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Geometric Over‑Constraints Detection: A Survey

Hao Hu1,2,3  · Mathias Kleiner3 · Jean‑Philippe Pernot3 · Chao Zhang1 · Yanjia Huang1 · Qian Zhao1 · Sunny Yeung2

Abstract
Currently, geometric over-constraints detection is of major interest in several different fields. In terms of product development 
process (PDP), many approaches exist to compare and detect geometric over-constraints, to decompose geometric systems, to 
solve geometric constraints systems. However, most approaches do not take into account the key characteristics of a geometric 
system, such as types of geometries, different levels at which a system can be decomposed e.g numerical or structural.  For 
these reasons, geometric over-constraints detection still faces challenges to fully satisfy real needs of engineers. The aim of 
this paper is to review the state-of-the-art of works involving with geometric over-constraints detection and to identify pos-
sible research directions. Firstly, the paper highlights the user requirements for over-constraints detection when modeling 
geometric constraints systems in PDP and proposes a set of criteria to analyze the available methods classified into four 
categories: level of detecting over-constraints, system decomposition, system modeling and results generation. Secondly, it 
introduces and analyzes the available methods by grouping them based on the introduced criteria. Finally, it discusses pos-
sible directions and future challenges.

1 Introduction

Product design is a cyclic and iterative process, which man-
ages the creation of the product itself with different require-
ments. The development process is composed of the idea 
generation stage, concept stage, product design stage and 
detailed engineering stage, all of which are conducted to 
satisfy requirements at different stages. According to [1], 
requirements can be specified from preliminary design to 
process planing, which adopts criteria to evaluate design 
variants and selects the one of best performance when using 
the product.

Usually, a product shape generates from an optimization 
problem where the various requirements are specified. In 
fact, the final shape of a product often results from a long 
optimization process which tries to satisfy different require-
ments. Those requirements can be of different types and 
their computation may require the need of external tools 
or libraries.

In general, the creation of a product can be treated as a 
result of an optimization process where various requirements 
(e.g. functional, aesthetic, economical, feasibility) have to 
be satisfied. Requirements can be seen as constraints. For 
example, the shape of a turbine blade is a result of a com-
plex optimization process which is to get  the best solu-
tion satisfying aerodynamic and mechanical constraints. 
Since requirements are added at all stages of product design 
process, different users have different intention of applying 
constraints. According to [2], in the context of shape genera-
tion and modification, constraints can be classified into four 
semantic levels, depending on the type of the constrained 
entity:

• Level 1: constraints attached to a geometric element
of a configuration: such as position constraints used to
manipulate the shape of a geometry.

• Level 2: constraints between two or more geometric ele-
ments of a configuration: for instance, G0/G1/G2 conti-
nuity between trimmed patches.

• Level 3: constraints attached to the whole configuration
like a volume constraint.

• Level 4: constraints related to the product itself rather
than to the geometry. For example, to resist the usage of
a product, there needs a requirement on the mechanical
properties such as the acceptable maximum stress. There-
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fore, constraints should be specified to link the geometry 
with parameters of the material or boundary conditions 
of the product.

The above levels describe how to express constraints 
attached to a product.  They are generally expressed either 
with equations, a function to be minimized, and/or using 
procedures [3]. The latter refers to the notion of black box 
constraints, which will be discussed in Sect. 2.

However, information provided by uers may be incon-
sistent and the overall set can be over-constrained when 
manupulating CAD models directly [47]. In most of today’s 
modeler, a geometric configuration can be of three types:

• Under-constrained: number of unknowns is greater than
the number of equations. Such case happens quite often
since designers often insert extra DoFs to satisfy require-
ments.

• Well-constrained: number of unknowns is equal to the
number of equations.

• Over-constrained: number of unknowns is less than the
number of equations. The type of extra equations have
two possibilities:

• Redundant: these equations are consistent with the
other ones. That is, they do not affect the solution of
the original system.

• Conflicting: fully inconsistent with the others when
constraints express contradictory requirements and
lead to no solution.

A geometric system may be solvable if it is under-con-
strained or well-constrained. But when it is over-constrained, 
the system is hard to solve or even non-solvable. To make a 
system consistent with designer’s requirements, it is neces-
sary to detect geometric over-constraints and present them 
to designers for debugging purpose. In this paper, we collect 
and classify a state-of-the-art methods for detecting geomet-
ric over-constraints, including: (1) definitions of geometric 
over-constraints; (2) clear identification of criteria used to 
characterize methods; (3) study the methods and compare 
them according to the criteria; (4) proposed frameworks for 
detecting geometric over-constraints.

The paper is organized as follows. Section 2 introduces 
definitions of geometric over-constraints. Section 3 defines 
criteria for evaluating different detection methods. The 
details of evaluating each method is then discussed in 
Sect. 4. Finally, Sect. 5 concludes the paper as well as future 
work.

2  Representations and Definitions

2.1  Representation of Geometric Constraints 
Systems

Equations CAD modelers provide their solvers of geo-
metric constraints and usually the solver has its own con-
straints editor. Basically, the constraints concern verti-
ces, straight lines, planes, circles, spheres, cylinders or 
freeform curves and surfaces whose parameters are the 
unknown variables. Constraints ranging from level 1 to 
level 3 (Sect. 1) can be represented with equations. Those 
equations can be linear or non-linear. Classical solvers 
use these constraints to sketch and constrain the shape of 
desired models. For example, the 2D distance constraint 
d between two points (x, y) and (x0, y0) is translated to 
the equation (x − x0)

2 + (y − y0)
2 − d2 = 0.  Continuity 

constraints between two patches can also be represented 
with equations. Moreover, those mathematical equations 
can also be represented using computational graph, which 
is based on Directed Acyclic Graphs (DAGs). In such a 
representation, a DAG is a tree with shared vertices. The 
leaves of the tree are either variables (i.e. parameters or 
unknowns) or numerical coefficients. The internal nodes 
of the tree are either elementary arithmetic operations 
or functions such as exp; sin; cos; tan. The DAG is also 
called white box DAG, since it allows for computing the 
derivatives and hessians automatically. If mathematical 
equations associated to geometric constraints are avail-
able, it is possible to compute the expressions of the 
derivatives with formal calculus, which can be resorted 
to using the Grobner basis or Wu-Ritt method if all the 
constraints are algebraic and can be triangulated into the 
form f1(U;x1) = f2(U;x1;x2) =∶∶∶= 0 (U is the param-
eters vector and xi are the unknown variables).

Black boxes On the contrary, a DAG is called a black 
box DAG, and a constraint is called a black box constraint 
when it cannot be represented with equations or are not 
computable in practice  [3].  This corresponds to con-
straints of level 4 discussed in Sect. 1. Examples such as, 
maximum of the Von Mises stress should be smaller than 
100MPa, the final product should cost less than 100, are 
requirements which cannot be transformed into a set of 
equations. In the work of [3], they proposed to use black 
box DAGs for variational geometric modeling of free-form 
surfaces and subdivision surfaces. A prototype, DECO, 
is presented to show the feasibility and promises of the 
approach. Black box constraints happen when free-form 
surfaces are generated tediously from modeling functions 
(e.g. sweep, loft, blend). They cannot be manipulated in 
the same way as if some equations were available and solv-
ers have to take into account these constraints expressed by 
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functions i.e. constraints requiring the call to a function. In 
this paper, we will only consider configurations involving 
constraints can be defined by a set of equations. Configura-
tions involving black box constraints will not be addressed.

2.2  STAR Definitions of Geometric Over‑Constraints

2.2.1  Definitions at the Level of Geometries

At this level, definitions are classified into two groups: 
constraint graph group and bipartite graph group. A 
constraint graph is transformed into a weighted con-
straint graph, where the weight of a vertex represents 
DoFs (Degree of freedoms) of an entity and the weight 
of an edge represents DoFs removed by a constraint. For 
the bipartite graph group, only the weight of vertices are 
added: the weight of an entity equals to its DoFs and the 
weight of a constraint equals to the DoFs it can remove.

Definitions based on constraint graphHere, we use 
G = (V ,E) to represent a constraint system with ∣ V ∣ num-
ber of entities and ∣ E ∣ number of constraints.

In Rigidity Theory [4], Laman’s theorem [5] character-
izes the rigidity of bar frameworks, where a geometric 
system is composed of points constrained by distances.

Theorem 1 A constraint system in the 2D plane composed 
of N points linked by M distances is rigid iff 2 ⋅ N −M = 3 
and for any subsystem composed of n points and m dis-
tances, 2 ⋅ n − m ≥ 3.

The constraints and entities are limited to distances and 
points respectively. Podgorelec [6] extended the theorem 
by assuming that each geometric element has 2 DoFs and 
each constraint eliminates 1 DoF. Therefore, the weight 
of vertices and edges are of the constraint graph is 2 and 
1 respectively.

Definition 1 For constraint graph G = (V ,E) , a geometric 
constraint system is:

• Structurally over-constrained if there is a subgraph
G� = (V �,E�) with 1 ⋅ |E�| > 2 ⋅ |V �| − 3,

• Structurally under-constrained if G is not structurally
over-constrained and 1 ⋅ |E| < 2 ⋅ |V| − 3 , or

• Structurally well-constrained if G is not structurally
over-constrained and 1 ⋅ |E| = 2 ⋅ |V| − 3.

Definition 2 A constraint e is a structural over-constraint 
if a structurally over-constrained subsystem G� = (V �,E�) of 
G with e ∈ E� , can be derived such that G�� = (V �,E� − e) is 
structurally well-constrained.

An example is given to illustrate the Definition 1. The 
system is composed of 3 points (each has 2 DoFs) with dif-
ferent constraints in 2D space. As it is shown in the Fig. 1a, 
it is over-constrained because it contains 3 distance con-
straints and 3 vertical position constraints. Since each con-
sumes 1 DoF, the total system consumes 6 DoFs, satisfying 
6 > 2 × 3 − 3. The configuration of the Fig. 1b is structurally 
well-constrained since the constraints are reduced into 3 dis-
tance constraints, satisfying 3 = 2 × 3 − 3. The configuration 
of the Fig. 1c is structurally under-constrained since only 2 
distance constraints are left, satisfying 3 < 2 × 3 − 2.

The Definition 1 is correct if only all geometric entities 
are points and all constraints are distance constraints in 
2D. It cannot be used to characterize geometric constraints 
systems where constraints other than distance constraints 
are involved. For example, in the case of angle constraints 
in 2D: 3 line segments with 3 incidence constraints form a 
triangle with 3 ⋅ 4 − 3 ⋅ 2 = 6 DoFs. If added 3 angle con-
straints (each remove 1 DoF), the system will be Structurally 
well-constrained according to the Definition 1. However, 2 
angle constraints are enough since the third one is a linear 
combination of the other two.

In 3D, Laman’s theorem can be extended as follows: 
for the relative location of N points to be well defined, 
E = 3N − 6 number of distance constraints are needed, and 
no subsystem is over-constrained, i.e., for all subsystems 
with n number of points and e number of distance con-
straints, e ≤ 3n − 6. This condition is necessary but not 
sufficient. A counter example is the double banana geom-
etry shown in the Fig. 2. It is common to use Laman’s 
conditions to decompose geometric systems in 3D since 
these conditions are necessary [7].

d1 d2

d3

d1 d2

d3

d1 d2 Points

Ver�cal posi�on constraint

Distance constraint

(c)

(a) (b)

Fig. 1  a Structurally over-constrained, b structurally well-con-
strained, c structurally under-constrained
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Sitharam and Zhou [8] introduced a set of new defini-
tions trying to adapt Laman’s theorem to deal properly 
with  the double banana geometry. First, they replaced 
the value 3 in the Definition 1 with D, which is a func-
tion of dimension d: D = (d + 1) ∗ d∕2. Then, they defined 
the DoF, DoC as follows.

Definition 3  Degree of freedom (DoF) of a geometry 
entity (DoF(v), v is the geometry) is the number of inde-
pendent parameters that must be set to determine its position 
and orientation. For a system G = (V ,E) , its DoFs is defined
as DoF(G) =

∑
v∈V DoF(v).

Definition 4 Degree of freedom of a geometric con-
straint  (DoC(e), e is the constraint) is the number of 
independent equations needed to represent it. For a sys-
tem G = (V ,E) , the DoFs all constraints can remove is 
DoC(E) =

∑
e∈E DoC(e).

Definition 5 For constraint graph G = (V ,E) , a geometric 
constraint system is:

• Structurally over-constrained if there is a subgraph
G� = (V �,E�) satisfying DoC(E�) > DoF(V �) − D,

• Structurally well-constrained if DoC(E) = DoF(V) − D

a n d  a l l  s u b g r a p h s  G� = (V �,E�)  s a t i s f y i n g
DoC(E�) ≤ DoF(V �) − D,

• S t r u c t u r a l l y  u n d e r - c o n s t r a i n e d  i f
DoC(E) < DoF(V) − D and contains no structurally
over-constrained subgraphs.

A typical example that the Definition 5 cannot treat properly 
is 2 points binding with distance constraint in 3D. It allows 
for only 5 of 6 possible independent displacements since the 
system cannot rotate around axis crossing the 2 points. More 
counter examples in [9] suggest that the value of D depends 
on the system itself rather than dimension. Therefore, Jer-
man et al introduced the Degree of Rigidity (DoR) to replace 
the DoFs of a system if it is rigid. Their definitions are as 
follows.
Definition 6 For constraint graph G = (V ,E) , a geometric 
constraint system is:

• Structurally over-constrained if there is a subgraph
G� = (V �,E�) satisfying DoC(E�) > DoF(V �) − DoR(V �),

• S t r u c t u r a l l y  w e l l - c o n s t r a i n e d  i f
DoC(E) = DoF(V) − DoR(V) and a l l  subgraphs
G� = (V �,E�) satisfying DoC(E�) ≤ DoF(V �) − DoR(V �),

• S t r u c t u r a l l y  u n d e r - c o n s t r a i n e d  i f
DoC(E) < DoF(V) − DoR(V) and contains no structur-
ally over-constrained subgraphs.

The rule of computing the DoR is described in [9]. Within 
the rule, for two secant planes in 3D, the DoR is 5 while for 
two parallel planes is 4. Similarly, the DoR of 3 collinear 
points is 2, while the DoR of 3 non collinear points is 3.

A pure graph based method cannot determine whether 3 
points are collinear or not, or whether two planes are paral-
lel or not. It either assumes the configuration is generic or it 
verifies if the parallelism/collinearity is an explicit constraint 
of a system; but it may happen that the parallelism/collinear-
ity is a remote consequence of a set of constraints, thanks 
to Desargues, or Pappus, or Pascal, or Miquel theorems: the 
incidence in the conclusion is a nontrivial consequence of the 
hypothesis. This will be further discussed in the Definition 12.

Definitions based on bipartite graph Latham et al [10] 
introduced similar definitions based on a connected graph. It 
is a graph where vertices represent geometric entities and 
constraints, which can be treated as a bipartite graph. Note 
that, we use G = (U,V ,E) to denote a bipartite graph whose 
partition has the vertices U (entities) and V (constraints), 
with E denoting the edges of the graph.

Definition 7 For bipartite graph G = (U,V ,E) , a geometric 
constraint system is:

• Structurally over-constrained if it contains an unsaturated
constraint,

• Structurally under-constrained if it contains an unsatu-
rated entity.

A vertex u or v is said to be unsaturated if DoF(u) or DoC(v) 
is not equal to the number of weights of incident edges in a 

Pt2

Pt1
Pt3

Pt4

Pt5

Pt6
Pt7

Pt8

Fig. 2  Double-Banana geometry where all vertexes are variables and 
all edges are distance constraints
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maximal weighted matching. An unsaturated constraint is a 
structural over-constraint. The weights of edges are com-
puted by maximal weighted matching of a bipartite graph.

2.2.2  Definitions at the Level of Equations

In this section, we summarize the definitions used when 
a qualitative study of geometric systems is performed at 
the level of equations. Modeling at the level of geometries 
preserves geometric information of a system. Modeling at 
the level of equations, however, discards geometric proper-
ties of a system but enables a fine detection of geometric 
over-constraints.

Structural definitions System of equations are trans-
formed into bipartite graph, where vertices represent equa-
tions and variables respectively. The characterization is 
based on the results of maximum matching [11]. Here, we 
assume that G = (U,V ,E) is a bipartite graph with U and 
V (U ∩ V = ∅ ) representing variables and equations respec-
tively, and E representing edges.

Definition 8 For bipartite graph G = (U,V ,E) and its sub-
graph G� = (U�,V �,E�). G′ is:

• Structurally over-constrained if the number of elements
in U′ is smaller (in cardinality) than the number of V ′ . i.e.
∣ U

�

∣<∣ V
�

∣

• Structurally well-constrained iff G′ has perfect matching.
• Structurally under-constrained if the number of elements

in U′ is larger (in cardinality) than the number of ele-
ments in V ′ . i.e. ∣ U�

∣>∣ V
�

∣

Definition 9 Let M be a maximum matching of 
G = (U,V ,E). If M is not perfect matching and V ′ is the 
subset of V which is not saturated by M, then equations of 
V ′ are the Structural over-constraints.

Numerical definitions Informally, an over-constrained 
constraints system has no solutions, a well-constrained con-
straints system has a finite number of solutions, and a under-
constrained constraints system has infinite solutions. In the 
work of Hu et al. [12] as well as the recent work of Zou et al. 
[46], they gave the following definitions.

Definition 10 Let G = (E,V ,P) be a geometric constraints 
system, where E is a set of equations, V is a set of variables 
and P is a set of parameters. The set of solutions to G is 
denoted Sol(G). A geometric constraints system is inconsist-
ent iff Sol(G) = ∅ and is consistent iff Sol(G) ≠ ∅.

Definition 11 Let G = (E,V ,P) be a consistent geometric 
constraints system. Let G� = (E ∪ Ec,V ,P

�) be an incon-
sistent geometric constraints system, where Ec is a set of 

equations forming a constraint C = {Ec ∣ Ec ∩ E = ∅} and 
P ⊂ P′ . As a result, C is a conflicting constraint with respect 
to G.

Lemma 1 Let G = (E,V ,P) be a consistent geometric con-
straints system. Let G� = (E ∪ Er,V ,P

�) be a consistent geo-
metric constraints system, where Er is a set of equations 
forming a constraint R = {Er ∣ Er ∩ E = ∅} and P ⊂ P′ , and 
Sol(G) is the same as Sol(G’). As a result, R is a redundant 
constraint with respect to G.

Definition 12 Let G = (E,V ,P) be a weakly connected 
geometric constraints system (its components are weakly 
connected [13]) which can be decomposed into the follow-
ing two subsystems: Gb = (Eb,V ,P) and Go = (Eo,V ,P) with 
{E = Eb ∪ Eo,Eb ∩ Eo = ∅}. If any constraint Eoi in Eo is 
either redundant or conflicting with respect to Gb , and if 
card (Eb) ≥ card (Eo) , then Eb is a set of basis constraints 
and Eo is a set of numerical over-constraints.

However, we have to mention that the Definition 12 is not 
consistent with matroid theory. For example, in the Fig. 3, e1 
is conflicting both with e0 and e2. According to our definitions 
of redundant, conflicting, and basis constraints (Definitions 
11 and 12), the result would be: e1 is conflicting with basis 
constraints {e0, e2}.

According to the matroid theory [14], for any two subsets 
A and B of E, r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B) . That is, the 
rank is a submodular function. Suppose A = e0, e1 , B = e1, e2

. Both rank(A) and rank(B) is 1 because A and B are depend-
ent respectively.  We can also deduce that Rank(A ∪ B ) =2 and 
Rank(A ∩ B ) =1. As a result, we should have 2 + 1 ≤ 1 + 1 , 
which is wrong. We redefine the Definition 11 and the Defini-
tion 12 so as to be consistent with matroid theory in the next 
section.

Geometric redundancy Geometric redundancy refers to 
those additional constraints trying to constrain internally estab-
lished relations. The relations are consequences of domain-
dependent mathematical theorems hidden in a geometric 
configuration. Users are typically not aware of these implicit 
constraints and will always try to constrain the internal estab-
lished relations by additional constraints.

Geometric redundancy does not use parameters. Therefore, 
this type of geometric over-constraints cannot be detected by 
methods based on DoF-counting. In 2D, a typical example 
is the 3-angles constraints specified on a triangle. Obviously, 

Fig. 3  An example: e1 is con-
flicting with e0 and e2

e1

e0

e2
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total value of three angles equals to 180◦. It is not necessary 
to specify all three angles as constraints because the value of 
third one can be easily derived once the values of other two 
angles are defined. Therefore, specifying the 3-angles con-
straints will generate a geometric redundancy that is either 
redundant or conflicting. In 3D, every incidence theorem (Des-
argues, Pappus, Pascal etc) provides implicit dependent con-
straints [15]. For example, Pappus’s hexagon theorem [16] 
states that given one set of collinear points A, B, C, and another 
set of collinear points D, E, F, then the intersection points 
X, Y, Z of line pairs AE and DB, AF and DC, BF and EC are 
collinear, lying on the Pappus line. In this case, if specifying 
line pairs XY and YZ to be collinear, then this constraint is the 
geometric redundancy (Fig. 4).

2.3  Evaluation

A set of criteria are defined to evaluate these defini-
tions  (Table  1).  These criteria are: D is a dimension 
(system)-dependent constant; geometries refer to the geo-
metric type a definition used to specify; counter example 
lists geometries that a definition cannot deal with.

From the table below, we can see that definitions can de 
divided into two groups: Definition 1,5,6 and Definition 
7,8,10. Because the former group manipulate geometric 
elements directly at the level of geometries and geometric 
constraints are usually supposed to be independent of all 
coordinates system, they can not be used to determine the 

location and orientation of a geometric configuration (no 
fixation) as well as carefully defined the value of D. Also, the 
defined type of geometries and constraints are limited. For 
example, the Definition 1 and Definition 5 are defined for 
points geometries and distances constraints only. But col-
linear (and cocyclic, coconic, cocubic, etc.) points are for-
bidden. The Definition 6 extends the type of geometries to 
points, lines and planes as well as it allows for incidence 
constraints to be defined. The Definition 7 extracts geomet-
ric entities and constraints to DoFs and DoCs, and define 
over-constraints by simply comparing the number of DoFs of 
geometric entities and DoCs of geometric constraints. In this 
way, the definition is not limited to any specific class of geo-
metric entities and constraints. The Definition 8, and the Def-
inition 10, however, are numerical definitions dealing with 
geometries and constraints at the level of equations. These 
definitions can cover any geometric entities and constraints 
once they are represented with equations. Counter examples 
are the black box constraints which cannot be represented 
with equations. Moreover, these definitions require systems 
to be fixed with respect to a global coordinate system and 
thus D = 0. Finally, since geometric redundancy does not 
use parameters of any geometries of a constraints system, it 
cannot be covered by any of these definitions.

To cover cases like geometric redundancy as well as be 
consistent with the matroid theory, we redefine basis equa-
tions, redundant and conflicting equation as follows.

Definition 13 Let G = (E,V ,P) be a geometric constraints 
system, where E is a set of equations, V is a set of variables 
and P is a set of parameters. Let Er be a non-empty collec-
tion of subsets of E, called basis equations (we call it basis 
in short), satisfying:

• no basis properly contains another basis;
• if Er1 and Er2 are basis respectively and if e is any equa-

tion of Er1 , then there is an equation f of Er2 such that
{(Er1 − e) ∪ f } is also a basis.

Definition 14 Let G = (E,V ,P) be a geometric constraints 
system. Let Er be a basis. For an equation e, adding it to Er 

Fig. 4  Pappus’s hexagon theorem: Points X, Y and Z are collinear on 
the Pappus line (dotted line). The hexagon is AFBDCE 

Table 1  Evaluations of 
definitions

ex1: 2 points binding with distance constraint in 3D
ex2: configurations with geometric redundancy

D Geometries Constraints Counter example

Definition 1 3 Points Distances Double banana
Definition 5 0,3,6 Points Distances ex1
Definition 6 DoR Points,lines,planes Distances, incidencies ex2
Definition 7 0 Any Any ?
Definition 8 0 Any Any Black box constraints
Definition 10 0 Any Any Black box constraints
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forming a new group: {Er ∪ e}. If {Er ∪ e} is solvable, then 
e is a redundant equation.

Definition 15 Let G = (E,V ,P) be a geometric constraints 
system. Let Er be a basis. For an equation e, adding it to Er 
forming a new group: {Er ∪ e}. If {Er ∪ e} is non-solvable, 
then e is a conflicting equation.

Definition 16 Let G = (E,V ,P) be a geometr ic 
constraints system which is composed of two sub-
systems:   Gb = (Eb,V ,P) and Go = (Eo,V ,P) wi th 
{E = Eb ∪ Eo,Eb ∩ Eo = ∅}. If Eb is a basis, then Eo is a set 
of numerical over-constraints.

Spanning group  For an over-constraint Eoi ∈ Eo , 
the Spanning Group Esg of Eoi is a group of inde-
pendent constraints, with which Eoi is redundant or 
conflicting.  For linear systems, the spanning group 
Esg = {esg1, esg2,… , esgn} ⊂ Eb of Eoi satisfies:

where cj ≠ 0 and is the corresponding scalar coef-
f icient, {esg1, esg2,… , esgn} are linear independent 
and b is the bias.  Thus, Eoi is a linear combination of 
{esg1, esg2,… , esgn, b} . Moreover, Eoi is redundant if b = 0 
otherwise it is conflicting.

However, Esg is not unique for a given Eoi. For example, 
assuming a linear system of constraints represented at the 
level of equations:

Clearly, the system is over-constrained since there are 
more equations than variables. Through linear analysis 
of the system, we find that e5 is a linear combination of 
{e2, e3, e4, 1} and is spanned by {e2, e3, e4} ; e6 is a lin-
ear combination of {e1, e2, e3, e4, 1} and is spanned by 
{e1, e2, e3, e4} (Fig. 5). Since the bias of the two groups is 
1, both e5 and e6 are conflicting. In this case, {e1, e2, e3, e4} 
can be treated as a set of basis constraints since all the equa-
tions are independent and the number of them equals to the 
number of variables.

(1)Eoi =

n∑

j=1

cjesgj + b

(2)

e1 ∶ x1 + x2 + x3 + x4 = 1

e2 ∶ x1 + 2x2 + 3x3 + x4 = 4

e3 ∶ x1 − 2x2 + x3 + x4 = 5

e4 ∶ 6x1 + x3 + 2x4 = 7

e5 ∶ 8x1 + 5x3 + 4x4 = 17

e6 ∶ 11x1 + x2 + 10x3 + 7x4 = 27

However, if we replace e4 with e5, the new set 
{e1, e2, e3, e5} is also the basis constraints set.  Linear 
analysis result shows that e4 is a linear combination of 
{e2, e3, e5,−1} and is spanned by {e2, e3, e5} ; e6 is a 
linear combination of {e1, e2, e3, e5} and is spanned by 
{e1, e2, e3, e5} (Fig. 6). Also, e4 is conflicting and e5 is 
redundant according to the corresponding bias values.

From the Fig. 5 and the Fig. 6, we can see that the span-
ning group of e6 is not unique, which depends on the set 
of basis constraints. Also, the type of an over-constraint 
can change: e6 is conflicting with respect to the basis con-
straints set {e1, e2, e3, e4} while redundant with respect 
to the basis constraints set {e1, e2, e3, e5}.

To the best of our knowledge, there is no formal defini-
tions that can cover cases like black box constraints, let 
alone the corresponding detection methods. Therefore, in 
this paper, both of the definitions and the detection meth-
ods address only white box constraints.

(3)

e1 ∶ x1 + x2 + x3 + x4 = 1

e2 ∶ x1 + 2x2 + 3x3 + x4 = 4

e3 ∶ x1 − 2x2 + x3 + x4 = 5

e4 ∶ 6x1 + x3 + 2x4 = 7

(4)

e1 ∶ x1 + x2 + x3 + x4 = 1

e2 ∶ x1 + 2x2 + 3x3 + x4 = 4

e3 ∶ x1 − 2x2 + x3 + x4 = 5

e5 ∶ 8x1 + 5x3 + 4x4 = 17

e5 e6

e2 e3 e4 e1 e2 e3 e4

= 1e2+1e3+1e4+1 = 1e1+2e2+2e3+1e4+1

Fig. 5  Spanning group of e5 and e6: numbers marked green are coef-
ficients while the ones marked red are the biases

e4 e6

e2 e3 e5 e1 e2 e3 e5

= -1e2-1e3+1e5-1 = 1e1+1e2+1e3+1e5

Fig. 6  Spanning group of e4 and e6: numbers marked green are coef-
ficients while the one marked red is the bias
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3  Evaluation Criteria

To carry out appropriate analyses and comparisons 
between the over-constraints detection approaches, various 
evaluation criteria and a ranking system are proposed in 
this section. Considering the detection process as well as 
users’ needs for debugging, these approaches are classified 
into four main categories: criteria related to the level of 
detecting over-constraints; criteria related to the system 
decomposition; criteria related to the system modeling; 
criteria related to the way of generating results. Such 
ranking system permits a qualitative classification of the 
various approaches according to the specified criteria. In 
this section, following the tagging system used in [48], a 
boolean scale is adopted to characterize the capabilities 
of approaches. Firstly, the symbol ⊖/⊕ is used to tag the 
methods not adapted/well adapted, incomplete/complete 
with respect to the considered criterion (Table 2). They 
state a negative/incomplete ( ⊖ ) or positive/complete ( ⊕ ) 
tendency of the approaches with respect to the given crite-
ria. They are defined in such a way that the optimal method 
would never be assigned the symbol(⊖). Secondly, in case 
the information contained in the articles do not enable the 
assessment of a criterion, symbol (?) is used. Finally, the 
symbol ( ⊙ ) means criteria that have no meaning for the 
method and are simply not applicable.

For example, distinguishing redundant and conflicting 
constraints is a criteria for evaluating numerical detec-
tion methods. However, there is no meaning to apply it to 
evaluate structural detection methods since the latter only 
generate structural over-constraints. Of course, synthesis 
results are from our understanding of the publications.

3.1  Criteria Attached to the Level of Detecting 
Over‑Constraints

The first criterion is relative to the type of geometric 
over-constraints  (Fig.  7a), which are either numerical 
(a⊕ ) or structural  (a⊖). Second criterion concentrates 
on distinguishing redundant and conflicting constraints 
detected by numerical methods  (Fig.  7b).  Finally, in 
engineering design, designers could better debug and 

modify a geometric over-constraint if its spanning group 
is informed (Fig. 7c). This criterion evaluates numerical 
methods only (Table 3).

3.2  Criteria Related to the System Decomposition

Decomposition is an important phase in geometric con-
straints solving domain. A large system is decomposed into 
small solvable subsystems which speeds up the solving 
process. A desirable method should return the decomposi-
tion result to a user for debugging purpose by generating 
over-constrained components, which helps him/her locat-
ing the geometric over-constraints (d⊕). Also, the ability 
to generate rigid subsystems should be considered. Here, 
the rigid is of two meanings. Numerical methods detect 
the rigid subsystem which is solvable (finite solutions, e ⊕ ) 
while structural methods detect the rigid subsystem which 
is structurally well-constrained (Definition 5, e ⊖). Usually, 
the rigid subsystems are arranged with solving order and 
over-constraints within each subsystem can be detected by 
analyzing the subsystem individually (Table 4).

Decomposition methods should take into account the 
singularities. Indeed, many methods work under a generic-
ity hypothesis and decompose systems into generically 
solvable components.  A generic configuration remains 

Table 2  Symbols used to characterize the approaches

Symbols Criteria

⊖ Not adapted/incomplete
⊕ Well adapted/complete
? Not appreciable
⊙ No meaning/not applicable

Table 3  Criteria attached to the detection level (set 1)

Detection level Gradation of criteria

Level Criteria ⊕ ⊖

a Type Numerical Structural
b Redundant/conflicting Yes No
c Spanning group Yes No

Over-
constraints

Basis-
constraints

Redundant-
constraints

Conflicng-
constraints

Basis-
constraints

Redundant-
Group

Conflicng-
Group

(a)

(b)(c)

(o)

Fig. 7  (o): Level o (a): Level a (b): Level b (c): Level c
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rigid (non-rigid) before and after an infinitesimal perturba-
tion [4]. A singular configuration, however, transforms from 
rigid (non-rigid) to non-rigid (rigid) after an infinitesimal 
perturbation. It happens when geometric elements are drawn 
with unspecified properties (collinearity, coplanarity, etc.). It 
may be the case that a solution of a decomposed system 
lies into a singular variety, e.g., includes some unspecified 
collinearity or coplanarity. In this case, it happens that the 
generically solvable components are no more solvable. For 
instance, the doublebanana geometry (Fig. 2) is generically 
over-constrained but becomes under-constrained if the 
height of both bananas is the same since the two “bananas” 
can fold continuously along the line passing through their 
extremities. Moreover, the Jacobian matrix at singular con-
figurations is rank deficiency, which introduces dependences 
between constraints. For example, the Jacobian matrix of the 
subsystem {p3, l2, c, c7, c8, c13} of the Fig. 8 is of size 7 × 7

. But its rank is 5, which is a singular configuration. Obvi-
ously, there is no redundant constraints and the singularity 
comes from the tangent constraints between c and l1, l2 [17].

3.3  Criteria Related to the System Modeling

This set of criteria characterize detection approaches with 
respect to system modeling: the type of geometries  (g) 
and constraints (h), modeling at the level of equations or 

geometries (i), 3D or 2D space (j). The first criterion char-
acterizes the type of geometries. Currently, geometric enti-
ties are either Euler geometries (g⊖ ) such as line segments, 
cylinders, spheres etc. or free-form geometries (g⊕). The 
second criterion deals with linear (h⊖ ) and non-linear (h⊕ ) 
constraints. The third criterion describes a system either at 
the level of equations (i⊕ ) or geometries (i⊖). Finally, a 
modeling system can either be in 2D (j⊖ ) or 3D (j⊕ ) space 
(Table 5).

3.4  Criteria Related to the Results Generation

In reality, a designer may require that a modeler outputs 
geometric over-constraints iteratively when modeling a geo-
metric system interactively. Iteratively means the method 
enables to generate results through steps/loops (k⊖ ) while 
single-pass methods generate the results all at once (k⊕
). Also, a user-friendly method should enable the treatment 
of results for debugging purpose (l⊕). That is, locate the 
results at the level of geometries so that users can modify/
remove them (Table 6).

4  State‑of‑the‑Art on the Detection 
of Over‑Constrained Geometric 
Configurations

This section gathers together existing approaches that are 
capable of detecting geometric over-constraints. Approaches 
are classified with respect to the Definitions in Sect. 2. The 
Table 9 summarizes the final analysis results.

Table 4  Criteria related to system decomposition (set 2)

Decomposition Gradation of criteria

Level Criteria ⊕ ⊖

d Over-constrained components Yes No
e Rigid subsystems Numerical Structural
f Singular configuration Yes No

c1=FixX(p1); c2=FixY(p1); c3=PntOnLine(p1,l1); 
c4=PntOnLine(p2,l1); c5=Horizontal(l1);
c6 = PntOnCircle(p2,c); c7=PntOnCircle(p3,c);
c8=PntOnLine(p3,l2); c9=Horizontal(l2);
c10=DistPP(p1,p2,d1); c11=DistPP(p1,p3,d2);
c12=TanLC(l1,c); c13=TanLC(l2,c);

d1

l1 p2

c

p3

d2

l2

p1

Fig. 8  Singular configuration as described in  [17]

Table 5  Criteria related to system modeling (set 3)

System modeling Gradation of criteria

Level Criteria ⊕ ⊖

g Geometries Free-form Euler
h Constraints Non-linear Linear
i Modeling Equation Geometry
j Dimension 3D 2D

Table 6  Criteria related to the way of generating results (set 4)

Results generation Gradation of criteria

Level Criteria ⊕ ⊖

k Way of detection Single-pass Iteratively
l Debugging Yes No
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4.1  Methods Working at the Level of Geometries

This group of methods detect geometric over-constraints 
based on DoF analysis. Since these methods operate geo-
metric entities directly, geometric information of the over-
constraints are retained and thus easy to interpret.

Reduction Fudos and Hoffman [18] introduced a con-
structive approach to solve a constraint graph, where geo-
metric entities are lines and points, geometric constraints 
are distances and angles.  In their reduction algorithm, 
triangles are found and merged recursively until the ini-
tial graph is rewritten into a final graph. The structurally 
over-constrained system/subsystem are detected in two 
ways. Firstly, before finding triangles, the approach checks 
if the subgraph is structurally over-constrained. Secondly, 
if a 4-cycle graph is met during the reduction process, 
then the system is structurally over-constrained. A 4-cycle 
graph corresponds to two clusters sharing two geometric 
elements, which is structurally over-constrained.

Results of evaluating the method are as following:

• Criteria set 1 Although the method allows for checking
the constrained status of a system, it does not specify
how to find the structural over-constraints as well as
finding the spanning groups (a,c?). Since the method is
structural, it is meaningless to distinguish redundant and
conflicting constraints (b⊙).

• Criteria set 2 The method enables to identify a 4-cycle
graph which is structurally over-constrained (d⊕). Also,
the triangles found during the recursive process are the
rigid subsystems (e⊖). In terms of dealing with singu-
lar configurations, it is not mentioned in the original
paper (f?).

• Criteria set 3 Normally, a constraints system is com-
posed of Euler geometries (g⊖ ) with non-linear con-

straints  (distances, angles h ⊕ ) and modeled at the 
level of geometries (i⊖ ) in 2D space (j⊖).

• Criteria set 4 Since detecting geometric over-constraints
are not addressed, there is no meaning discussing how
the over-constraints are generated (k⊙ ) as well as debug-
ging them (l⊙).

Dense Hoffman et  al adapted their Dense algo-
rithm  [19] to locate 1-overconstrained subgraph  (sat-
isfying DOCs > DOFs − D + 1 ) of 1-overconstrained 
graph [20]. The algorithm is composed of four main steps. 

1. overloads the capacity from one arc from the source to
a constraint by D + 2.

2. distributes a maximum flow in the overloaded network.
3. finds subgraph of density ≥ −D + 1 , where the density

of a subgraph A : d(A) = DOCs(A) − DOFs(A).
4. locates a minimal 1-overconstrained subgraph by delet-

ing vertices one by one.

As it is shown in the Fig. 9, generally locating a mini-
mal subgraph of density −D + 1 is done as follows: first, 
by distributing an flow of weight Doci + D + 2 from each 
constraint to its end points(entities) to find a subgraph of 
density −D + 1. Such dense graph is found when there exists 
an edge whose edge cannot be distributed with redistribu-
tion [21]. The algorithm continues to locate minimal 1-over-
constrained subgraph. But in our opinion, to check whether 
a system is over-constrained or not, it is sufficient that the 
algorithm terminates at step 3. The authors suggested to fur-
ther extend the algorithm to incrementally detect k-Over-
constrained graphs.  The algorithm allows for updating 
constraints efficiently. Once the constraints are identified, 
they are removed. However, the algorithm excludes large 
geometric structures that have rotational symmetry.

Fig. 9  Left: The constraint 
graph with 5 entities and 7 
constraints. Right: The flow net-
work derived from the bipartite 
graph, where source S is linked 
to each constraint (capacity cor-
respond to Doci of a constraint 
i) and each entity is linked to
the sink T (capacity correspond 
to DoF of an entity)
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Results of evaluating the method are:

• Criteria set 1  The method does not specify neither
detecting geometric over-constraints nor the spanning
groups (a,c?). Since the method is structural, talking
about distinguishing redundant and conflicting con-
straints is meaningless (b⊙).

• Criteria set 2  The algorithm locates the 1-overcon-
strained subgraph (d⊕ ) rather than rigid subsystems (e⊙
). Regarding the singular analysis of a system, it is not
addressed by the method (f?).

• Criteria set 3 The evaluation of this set of criteria on the
method is the same with the previous’s one except that
the modeling dimension can be both 2D and 3D (j⊕⊖).

• Criteria set 4 Since detecting geometric over-constraints
is not addressed, there is no meaning to discuss how the
over-constraints are generated (k⊙ ) as well as debugging
them (l⊙).

Over-rigid Hoffmann’s algorithm cannot deal with con-
straints such as alignments, incidences and parallelisms 
either generic or non-generic. Based on their work, Jermann 
et al [9] proposed the Over-rigid algorithm with the follow-
ing modifications: 

1. The overload is applied on a virtual node R (Fig. 10
and  Fig.  11) whereas in the Dense algorithm, it is
applied on a constraint node.

2. The overload is Dor + 1 and the computation of Dor
depends on the subsets of constraint entities to which R
is attached. For example, Dor(A, B) ({A,B} is the sub-
set of the configuration in the Fig. 10) is different from
Dor(C, D, E) ( {C,D,E} is the subset of the configuration

in the Fig. 11). But in the Dense algorithm, the overload 
is invariant with different subsystems.

3. The R node is attached to Dor-minimal subsets of objects
in order to find over-rigid subsystems.

The Dor varies with different subsystems. The Over-rigid 
algorithm is initially designed to check whether a system is 
structurally well-constrained or not. However, the authors 
do not show specificly how to detect structurally over-
constrained systems as Hoffmann et al did in the Dense 
algorithm. Since it modified the Dense algorithm, it can 
be adapted to detect over-constrained systems if setting 
the overload to Dor + 2 , which follows the steps 1-3 of the 
Dense algorithm. The evaluation of adapted version of the 
Over-rigid algorithm is the same as the modified version of 
the Dense algorithm.

MWM Latham et al [10] detected over-constrained sub-
graphs with DoF-based analysis by finding a maximum 
weighted matching  (MWM) of a bipartite graph.  The 
method decomposes the graph into minimal connected 
components which they called balanced sets. If a balanced 
set is in a predefined set of patterns, the subproblem is 
solved by a geometric construction, otherwise a numeric 
solution is used. The method addresses symbolic con-
straints and enables to identify under- and over-constrained 
configurations.

As it is shown in the Fig. 12, a constraints system is ini-
tially represented with a constraint graph with two classes 
of nodes representing DoFs of geometric entities and con-
straints respectively. Then, it is transformed into a directed 
graph by specifying directions from constraints nodes to 
entities nodes. After that, maximum matching between 
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constraints and entities is applied and those unsaturated 
constraints nodes are geometric over-constraints. Moreo-
ver, they addressed the over-constrained problems by pri-
oritizing the given constraints, where over-constraints can 
automatically be modified based on constraints priorities.

Results of evaluating the method are:

• Criteria set 1 The unsaturated constraints are geomet-
ric over- constraints (a⊖). Since the detected over-con-
straints are structural, there is no meaning to discuss
redundant and conflicting constraints as well as the span-
ning groups (b,c⊙).

• Criteria set 2 The subgraph containing an unsaturated
constraint node is the over-constrained component (d⊕

). It can be found by tracing the descendant nodes of 
the unsaturated node. Moreover, the algorithm enables a 
decomposition of the system into balanced subsets which 
are rigid subsystems (e⊖). Also, analyzing the singular 
configurations is not discussed (f?).

• Criteria set 3 The results of evaluation with respect to
this set of criteria are the same with those of the Over-
rigid algorithm except the whole system is modeled in
3D space (j⊕).

• Criteria set 4 The over-constraints are detected in the sin-
gle-pass way (k⊕ ). And they proposed to modify the
constraints according to constraints priorities (l⊕).

4.2  Methods Working at the Level of Equations

4.2.1  Linear Methods

In general, almost all the geometric constraints can be trans-
lated mechanically into a set of algebraic equations [19]. There-
fore, detecting geometric over-constraints is equivalent with 
identifying a set of conflicting/redundant equations. However, 
even if detection works at the level of equations, the treatment 
needs to be done at the level of geometries.

D-M A variation of the Latham’s method directly deals 
with algebraic constraints, where a maximum cardinality of 
bipartite matching is used. The D-M algorithm decomposes  
system of equations into smaller subsystems by transform-
ing equations system into a bipartite graph and canonically 
decomposes the bipartite graph through maximum matching 
and minimum vertex covers. It decomposes a system into 
over-constrained, well-constrained and under-constrained 
subsystems [22]. It has been used for debugging in equation-
based modeling systems such as the Modelica [23]. Serrano 
used graph-theoretic algorithm to detect over-constrained 
systems where all constraints and geometric entities are of 
DoF one [24].

The process of the  D-M decomposition: D-M(A) = 
A(p, q) does not require A need to be square or full struc-
tural rank (Fig. 13). A(p, q) is split into a 4-by-4 set of 
coarse blocks: where A12, A23, and A34 are square with 
zero-free diagonals. The columns of A11 are the unmatched 
columns, and the rows of A44 are the unmatched rows. Any 
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of these blocks can be empty. The whole decomposition is 
composed of coarse and fine decomposition.

Coarse decomposition

• [A11 A12] is the under-constrained part of a system and it
is always rectangular and with more columns than rows,
or does not exist.

• A23 is the well-constrained part of a system and it is
always square.

• [A34; A44] is the over-constrained part of a system and
it is always rectangular with more rows than columns, or
does not exist.

Fine decomposition The above sub-matrices are further 
divided into block upper triangular form via the fine 
decomposition. Consequently, strong connected compo-
nents are generated and linked with solving order [11]. By 
analyzing each component following the solving order, the 
system is updated dynamically and over-constraints are 
generated iteratively. Results of evaluating the method are:

• Criteria set 1 Equations of [A34; A44] are structural
over-constraints (a⊖ ). Evaluation of criteria b and c is
meaningless since the method is structural (b,c⊙).

• Criteria set 2 [A34; A44] after coarse decomposition is
the structural over-constrained subpart (d⊕). The strong
connected components after fine decomposition are
structural rigid subsystems (e⊖). The method does not
discuss on the analysis of singular configurations (f⊖).

• Criteria set 3 Since the modeling is based on system of
equations, any geometric constraints that are able to be
transformed into system of equations can be analyzed
by the method. Therefore, the results for evaluating the
method according to this set of criteria are (g⊕⊖ , h ⊕⊖ , 
i ⊕ , j ⊕⊖).

• Criteria set 4 Structural over-constraints are contained
in the over-constrained part and output in a single-pass
way (k⊕). The method does not discuss on debugging the
over-constraints (l?).

In this section, we gather together the approaches from lin-
ear algebra that are capable of analyzing linear system of 
constraints. We consider linear system of constraints in the 
matrix form Ax = b , where A has dimension m × n , and 
n ≥ m ≥ r with r being the rank. The notation A[i : j, l : k] 
defines the matrix obtained by slicing the ith to jth rows, 
and the lth to kth columns of A. According to [25], methods 
such as Gauss-Jordan Elimination, LU and QR Factoriza-
tion present a good characteristic of locating inconsistent/
redundant equations.

G-J The elimination process is terminated once a reduced 
row echelon form is obtained (An example is shown in the 
Fig. 14). Exchanging rows at the start of the kth stage to 
ensure that:

where A(k)

ik
= A[i, k] , an element of the ith row and the kth 

column in A.
Numerical over-constraints are identified by searching 

lines containing only 0s. The vector b is updated to bnew 
when transforming [A, b]. The last m − r values of the bnew 
allow to further distinguish redundant (equal to 0) and con-
flicting (not equal to 0) constraints.

Results of evaluating the method are as follows:

• Criteria set 1 The method allows for detecting redundant
and conflicting constraints (a,b⊕). However, the method
does not tell how to find the spanning groups of an over-
constraint (c?).

(5)
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Fig. 14  Gauss elimination with 
partial pivoting A11 A12 A13 b1

A21 A22 A23 b2

A31 A32 A33 b3

Ak1 Ak2 Ak3 bk

Am1 Am2 Am3 bm

A31 is maximum: Swap Row 1 And Row 3

A31 A32 A33 b3

A21 A22 A23 b2

A11 A12 A13 b1

Ak1 Ak2 Ak3 bk

Am1 Am2 Am3 bm

A32 A33 b3

A22’ A23’ b2’

A12’ A13’ b1’

Ak2’ Ak3’ bk’

Am2’ Am3’ bm’

A31

0

0
0

0

A31 A32 A33 b3

0 Ak2’’’ Ak3’’’ bk’’’

0 0 A13’’’ b1’’’

0 0 0 bm’’’

0 0 0 b2’’’

Ak2’ is maximum: Swap Row 2 And Row k

Calcula�on between pivot and non-pivot rows

Reduced row echelon form

···

···

···

···

···

···

···

···r
basis 

over

pivot

bnew

n n

n n



H. Hu et al.

• Criteria set 2 The method does not enable to decompose
a system. There is no meaning to evaluate the method
with respect to system decomposition criteria (d,e,f⊙).

• Criteria set 3  The method analyzes linear equa-
tions. Therefore, any geometry (g⊕⊖ ) with linear con-
straints  (h⊖ ) in 3D or 2D space  (j⊕⊖ ) modeling at
the equation level (i⊕ ) can be handled by the method.

• Criteria set 4  The over-constraints are output all at
once (k⊕ ) after detection. The method does not discuss
on debugging the overconstraints (l?).

In the work of [26], they used this method to detect invalid 
dimensioning schemes. Note that, in the following sections, 
G-J is short for the Gauss-Jordan elimination with partial 
pivoting method.

LU The method is a high-level algebraic description of 
the G-J [27]. The process is shown in the Fig. 15, where P 
is the permutation matrix reordering the rows. The number 
of non-zero diagonal elements of U is the rank r. The last 
m − r rows of the reordered matrix P ∗ A corresponds to the 
numerical over-constraints.

However, the factorization itself does not manipulate 
directly on b, which means that distinguishing redundant 
and conflicting constraints is unavailable. To know them, 
we need further extension:

Now the distinguish step is similar to the one of 
the G-J. That is, by comparing the last m − r elements of 
L−1Pb with 0, redundant and conflicting constraints can be 
distinguished. However, one has to notice that the deduction 
process is under the condition that L should be invertible.

To the best of our knowledge, using this method to 
detect geometric over-constraints is not convincingly 
demonstrated in literature.  Evaluations of the method 

(6)
Ax = b

PA = LU

}
Ux = L−1Pb

with respect to the criteria is the same as the ones of 
the G-J. Note that in the following sections, we use LU in 
short for the LU factorization with partial pivoting method.

QR Before applying the QR factorization method, coef-
ficients matrix A should be transposed first(A = At ) since 
it operates on columns of a matrix. The QR factorization 
exchanges columns at the start of the kth stage to ensure 
that:

where A(k)

j
(k ∶ m) = A[k ∶ m, j]

As it is  shown in the Fig.  16, P is the permutation 
matrix where the information of exchanging columns is 
stored. R is a triangular matrix where rank r is the number 
of non-zeros diagonal elements. Equations corresponding 
to At.p[∶, r + 1 ∶ m] are the over-constraints [28].

(7)
‖‖‖A

(k)

k
(k ∶ m))

‖‖‖2 = max
j⩾k

‖‖‖A
(k)

j
(k ∶ m))

‖‖‖2

Fig. 15  LU Factorization with 
partial pivoting
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Similar to the LU, further deduction is needed to distin-
guish redundant and conflicting constraints. First, the matrix 
Q( : , 1 : r) is inverted using the following equation:

and is then used in the following equation:

thus providing the following relationship between the two 
sliced matrices At(∶, r + 1 ∶ n) and At(∶, 1 ∶ r):

The relationship between over-constraints and inde-
pendent constraints are revealed in the matr ix 
R(1 ∶ r, 1 ∶ r)−1R(1 ∶ r, r + 1 ∶ n) in the equation 10. From 
the matrix, the spanning group of an over-constraint could 
also be known. To identify the redundant and conflicting 
equations, the new b vector after factorization is redefined 
as follows:

Redundant and conflicting equations can be further distin-
guished by checking whether the value of the last m − r ele-
ments of bnew is 0 or not.

The method is adopted by Hu et al [12] to detect over-
constraints of free-form constraints systems. Evaluation of 
the method with respect to the criteria is the same as the 
one of the G-J. We use QR in short for the  QR factoriza-
tion method in the following sections.

4.2.2  Non‑Linear Methods

Detecting non-linear geometric constraints systems is more 
complicated than linear ones. Since non-linear detection 
methods such as symbolic methods using abstract algebra, 
we introduce the mathematical fundamentals to make fol-
lowing discussions easy to understand. The following two 
theorems are induced from [29]. Readers can find more 
details about concepts like ideals, affine varieties etc. in the 
book.

Theorem  1 For a system of polynomial equations 
f0 = f1 = ⋯ = fs = 0, where f0, f1,… , fs ∈ ℂ[x1,… , xn]; If 
affine variety W(f1,… , fs) ≠ ∅ while W(f0, f1,… , fs) = ∅

,  then  f0 = 0  i s  a  conf l ic t ing  equat ion;  I f 
W(f0, f1,… , fs) = W(f1,… , fs) ≠ ∅, then f0 = 0 is a redun-
dant equation; If W(f0, f1,… , fs) ≠ ∅ , W(f1,… , fs) ≠ ∅ and 

(8)At(∶, 1 ∶ r) = Q(∶, 1 ∶ r).R(1 ∶ r, 1 ∶ r)

(9)At(∶, r + 1 ∶ n) = Q(∶, 1 ∶ r).R(1 ∶ r, r + 1 ∶ n)

(10)
At(∶, r + 1 ∶ n) = At(∶, 1 ∶ r).R(1 ∶ r, 1 ∶ r)−1R(1 ∶ r, r + 1 ∶ n)

(11)
bnew = b(r + 1 ∶ n) − b(1 ∶ r).R(1 ∶ r, 1 ∶ r)−1R(1 ∶ r, r + 1 ∶ n)

W(f0, f1,… , fs) ≠ W(f1,… , fs), then f0 = 0 is an independent 
equation.

Theorem 2 (Hilbert’s weak Nullstellensatz) Let k be an 
algebraically closed field. If f , f1, ..., fs ∈ k[x1, ..., xn] are such 
that f ∈ I(W(f1,… , fs)), then there exists an integer m ≥ 1 
such that f m ∈ ⟨f1,… , fs⟩ (and conversely).

Based on the Theorem 2, Michelucci et al [15] deduced 
the Corollary 1.

Corollary 1  Let k be an algebraically closed field and 
W(f1,… , fs) ≠ ∅.  If f , f1,… , fs have the common root w, 
then rank([f � (w), f �

1
(w),… , f

�

s
(w)]T)< s + 1.

Informally, the  corollary 1 tells that if a system of 
polynomial equations containing redundant equations, 
then the Jacobian matrix of the equations at the affine 
space (solution space) must be row rank deficiency. How-
ever, the reverse is not correct. In other words, if there 
exists the Jacobian matrix whose rank is deficiency at the 
solution space, then system of polynomial equations does 
not necessarily contain redundant equations. A typical 
example is the singular configuration in the Fig. 8: the 

Generate Jacobian matrix

@Affine space?

Yes

No

@Singular 
configura�on?

Yes

Rank deficit?

No

Yes

Over-constraints exist  non-exist

No

Fig. 17  Over-constraints detection based on the Jacobian matrix anal-
ysis
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system is row rank deficiency at the solution space but 
the system does not contain geometric over-constraints. It 
is the singular configuration that causes the system rank 
deficiency. Therefore, to detect over-constraints by analyz-
ing the Jacobian matrix, one has to note that the Jacobian 
matrix should be computed on configurations in the solu-
tion space rather than singular configurations.

We propose a schema on determining the existence of 
over-constraints through analyzing the Jacobian matrix 
in the Fig. 17. That is, analyze the Jacobian matrix at a 
configuration from affine space. If the rank is full, then 
there is no over-constraints. Otherwise, we check if the 
configuration is singular.  If not, then over-constraints 
exist otherwise we move to test other configurations in the 
affine space. Loops mean that one has to go back to gener-
ate the Jacobian matrix at different configurations until 
the existence/non-existence of over-constraints is deter-
mined. It is a recursive process of finding configurations 
that can be used to determine the existence/non-exist-
ence of over-constraints. In reality, however, affine space 
is sometimes hard to find or does not exist. Moreover, the 
singularity of a configuration is difficult to test in some 
cases. Several methods have been proposed to address the 
two issues.

The first group of methods are symbolic algebraic 
methods, which compute the Grobner basis for a sys-
tem of equations. Algorithms proposed include works of 
the Buchberger [30], and the Wu-Ritt [31, 32]. 

Grobner basis  Assume a set of polynomials 
f0, f1,… , fs ∈ ℂ[x1,… , xn] .  The  reduced  Grobner 
basis  (rgb0 ) of the ideal ⟨f1,… , fs⟩ satisfies rgb0 ≠ {1} 
and rgb0 ≠ {0} with respect to any ordering.  The new 
reduced Grobner basis of the ideal ⟨f0, f1,… , fs⟩ is rgbnew
.  If rgbnew = {1} , f0 = 0 is a conflicting equation; if 
rgbnew ≡ rgbold , f0 = 0 is a redundant equation(b⊕ ); if 
rgbold ⊂ rgbnew , f0 = 0 is an independent equation [33].

Results of evaluating the method are as follows:

• Criteria set 1 Obviously, the above method can tell if a
constraint is redundant or conflicting (a,b⊕). However,
the method does not enable to find the spanning group
of the constraint (c⊖).

• Criteria set 2 The method is used to solve polynomial
equations. Therefore, there is no meaning to evaluate it

with the set of criteria on system decomposition (d,e⊙
). The method does not analyze the singularity of a 
configuration (f⊖).

• Criteria set 3 The method analyzes non-linear equa-
tions. Therefore, any geometries (g⊕⊖ ) with non-lin-
ear constraints (h⊕ ) in 3D or 2D space (j⊕⊖ ) modeling 
at the level of equations (i⊕ ) can be applied with the
method.

• Criteria set 4 To detect a set of over-constraints, equa-
tions are input one by one in the process of computing
the reduced Grobner basis. Therefore, the over-con-
straints set are generated iteratively (k⊖). However,
debugging these over-constraints is not discussed (l?).

Construction of a Grobner basis is a time-consuming pro-
cess. Hoffman et al used the method to do geometric rea-
soning between geometric configurations [34]. In terms 
of detecting geometric over-constraints, Kondo et al [35] 
initially used it to test dependencies among constraints in 
2D dimension.

Wu-Rit t  Let  a  system of polynomial  equa-
t i o n s  P = {f0 = f1 = ⋯ = fs = 0}  ,  w h e r e 
f0, f1,… , fs ∈ ℚ[x1,… , xn] represent system of con-
straints and Zero(P) denote the set of all common zeros 
of {f0, f1,… , fs} . The system contains redundant equations 
only if there exists a polynomial p such that:

For the polynomial set P, its zero set can be decomposed into 
a union of zero sets of polynomial sets in triangular form 
using the Wu-Ritt’s zero decomposition algorithm:

where each TS{i} is a polynomial set in triangular form, I{i} 
is the production of initials of the polynomials in TS{i} and k 
is the number of zero sets. The system contains inconsistent 
equations iff k ≡ 0 [36]. In the work of Gao and Chou [37], 
they presented a complete method to identify conflicting and 
redundant constraints based on the Wu-Ritt’s decomposition 
algorithm. Also, the algorithm can be used to solve the Pap-
pus problems to decide if a configuration can be drawn with 
ruler and compass.

Results of evaluating the Gao’s method are as follows:

(12)Zero(P − {p}) ≡ Zero(P)

(13)Zero(P) =
⋃

1⩽i⩽k

Zero(TS{i}∕I{i})
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• Criteria set 1 As discussed above, their method enable 
to detect conflicting and redundant constraints (a,b⊕ ) 
but cannot find the spanning groups (c⊖).

• Criteria set 2 The method decomposes a set of polyno-
mials into a union of zero sets in triangular form. No
over-constrained subparts, rigid subsystems are gen-
erated as well as singular configurations are ana-
lyzed  (d,e,f⊖).

• Criteria set 3 The method analyzes non-linear equa-
tions. Any geometries  (g⊕⊖ ) with non-linear con-
straints (h⊕ ) in 3D or 2D space (j⊕⊖ ) modeling at
the equation level (i⊕ ) can be applied with the method.

• Criteria set 4 The results are the same as those of eval-
uating the Grobner basis method.

Symbolic detection methods are sound in theory but 
the computation cost  is high. As discussed previously, 
the worstcase can be doubly exponential. Moreover, the 
reduced Grobner basis has to be computed every time of 
analyzing an equation. Therefore, this method is limited 
to deal with large systems of equations.

The second group of methods analyze the  Jacobian 
matrix of a system of equations. Different from symbolic 
methods, these numerical methods are more practical 
in computation but are theoretical deficiency in some 
cases. On one hand, if the affine space of a system does not 
exist, an equivalent one that sharing similar the Jacobian 
structure should be found. On the other hand, even if the 
Jacobian matrix of a configuration is row rank deficiency 
in affine space, the corresponding configuration should 
not be singular.

Perturbation Haug proposed a perturbation method to 
deal with singular configurations and detect redundant 
constraints in mechanical systems [38]. More precisely, 
assuming a system of equations �(q) = 0 and the corre-
sponding Jacobian matrix �q is rank deficiency at q. As we 
discussed before, it is not sufficient to determine the exist-
ence of the over-constraints since the singular configura-
tion can also make a Jacobian matrix rank deficiency. He 
suggested to analyze the Jacobian matrix at more configu-
rations with the following:

• Add a small perturbation �q to q and obtain �q�q = 0

. The process is based on the Implicit Function Theo-
rem [39].

•  Applying the G-J to �q , �q�q = 0 is transformed into [
�I

u
�I

v

0 �R
v

] [
�u

�v

]
= 0. �I

u
 is the upper triangular matrix 

with 1s as diagonal elements. �R
v
 can be treated as the 

matrix with all 0s under given tolerance. Equations in 
�(q) = 0 corresponding to �I

u
 part: �I(q) = 0 are inde-

pendent.
• Now, �q�q = 0 can be simplified into �I

u
�u +�I

v
�v = 0

a n d  t h u s  �v = −(�I
v
)−1�I

u
�u  ,

�q =

[
�u

�v

]
=

[
�u

−(�I
v
)−1�I

u
�u

]

• Assume q is perturbed to new point q∗ satisfying
q∗ = q + �q. To ascertain it lies in the affine space,
is should satisfy �(q ∗) = 0.  This is equivalent to
�I(q ∗) = 0 since the latter is composed of all inde-
pendent equations of the former.

• S o l v i n g  �I(q ∗) = 0  , q∗ = q + �q  , 

�q =

[
�u

�v

]
=

[
�u

−(�I
v
)−1�I

u
�u

]
 ,  the value of q∗ is 

obtained.
• Computing the rank of the Jacobian matrix at q∗ : �q∗

and checking if it is rank deficiency.

As we can see from the above, obtaining an appropriate 
value of the perturbation �q so that q∗ lies in the affine 
space is the main part of the method.

Results of evaluating the method are as follows:

• Criteria set 1 The method enables to detect geometric
over-constraints (a⊕ ) but does not distinguish redun-
dant and conflicting constraints (b⊖ ). Finding the span-
ning groups is also not supported (c⊖).

• Criteria set 2 The method mainly detects the over-
constraints based on analyzing the Jacobian matrix of
a whole system. There is no meaning to evaluate the
method with respect to system decomposition crite-
ria (d,e,f⊙).

• Criteria set 3  The method analyzes both linear and
non-linear equation systems. Therefore, any geome-
tries (g⊕⊖ ) with non-linear and linear constraints (h⊕⊖ ) 
in 3D or 2D space  (j⊕⊖ ) modeling at the  equation
level (i⊕ ) can be applied with the method.

• Criteria set 4 The over-constraints are generated in a
single-pass way since the Jacobian matrix analysis is on
the whole system at once (k⊕). However, debugging the
over-constraints is not discussed (l?).

His method selects two points in the affine space to deter-
mine the existence of geometric over-constraints. If the Jaco-
bian matrix at any configuration is full rank, then there is no 
over-constraint. However, if the rank of the Jacobian matrix 
at both configurations is deficiency, then there exists geo-
metric over-constraints.
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NPM Roots of system of equations can be sometimes 
hard to find or even do not exist. In these cases, the aff-
ine space does not exist. Sebti Foufou et al. [7] suggested a 
Numerical Probabilistic Method (NPM), which is to test the 
Jacobian matrix at random configurations instead of the aff-
ine space. However, there is a risk that the Jacobian matrix 
is row rank deficiency at the chosen configuration and the 
corresponding configuration happens to be singular. They 
suggested to test more configurations to reduce the possibil-
ity of happening such case. Moreover, in order to get more 
confidence, authors suggested that testing at 10 different 
configurations should be sufficient. The NPM is practical 
in computation but is not sound in theory since the testing 
configurations are not necessarily all in affine space.

Results of evaluating the method are as follows:

• Criteria set 1 The method enables to identify numeri-
cal over-constraints (a⊕ ). However, it can neither distin-
guish redundant and conflicting constraints nor finding
the spanning group of an over-constraint (b,c⊖).

• Criteria set 2 The method can be used to decompose a
system into rigid subsystems (e⊖ ). However, decomposi-
tion into over-constrained components as well as analyz-
ing singular configurations are not supported (d,f⊖).

• Criteria set 3  The method analyzes both linear and
non-linear system of equations. Therefore, any geome-
tries (g⊕⊖ ) with non-linear or linear constraints (h⊕⊖ ) 
in 3D or 2D space (j⊕⊖ ) modeling at the level of equa-
tions (i⊕ ) can be applied with the method.

• Criteria set 4 Numerical over-constraints are detected all
at once (k⊕ ) but debugging them is not discussed (l?).

WCM Instead of selecting configurations  randomly, 
Michelucci et al. suggested to study the Jacobian structure at 
witness configurations where incidence constraints are satis-
fied [40]. A witness configuration and the target configura-
tion shares the same Jacobian structure, where the Jacobian 

matrix is non-singular in affine space. As a consequence, all 
the numerical over-constraints can be identified [15]. More 
recently, Moinet et al. developed tools to identify conflicting 
constraints through analyzing the witness of a linearized sys-
tem of equations [41]. Their approaches have been success-
fully applied to the well-known double banana geometry to 
find the numerical over-constraints.

For a geometric constraints system represented with a set 
of equations F(U,X) = 0 , where U denotes a set of param-
eters with prescribed values UT(T for target), and X is the 
vector of unknowns. The solution is denoted as XT. A wit-
ness is a couple (UW ,XW ) such that F(UW ,XW ) = 0. Most of 
the time, UW and XW are different from UT and XT respec-
tively. The witness (UW ,XW ) is not the solution but shares 
the same combinatorial features with the target (UT ,XT ) , 
even if the witness configuration and the target configuration 
lie on two distinct connected components of the solution 
set. Therefore, analyzing a witness configuration enables to 
detect numerical over-constraints of a system [42, 43]. These 
numerical over-constraints can be not only structural over-
constraints but also geometric redundancies.

The Fig. 18 shows the witness method combining the 
QR for detection. Step one aims at generating the witness 
configuration while at step two, the QR is applied on the 
Jacobian matrix A. As a result, the rows of equations are re-
ordered by P and the number of basis constraints is revealed 
by r. Finally, coming back to the re-ordered original equa-
tions, the first r equations are the basis constraints while the 
remaining ones are the numerical over-constraints. Note that, 
the QR can be replaced with the G-J in the process, which 
would generate results different from the ones of QR since 
the two methods adopt different sorting rows strategies.

The results of evaluating the method are the same as those 
of evaluating the NPM method. Michelucci et al [15] proved 
that the WCM can identify all the dependencies among con-
straints. In other words, if removing these dependent con-
straints, the remaining constraints are independent. However, 

Fig. 18  Witness configuration 
method
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a report on the limitations of the WCM method was summa-
rized in [46] recently. And the authors have presented a new 
decision support method to over-come these limitations [47].

WCM extension Thierry et  al [44] extend the WCM 
method to incrementally detect over-constraints and thus 
to get a well-constrained system. Also, they designed the 
so called W-decomposition to identify all well-constrained 
subsystems, which manages to decompose systems that are 
non-decomposable by classic combinatorial methods.

 Results of evaluating the method are as follows:

• Criteria set 1 The results of evaluation within this set of
criteria are the same with those of  the NPM method.

• Criteria set 2 The W-decomposition enables to efficiently
identify the maximal well-constrained subsystems of an
articulated system as well as further decompose a rigid
system into well-constrained subsystems (e⊖ ) but finding
over-constrained components is not discussed (d?). In terms
of finding the spanning groups, it is not supported (f⊖).

• Criteria set 3 The results are the same with those of the
NPM method.

• Criteria set 4 Working on the witness, the naive idea would
be to try and remove constraints one by one and, at each
step, compute the rank again to determine if a constraint
is redundant with respect to the remaining set. However,
the authors pointed out that the method is computational
expensive. They considered an incremental construction of
the geometric constraint system to identify a set of redun-
dant constraints with no additional cost  (k⊖). The method
does not discuss on debugging over-constraints (l?).

Generating a witness configuration Sometimes, when cer-
tain geometries happen to be drawn with specific properties 
(collinearity, coplanarities, etc) without representing a real 
constraint, the sketch is not typical of the expected solution.  A 
witness configuration should be generic when it remains rigid 
before and after infinitesimal perturbation. If a sketch is not 
rigid before perturbation, it will not be rigid after the per-
turbation [4]. For example, the sketch of the Fig. 19a) is not 

generic: a small perturbation on the dimensions of the bars 
will result in a non-rigid sketch shown in Fig. 19b). However, 
the sketch of the Fig. 19b) is generic: if a small perturbation 
is introduced, it will remain non-rigid. Usually, non-generic 
sketches are constituted with aligned line segments presented 
in the Fig. 19a). The collinearity will induce artificial redun-
dancy between the constraints associated with the collinear 
vectors. As a result, before using the WCM, one has to make 
sure a witness configuration is typical of the expected solution.

Here, we adopt the algorithm of Moinet [41] for generat-
ing generic witness configurations. Other methods for gen-
erating witness configurations can be found in [44, 45]. Moi-
net’s algorithm contains the following steps: 

1. Compute the Jacobian matrix for a system of equations.
2. Calculate the rank rold of the Jacobian matrix at the ini-

tial sketch.
3. Randomly perturb the initial sketch (usually generated

by users), regenerate the Jacobian matrix, and recompute
the rank rnew at the new position (new sketch).

4. If rnew > rold , replace the initial sketch with the new one
and reiterate the third step.

5. Otherwise the old sketch is generic.

4.3  Incremental and Decremental Detection 
Frameworks

In real-life applications, debugging geometric constraints 
systems can be done in two different ways. On one hand, 
With CAD modelers, designers are able to detect over-
constraints interactively during the modeling process in 2D 
sketches. Usually, constraints are added incrementally. On 
the other hand, the debugging process can be realized by 
analyzing system of constraints already exist. Here, all 

(a) (b)

Fig. 19  a Rigid sketch b Non-rigid sketch [44]

Table 7  Structural methods

Level Modeling Method Strong connected 
components

Equation Bipartite 
graph

D-M Irreducible subsys-
tems

Geometry Bipartite 
graph

MWM(Maximum 
Weighted Match-
ing)

Balanced sets

Table 8  Algebraic methods

Linear method Non-linear method

Over-constraints WCM WCM
Redundancies/conflicts G-J/QR Grobner basis/

incremental 
solving
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the constraints and associated equations have been prede-
fined. Through analyzing methods in previous sections, we 
propose two detection frameworks: incremental detection 
framework and decremental detection framework. Both of 
them are based on a combination of structural and algebraic 
methods. These methods are listed in the Table 7 and Table 8 
respectively. Details of the two frameworks will be discussed 
in the next subsections. 

4.3.1  Incremental Detection Framework

Here, we assume that the constraint C is to be added to 
a set of constraints S. This framework is to test if C is an 
over-constraint with respect to S. The first method is either 
the  D-M  method or the  MWM  method, which detects 
structural over-constraints using either maximum match-
ing method or maximum b-matching method. The method 
will be applied to the new group S + C after adding C. If C 
is unmatched, then C is a structural over-constraint. Other-
wise, we apply the WCM method to detect numerical over-
constraints of S + C. If the rank of the new system S + C 
is bigger than that of S at witness configurations, C is an 

independent constraint otherwise it is a numerical over-con-
straint. Whether it is redundant or conflicting can be checked 
using the Grobner basis method or the Incremental solving 
method. In this framework, since constraints are added incre-
mentally, users can be informed directly if a newly inserted 
constraint has been detected as an over-constraint (Fig. 20).

The advantage of this framework is that it enables design-
ers to detect and treat the over-constraints as soon as they are 
detected in the modeling process.

4.3.2  Decremental Detection Framework

Decremental detection analyzes a set of existing con-
straints. The constraints set and its associated equations 
set are initially represented with a bipartite graph. Struc-
tural over-constraints will be identified using either 
the D-M method or the MWM method   if there exists 
unmatched constraints after maximum matching (or 
b-matching). They will be removed and the system 
will be updated.  If there is no unmatched constraints, 
strong connected components (that is, irreducible sub-
systems using the D-M method or balanced sets using 
the MWM method) are generated with fine decomposition 

Constraints set S

C Unmatched?

rank(C+S)>rank(S)
@witness

No

Yes

Constraints CAdd
Maximum matching/
Maximum b-matching

Yes C: Structural 
over-constraint

No C: Numerical 
over-constraint

C: Independent constraint

 C

Fig. 20  Incremental detection framework where constraints are added 
one by one

Bipar�te graph

Unmatched  
constraints

Maximum
matching/b-
matching

Yes

No

Strong connected 
components

Debug

Fine 
decomposi�on

Over-constraints
=

Yes

Debug

No

terminate

=

Algebraic analysis

Fig. 21  Decremental detection framework
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of the system. Then, algebraic methods are used to detect 
numerical over-constraints inside each component. Since 
strong connected components linked with solving order 
is actually a DAG structure, components corresponding 
to the source vertices are usually analyzed first. Once an 
over-constraint is found, it is presented to the user for 
debugging.  After that, the system is updated and the 
corresponding bipartite graph is rebuilt. The detection 
process finishes when no numerical over-constraints are 
found (Fig. 21).

The advantage  of this framework is that the treat-
ment of the detected over-constraints can be performed 
on the entire system, which better considers the design 
intent. However, if a final system after modelling is too 
large, it would be preferable to detect over-constraints 
incrementally during the modeling process rather than 
analyze them decrementally after modeling.

4.3.3  A Decomposition‑Detection Plan

The first requirement of a Decomposition-Detection (D-D) 
plan is that it should be able to find local segments of 
a system of constraints if there exists any. For example, 
decomposes a free-form configuration into local parts due 
to the local support property of the geometry. Secondly, a 
D-D plan should decompose a constraint system into small 
subsystems and analyze these subsystems using algebraic 
methods. Since the time cost of over-constraints detec-
tion is proportional (at least polynomial) to the size of 
a system, these small subsystems should be as small as 
possible so that algebraic methods can analyze them with 
low computational cost. If there is no over-constraints in a 
subsystem, the subsystem would be solved and the solution 
would be propogated to the entire system resulting in a 
simplified system. As it is shown in the Fig. 22, a D-D plan 
initially decomposes the system S into {S1,… , Si,… , Sn} 
local segments. Then, for each local segment Si , the D-D 

plan proceeds by applying the following steps at each 
iteration j: 

1. Find the small subsystem SSi,j of the current local part
Si.  Since small subsystems are linked with solving
sequence, the ones that are the source of the sequence
should be chosen first (SSi,1).

2. Detect numerical over-constraints in SSi,j using algebraic
methods. Users can either remove or modify them once
they are detected. Otherwise, solve SSi,j directly using
algebraic methods.

3. Replace SSi,j−1 by an abstraction or simplification
Ti,j−1(SSi,j−1) as well as replacing the entire system
Ei,j−1 by a simplification Ei,j = Ti,j−1(Ei,j−1). The simpli-
fication can be either the removal/modification of the
over-constraints or solving SSi,j−1 and propogating the
solution to Ei,j−1. The latter operation can potentially
generate over-constraints since the solution of SSi,j−1 
may cause some equations of Ei,j−1 satisfied or unsatis-
fied (Fig. 22).

The decremental framework can be adapted and incor-
porated into a D-D plan to analyze Si. As such, Si is initially 
represented with a bipartite graph. SSi,j corresponds to the 
strong connected component of the jth iteration, which is to 
be analyzed by an algebraic method (Ti,j(SSi,j)). These analy-
sis results could then be used to simplify Ei,j through Ti,j(Ei,j)

. As a result, Ei,j is updated as Ei,j+1.

4.4  Hybrid Approaches

Serrano Serrano analyzed a system of equations  (h⊕ ) to 
select a well constrained, solvable subsets from candidate 
constraints[24]. His method first detects structural over-con-
straints (a⊖ ) if there are equations uncovered after maximum 
matching. To further detect numerical over- constraints (a⊕ ) 
within strong connected components  (e⊖ ), symbolic and 

Fig. 22  A Decomposition-
Detection plan. Si is the ith 
component after decomposition; 
Sij is the component Si at jth step 
when analyzing; Eij refers to the 
entire system when analyzing Sij

···

S

···

S1

Si

Sn

Ssi,1 Ti,1(Ssi,1)

SSi,2

Ti,j-1(Ssi,j-1)

··· Ssi,n

Si = Ei,1 Ei,2 = Ti,1(Ei,1) Ei,j = Ti,j-1(Ei,j-1) En = Ti,n-1(Ei,n-1)

Decremental 
Framework

··· SSi,j
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numerical methods are used. The symbolic method is pure sym-
bolic operations, where constraints are eliminated one by one by 
substituting one variable into other equations until a final expres-
sion is obtained. Also, non-linear equations are linearized and 
the G-J method is applied to analyze them. The method repeats 
the above process until all redundant and conflicting constraints 
are distinguished (b⊕). Moreover, the method suggests the span-
ning group of an over-constraint is a set of constraints within 
the same strong connected component, and it is possible that 
the solution of a strong connected component results in a sin-
gular configuration since no method was proposed to prevent 
such cases from happenning (c, f ⊕). However, it will generate 
wrong results if a non-linear system is linearized.

The constraint manager of his method enables design-
ers to generate geometric over-constraints iteratively (k⊖
). When a geometric over-constraint is detected (l⊕ ), the 
constraint manager provides three alternatives, where 
users can select an appropriate one satisfying his/her 
needs. Finally, as the modeling of the system is in equa-
tions (i⊕ ), the method is applicable to geometries of both 
free-form and Euler  (g⊕⊖ ), linear and non-linear con-
straints (h⊕⊖ ), and 3D and 2D (j⊕⊖).

Hu’s method Hu’s method is also based on the detection-
decomposition plan [12]. His method is similar with Ser-
rano’s except several differences. They are:

• A system is decomposed twice before applying algebraic
methods. As it is shown in the Fig. 23, the system is

initially decomposed into CCis. For each CCi , the D-M 
decomposition is used. Comparing with the Serrano’s 
method, initial decomposition step is added to decom-
pose a free-form configuration into subparts.

• Non-linear equations are not linearized. Hu’s method
adopts the Grobner basis, WCM to detect over-constraints
among non-linear equations. Since the WCM method is
used, solution of a strong connected component would not
result in singular configurations of a system (l⊖).

Results of evaluation Hu’s method  with respect to 
the adopted criteria are the same with the one of Serrano’s 
except for the differences discussed above. 

4.5  Results of Evaluation

We summarize the results of evaluating detection methods 
in the Table 9.

5  Conclusion

This paper analyzes the state-of-the-art of approaches for 
geometric over-constraints detection grouped based on pro-
posed criteria that allow to highlight the main characteristics 
of methods and to discuss open issues. These criteria reflect 
the features we believe important to the  geometric over-
constraints detection. Effective geometric over-constraints 

Fig. 23  Detection framework of Hu’s method



Geometric Over-Constraints Detection: A Survey  

Ta
bl

e 
9 

 E
va

lu
at

io
n 

of
 th

e 
m

et
ho

ds

C
rit

er
ia

 se
t

D
et

ec
tio

n 
le

ve
l

D
ec

om
po

si
tio

n
Sy

ste
m

 m
od

el
in

g
Re

su
lts

 g
en

er
at

io
n

C
rit

er
ia

D
ef

Ty
pe

Re
du

nd
an

t 
co

nfl
ic

tin
g

Sp
an

ni
ng

 
gr

ou
p

O
ve

r-c
on

str
ai

ne
d 

co
m

po
ne

nt
s

R
ig

id
 su

b-
sy

ste
m

s
Si

ng
ul

ar
 

co
nfi

gu
ra

-
tio

n

G
eo

m
et

rie
s

C
on

str
ai

nt
s

M
od

el
in

g
D

im
en

si
on

W
ay

 o
f 

de
te

ct
io

n
D

eb
ug

gi
ng

M
et

ho
ds

a
b

c
d

e
f

g
h

i
j

k
l

Re
du

ct
io

n
1

?
⊙

?
⊕

⊖
?

⊖
⊕

⊖
⊖

⊙
⊙

D
en

se
5

?
⊙

?
⊕

⊙
?

⊖
⊕

⊖
⊕
⊖

⊙
⊙

O
ve

r-r
ig

id
6

?
⊙

?
⊕

⊙
?

⊖
⊕

⊖
⊕
⊖

⊙
⊙

M
W

M
7

⊖
⊙

⊙
⊕

⊖
?

⊖
⊕

⊖
⊕

⊕
⊕

D
-M

8
⊖

⊙
⊙

⊕
⊖

⊖
⊕
⊖

⊕
⊖

⊕
⊕
⊖

⊕
?

G
-J

10
⊕

⊕
?

⊙
⊙

⊙
⊕
⊖

⊖
⊕

⊕
⊖

⊕
?

LU
10

⊕
⊕

?
⊙

⊙
⊙

⊕
⊖

⊖
⊕

⊕
⊖

⊕
?

Q
R

10
⊕

⊕
?

⊙
⊙

⊙
⊕
⊖

⊖
⊕

⊕
⊖

⊕
?

G
ro

bn
er

 b
as

is
10

⊕
⊕

⊖
⊙

⊙
⊖

⊕
⊖

⊕
⊕

⊕
⊖

⊖
?

W
u-

R
itt

10
⊕

⊕
⊖

⊖
⊖

⊖
⊕
⊖

⊕
⊕

⊕
⊖

⊖
?

Pe
rtu

rb
at

io
n

10
⊕

⊖
⊖

⊙
⊙

⊙
⊕
⊖

⊕
⊖

⊕
⊕
⊖

⊕
?

N
PM

10
⊕

⊖
⊖

⊖
⊖

⊖
⊕
⊖

⊕
⊖

⊕
⊕
⊖

⊕
?

W
C

M
10

⊕
⊖

⊖
⊖

⊖
⊖

⊕
⊖

⊕
⊖

⊕
⊕
⊖

⊕
?

W
C

M
 E

xt
en

tio
n

10
⊕

⊖
⊖

?
⊖

⊖
⊕
⊖

⊕
⊖

⊕
⊕
⊖

⊖
? 

hy
br

id
-S

er
ra

no
10

⊕
⊖

⊕
⊕

⊖
⊖

⊕
⊕
⊖

⊕
⊖

⊕
⊕
⊖

⊖
⊕

hy
br

id
-H

u
10

⊕
⊖

⊕
⊕

⊖
⊖

⊖
⊕
⊖

⊕
⊖

⊕
⊕
⊖

⊖
⊕



H. Hu et al.

detection needs to consider the multi-dimensional infor-
mation describing a geometric constraints system, which 
needs to be extracted through a geometric system modeling, 
decomposition and solving process. Various works in litera-
ture are addressing these issues to some extent; however, 
they take into consideration only some configurations and 
are applicable in some conditions. Therefore, efforts are 
still needed to address the challenging applications such as 
PDP. We foresee that the design of hybrid approaches will 
enable advances toward practical requirements. In particu-
lar, a method that makes as much use as possible of prede-
fined patterns, and resorts to a general DoF-based analysis 
strengthened by a WCM-based validation in a recursive 
assembly way (allowing to interleave decomposition, solv-
ing, propogation, and recombination phases) would be more 
applicable towards generality and reliability.
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