 1.50 3.67 1.83 2 1.5
26 3 1.50 3.00 1.50 2 1
27 3 1.50 2.12 1.06 2 0.5
28 3.5 3.50 4.28 4.28 1 1.5
29 3.5 3.500 3.500 3.500 1 1
30 3.5 3.500 2.475 2.475 1 0.5
31 3.5 2.333 4.287 2.858 1.5 1.5
32 3.5 2.333 3.500 2.333 1.5 1
33 3.5 2.333 2.475 1.650 1.5 0.5
34 3.5 1.750 4.287 2.143 2 1.5
35 3.5 1.750 3.500 1.750 2 1
36 3.5 1.750 2.475 1.237 2 0.5
37 4 4.000 4.899 4.899 1 1.5
38 4 4.000 4.000 4.000 1 1
39 4 4.000 2.828 2.828 1 0.5
40 4 2.667 4.899 3.266 1.5 1.5
41 4 2.667 4.000 2.667 1.5 1
42 4 2.667 2.828 1.886 1.5 0.5
43 4 2.000 4.899 2.449 2 1.5
44 4 2.000 4.000 2.000 2 1
45 4 2.000 2.828 1.414 2 0.5

Table 2 Evaluation metrics for point altitude prediction

Metric Value

R2 0.957
MAE (µm) 3.88

Table 3 Evaluation metrics for the predicted tools

Metric Value

Training set accuracy MAE (%) 2.06
Test set accuracy MAE (%) 3.06



For information, the three-dimensional equivalent of this
system is

Rt =
��
β3

√
Rw

Dt =
��
β3

√
Rw

γ

⎧⎨
⎩ (5)

Those 45 combinations associated with the four machining gap
values and 30 different shapes lead to a total number of optimiza-
tions of 5800. Those were accomplished in under 12 days using
two different computers running the optimizations concurrently.

4.2 Training the Model. Similarly to what has been described
in Sec. 4.1, the model has been generated and trained. The available
data were divided into

− A training set (60%): 3480 optimizations (approximately 1
million instances).

− A cross-validation set (20%): 1160 optimizations (approxi-
mately 350,000 instances).

− Test set (20%): 1160 optimizations (approximately 350,000
instances).

Once again, an ANN was trained using the resilient backpropaga-
tion algorithm described previously. The main difference here is the
addition of a few input variables: the machining gap and the crater
dimensions. As a result, the input parameters have a count of 19 for
one output parameter.

4.3 Computational Performances. This new approach
models the output of the optimization process directly. Therefore,
the neural network prediction is used as a surrogate for the model-
based iterative optimization process, each of the iteration consisting
of a detailed time-dependent simulation of the EDM process. There-
fore, this meta-modeling approach is expected to yield extremely
large computational savings.
For the 2D study described previously, the optimization of a

typical test cavity is completed using four iterates of the optimiza-
tion algorithm. Each of the forward evaluation of the EDM model
takes about 15 s to run, leading to a total of 60 s.
On the same computer, the evaluation of the neural network for a

particular local feature takes about 10 ms (the neural network is
shallow). For a tool width described using 600 pixels, the total pre-
diction of the tool shape using the meta-model is roughly equal to
100 ms, taking into account that the 600 forward evaluations of
the neural network are performed in batch to accelerate the
process. Therefore, this leads to a total speed-up of more than 5
orders of magnitude (i.e., 60 divided by 0.0001).
In the context of 3D tool shape predictions, the costly computa-

tion power required to create the initial training set for the neural
network would still require the use of high-performance computing,
but once created, the resulting neural network will be significantly
less computationally costly when predicting optimum 3D tool
shapes. It is expected that the speed-up would be at least larger
than the one mentioned above for the 2D study.

4.4 The Test Set. Once the training of the model is achieved, it
is submitted to the test set. A first result yields the following metrics
(Table 5). As it could be expected, those error values are greater
than in the case of the limited test set (R2 of 0.931 against 0.957
and a mean absolute error of 4.02 µm against 3.88 µm).

Once again what is of interest is to compare the performances of a
tool generated through the iterative process against one generated
by the ANN model. Due to the huge size of the test set, not all of
the tools generated by the ANN could be tested individually
against their iterative counterparts. A selection of 20 of them was
made across a broad range of parameters. Those are tabulated in
Table 6.
The various accuracies of the two methods (iterative and machine

learning) are given in Table 7 and the mean, variance, and standard
deviation of the differences are given in Table 8.
Once again, the accuracy of the method based on machine learn-

ing is worse than of the iterative one. However, considering the
much larger range in terms of number of parameters, these results
are quite good. In order to provide with a visual representation of
those errors, an example of optimization using the iterative
method and its equivalent with the machine learning method are
depicted in Fig. 11.

Table 5 Evaluation metrics for point altitude prediction for the
extended dataset

Metric Value

R2 0.931
MAE (µm) 4.02

Table 6 Test set optimizations used for direct comparison of the
achieved workpiece results

No. Shape no. Machining gap (µm) β γ Rw (µm)

1 9 20 0.5 1 2
2 6 15 0.5 2 3.5
3 4 10 1.5 1.5 3.5
4 29 15 0.5 1.5 2
5 24 5 1 1.5 4
6 2 10 1.5 1.5 2.5
7 19 5 0.5 1 3
8 14 10 0.5 2 4
9 18 15 0.5 1 3.5
10 12 10 0.5 2 2.5
11 10 5 0.5 2 3.5
12 1 5 1.5 2 2.5
13 16 20 1.5 1 2.5
14 17 10 1.5 2 4
15 13 20 1 1.5 3.5
16 15 5 0.5 2 3
17 2 15 0.5 1 4
18 20 20 1 1.5 2
19 22 5 0.5 2 2.5
20 27 15 1.5 2 4

Table 7 Comparison of the accuracies of the machine learning
method and the iterative method

No.
Accuracy machine learning

(%)
Accuracy iterative

(%)
Difference

(%)

1 45.528 54.159 8.630394
2 34.032 40.350 6.317104
3 16.918 23.730 6.811837
4 37.907 44.414 6.507592
5 57.505 60.315 2.810144
6 82.353 85.432 3.078615
7 66.468 73.562 7.09389
8 47.791 52.209 4.417671
9 62.920 67.627 4.707012
10 46.224 52.387 6.163142
11 48.312 57.806 9.493671
12 74.272 81.956 7.683353
13 17.105 24.934 7.828947
14 32.836 34.453 1.616915
15 63.314 69.930 6.61646
16 35.729 43.340 7.610994
17 65.506 67.247 1.740506
18 27.028 32.968 5.939885
19 21.608 26.131 4.522613
20 59.149 64.771 5.622359



5 Conclusion and Future Work
The data-driven model reduction approach proposed in this paper

demonstrated that an ANN could be trained and used as a replace-
ment for costly numerical EDM tool shape optimization tasks. It
was shown that tool shapes corresponding to a wide range of
targeted and unseen geometrical workpiece cavities could be accu-
rately generated by the ANN.
With fixed µEDM process parameters (gap size and crater shape),

the ANN predicted tool shapes for unseen targeted workpiece cav-
ities with an accuracy only 3.06% lower than the full iterative tool
shape optimization and with a similar accuracy to half-completed
iterative optimization processes. Thus, the method could also be
used to significantly accelerate the iterative optimization process
if higher accuracy is needed. As part of the proposed study, a
new ANN training framework was designed to increase the
number of training instances, from 30 optimal tool shapes to
18,000 localized tool surface optimizations, thus enabling an accu-
rate training with a limited number of EDM simulations.
Using a similar approach, another ANN was produced, using

various machining gaps and crater shapes, thus increasing signifi-
cantly the search domain. The ANN was trained using 3480 opti-
mized tool shapes, which was equivalent to around one million
feature instances. For this second ANN, the predicted tool for a
new target workpiece was 5.76% less accurate than the fully opti-
mized tool.
Overall, the results demonstrated that accurate µEDM die-sinking

tool shape could be generated almost instantaneously using the pro-
posed data-driven modeling approach. It is expected that this work

will help product designers virtually design, optimize, and assess
the feasibility of µEDM operations.
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Nomenclature
dmax = minimum distance upper bound between a tool

node and a workpiece node
dmin = minimum distance lower bound between a tool

node and a workpiece node
dsmallest Max = smallest recorded dmax

AWtarget = area (in µm2) of the target workpiece feature
De = crater depth
Dt = tool crater depth
Dw = workpiece crater depth
Re = crater radius
Rt = tool crater radius
Rw = workpiece crater radius
Tc = corrected tool profile
Vt = tool crater volume
Vw = workpiece crater volume

Wresult = resulting workpiece profile
Wtarget = targeted workpiece profile
Wvirtual = “virtual workpiece” profile

R2 = coefficient of determination, indicates how
well the model predicts the values

dirToLocalMax = slope toward the closest local maximum
distToLocalMax = distance to the closest local maximum (in µm)

sd = standard deviation of the Y-values of the target
cavity points (in µm)

xValueRel = X position of the point relative to the rest of the
profile

yValue = Y-value of the point on the target workpiece
profile (in µm)

yValueRel = Y position of the point relative to the rest of the
profile

yValuePattern = Y-value of the respective point on the pattern
workpiece profile

A% = accuracy of the optimization process
β = tool wear ratio
γ = crater ratio
ɛ = area mismatch (in µm2)

References
[1] Islam, N., and Miyazaki, K., 2009, “Nanotechnology Innovation System:

Understanding Hidden Dynamics of Nanoscience Fusion Trajectories,”
Technol. Forecast. Soc. Change, 76(1), pp. 128–140.

[2] Maropoulos, P. G., 2003, “Digital Enterprise Technology-Defining Perspectives
and Research Priorities,” Int. J. Comput. Integr. Manuf., 16(7–8), pp. 467–478.

[3] Shao, B., and Rajurkar, K. P., 2015, “Modelling of the Crater Formation in
Micro-EDM,” Procedia CIRP, 33, pp. 376–381.

[4] Kalajahi, M. H., Ahmadi, S. R., and Oliaei, S. N. B., 2013, “Experimental and
Finite Element Analysis of EDM Process and Investigation of Material
Removal Rate by Response Surface Methodology,” Int. J. Adv. Manuf.
Technol., 69(1–4), pp. 687–704.

[5] Tan, P. C., and Yeo, S. H., 2008, “Modelling of Overlapping Craters
in Micro-Electrical Discharge Machining,” J. Phys. D: Appl. Phys., 41(20),
pp. 1–12.

[6] Santos, P., Teixidor, D., Maudes, J., and Ciurana, J., 2014, “Modelling Laser
Milling of Microcavities for the Manufacturing of DES With Ensembles,”
J. Appl. Math., 2014, pp. 1–15.

[7] Kunieda, M., Kanekob, Y., and Natsub, W., 2012, “Reverse Simulation of
Sinking EDM Applicable to Large Curvatures,” Precis. Eng., 36(2), pp. 238–243.

[8] Gilbert, D., Stoesslein, M., Axinte, D., Butler-Smith, P., and Kell, J., 2014, “A
Time Based Method for Predicting the Workpiece Surface Micro-Topography
Under Pulsed Laser Ablation,” J. Mater. Process. Technol., 214(12), pp. 3077–
3088.

Fig. 11 Visual side-by-side comparison of the machine learning
method (a) and the iterative method (b) for test optimization
number 9

Table 8 Statistical properties of the accuracy differences
between the machine learning and iterative methods for the 20
optimizations chosen

Measure Value

Mean 5.760
Variance 4.597
Standard deviation 2.144

http://dx.doi.org/10.1016/j.techfore.2008.03.021
http://dx.doi.org/10.1080/0951192031000115787
http://dx.doi.org/10.1016/j.procir.2015.06.085
http://dx.doi.org/10.1007/s00170-013-5059-x
http://dx.doi.org/10.1007/s00170-013-5059-x
https://iopscience.iop.org/article/10.1088/0022-3727/41/20/205302/meta
https://doi.org/10.1155/2014/439091
http://dx.doi.org/10.1016/j.precisioneng.2011.10.003
http://dx.doi.org/10.1016/j.jmatprotec.2014.07.008


[9] Claus, S., Bigot, S., and Kerfriden, P., 2018, “CutFEM Method for Stefan–
Signorini Problems With Application in Pulsed Laser Ablation,” SIAM J. Sci.
Comput., 40(5), pp. B1444–B1469.

[10] Otto, A., and Schmidt, M., 2010, “Towards a Universal Numerical Simulation
Model for Laser Material Processing,” Phys. Procedia, 5(Part A), pp. 35–46.

[11] Kerfriden, P., Passieux, J. C., and Bordas, S. P. A., 2011, “Local/Global Model
Order Reduction Strategy for the Simulation of Quasi-Brittle Fracture,”
Int. J. Numer. Methods Eng., 89(2), pp. 154–179.

[12] Ghanem, R., and Spanos, P., 1991, Stochastic Finite Elements: A Spectral
Approach, Springer Verlag, New York.

[13] Rasmussen, C. E., and Williams, C. K. I., 2006, Gaussian Processes for Machine
Learning, The MIT Press, Boston, MA.

[14] Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D.,
Alfaro, I., Ammar, A., and Huerta, A., 2013, “PGD-Based Computational
Vademecum for Efficient Design,” Arch. Comput. Meth. Eng., 20(1), pp. 31–59.

[15] Pham, D., Ivanov, A., Bigot, S., Popov K., and Dimov, S., 2007, “A Study of
Micro-Electro Discharge Machining Electrode Wear,” Proc. Inst. Mech. Eng.
Part C: J. Mech. Eng. Sci., 221(5), pp. 605–612.

[16] Liang,W., Tong, H., Li, Y., and Li, B., 2019, “Tool ElectrodeWear Compensation
in Block Divided EDM Process for Improving Accuracy of Diffuser Shaped
Film Cooling Holes,” Int. J. Adv. Manuf. Technol., 103(5–8), pp. 1759–1767.

[17] Pham, D. T., Dimov, S. S., Bigot, S., Ivanov, A., and Popov, K., 2004,
“MicroEDM—Recent Developments and Research Issues,” J. Mater. Process.
Technol., 149(1–3), pp. 50–57.

[18] Bleys, P., Kruth, J. P., Lauwers, B., Zryd, A., Delpretti, R., and Tricarico, C.,
2002, “Real Time Tool Wear Compensation in Milling EDM,” CIRP Ann.,
51(1), pp. 157–160.

[19] Bissacco, G., Hansen, H. N., Tristo, G., and Valentinčič, J., 2011,
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