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A B S T R A C T

Weld toes and weld roots of continuously welded structures subjected to cyclic loading are critical 
zones in terms of the fatigue resistance. The finite element method coupled with a fatigue cri
terion is commonly used to ensure the correct sizing and fatigue design of welded structures. 
However, weld geometries are often simplified or idealized to limit computational cost. In this 
work, a numerical two-scale approach is proposed in order to calculate a non-local multiaxial 
equivalent stress at the weld toe and the weld root from a global finite element shell model. 

The influence of the parameters of the proposed model on the stiffness behaviour is investi
gated for three welded structures and for different loading cases. A comparison in terms of 
stiffness with other models from the literature is also proposed. The results show that the stiffness 
behaviour is not affected by the parameters of the proposed approach and that it is the most 
robust model for the different geometries and loading cases studied. The variation in the non-local 
multiaxial equivalent stress as a function of the parameters of the proposed approach was also 
studied. The comparison with full solid finite element models makes it possible to define mini
mum values for the different parameters studied and validates the potential of the proposed 
approach for the fatigue design of welded structures.   

1. Introduction

The welding process is widely used for the fabrication of lifting and material handling equipment. Indeed, this process makes it
possible to manufacture complex-shaped structures at high production rates, at least when compared to other joining process such as 
riveting. The welded structures used for telehandler chassis (see Fig. 1) are commonly made of S355 structural steel sheets with 
thicknesses ranging from 8 to 40 mm. During their service lives, telehandlers are submitted to very complex loading paths, and even 
though the yield strength is not exceeded, the repeated stressing caused by service loadings may lead to fatigue failure. The role of weld 
toes and weld roots, which act as stress concentration and often crack initiation sites, must therefore be considered when designing 
structural parts against fatigue failure. This aspect is important for telehandler chassis, for which the total seam weld length usually 
exceeds 50 meters. 

The high cycle fatigue resistance of welds can be assessed by either global or local approaches and by the use of Wöhler curves [1]. 
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• For the application of the global approach, the cross-sectional area is used to calculate the nominal stress. Each welded detail is
assessed using a specific Wöhler curve. While the application of this approach is straightforward, it requires a specific Wöhler curve
for each type of welding detail, hence an extensive experimental database is required.

• Local approaches consider the stress concentration at the root of the notch where the crack will initiate. Given the variability in the
local geometry at these locations, the fatigue life is commonly estimated from the maximal principal stress at the notch assuming a
root radius of 1 mm [2]. In contrast with the global approach, only a single Wöhler curve (FAT225) is required for the fatigue design
of the weld toes and weld roots. However, the stress state in the stress concentration zones must be accurately evaluated for the
application of the local approach. This approach is therefore expensive from a computational point of view, especially for large
structures.

• The structural stress approach is a trade-off between global and local approaches. It includes stress raising effects of the welded area
without considering local stress concentrations. The advantage of this approach is that it requires fewer Wöhler curves when
compared to the global approach.

The aforementioned methods are well adapted to the design of geometrically simple welded structures but are difficult to implement in 
an industrial context. Indeed, because they require either extensive experimental datasets or important computational resources, these 
approaches are difficult to apply to large or complex welded structures. 

To circumvent these limitations, alternative approaches have been developed. For instance, Fayard et al. [3] proposed meshing 
rules and kinematic equations to consider the stiffness of continuously welded thin sheet structures. The fatigue design is based on the 
Dang Van [4] multiaxial fatigue criterion calculated from the hot spot stress defined by Radenkovic [5]. This approach, which requires 
only one Wöhler curve, is well suited for the situation where cracks initiate from weld toes. Fermér and Svensson [6] proposed a similar 
approach to evaluate the fatigue life of thin sheet welded structures. However, instead of kinematic equations, the local stiffness of the 
weld is estimated with an inclined shell element and the fatigue design is based on the structural stress concept. For a given stress 
distribution within the plate thickness and using the equilibrium equations, the structural stress is expressed according to a membrane 
and bending component of the stress tensor. The proportion of the bending component makes it possible to select the correct Wöhler 
curve to use. To deal with crack initiation at the weld roots, Turlier et al. [7] extended the approach of Fermér and Svensson [6]. 
Specifically, the structural stress is calculated from nodal forces and nodal moments [8] in order to limit the mesh-size influence. The 
fatigue life at weld toes is estimated from the FAT90 and the FAT100 Wöhler curves [1] while the FAT80 Wöhler curve is used for weld 
roots [9]. Crack initiation in welded structures can also be assessed using the notch stress intensity factor as a fatigue crack initiation 
parameter [10,11], or by strain energy approaches [12,13]. 

The present work is the continuation of the work of Fayard et al. [3] and Turlier et al. [7]. The welded connections encountered in a 
chassis structure are geometrically complex. As a result, the global and structural approaches, which are based on shell elements and/ 
or an idealization of the weld [3,6,7], are difficult to set-up in a systematic fashion. Turlier et al. [14] compared the stiffness of the 
Fayard [15] and Turlier et al. [7] approaches on different elementary welded configurations and for different loading conditions. For 
certain cases, the difference between both models exceeds 15% and show the limits of these approaches. 

Also, except for the nominal and the structural stress approaches of the IIW [1], it is not possible, with the aforementioned ap
proaches, to simultaneously consider the impact of the stress multiaxiality and stress gradients. However, as discussed by Radaj and 
Sonsino [16] and Zettlemoyer and Fisher [17], these two factors influence the fatigue resistance of welded structures. On the other 
hand, local approaches allow the evaluation of stress gradients in a multiaxial context but the computational cost is often prohibitive 
for large structures. 

In the present work, a strategy to consider welding details using the finite element method for complex and large welded structures 
is proposed. The objectives of this method are twofold. Firstly, the method should be capable of correctly evaluating the stiffness of a 
weld detail, which is necessary to estimate the mechanical response of the structure. The second aim is to accurately compute the stress 
field around welds, which is essential for considering the stress multiaxiality and the stress gradients in the context of the high cycle 
fatigue. The proposed method, which is detailed in the first part of this paper, relies on a two-scale approach. This makes it possible to 

Fig. 1. Telehandler Manitou MT1840 and a closer view of typical welded connections found on the chassis.  



estimate the fatigue resistance of complex structures with limited computational cost. In the second part, a comparative study is carried 
out to validate the proposed method. Specifically, the stiffness and local stress fields are compared to reference results for different 
weld details. 

2. Description of the proposed method

2.1. Two-scale approach 

Two contradictory goals must be accomplished when designing a large welded structure against fatigue failure. On one hand, the 
computational cost must be reasonable so that different design solutions can be explored. The consequence is that, in the context of the 
finite element method, shell elements are often used to model large structures. On the other hand, for the estimation of the fatigue 
resistance, the stress state in critical zones (i.e. weld toes and weld roots) must be determined. As such, weld details need to be 
modelled with solid elements, especially when one wants to consider stress gradients and stress multiaxiality. The drawback is that the 
computational cost drastically increases when solid elements are introduced in a model. A possible strategy to deal with these con
tradictory goals is to use a sub-modelling technique. Generally speaking, as discussed by Dal Cero Coehlo [18], a global shell element 
model is first used to identify the critical zones. Then, local solid elements sub-models are used for the fatigue assessment in these 
critical zones. However, with such an approach, the boundary conditions used in the sub-models, which are obtained from the global 
model, may not be realistic. 

In the present work, as shown in Fig. 2, the strategy used to overcome the aforementioned difficulties is to model the seam welds 
using a two scale approach. At the local scale, welded details are modelled with solid elements in order to evaluate the local stress field. 
At the global scale, the metal plates are modelled with shell elements to limit the computational cost. However, instead of directly 
inserting the weld details into the global model, which would be computationally expensive, an intermediate step is used. Specifically, 
the idea is to propose a strategy to connect shell elements to solid elements. Then, the equivalent stiffness is estimated independently 
for each weld detail with a local model using both solid and shell elements. The weld details are therefore represented only with their 
equivalent stiffness matrices for the estimation of the global response of the welded structure. With this strategy, none of the degrees of 
freedom associated with a weld detail is included in the global shell model. The nodal displacements obtained from the global shell 
finite element model are then introduced as boundary conditions for local models. The final post-processing step consists of using an 
appropriate fatigue criterion with the resulting stress field, to estimate the fatigue life. 

Fig. 2. Description of the two-scale approach used for the evaluation of the fatigue resistance of a welded structure.  



2.2. Connection between solid and shell elements 

As shown in Fig. 2, a local finite element model of a weld detail consists mostly of solid elements. Nevertheless, in order to insert it 
into the global model, some shell elements are used. As a result, in order to ensure the continuity of the displacement field at the 
interface between the solid elements and the shell elements, coupling equations must be used. If it is assumed that an isotropic linear 
elastic material model can be used, the connection can be defined by equating the work done on either side of the mixed dimensional 
interface [19,20] or by using shell element edge shape functions [21]. The second option has been chosen here. To establish the 
coupling equations, one must consider:  

• the displacements at the solid element nodes;
• the displacement at the shell element nodes;
• the rotations at the shell element nodes;
• the shell element shape functions;

For the purpose of connecting solid and shell elements, the nodal displacement U(M) of a solid element node M at a solid/shell
interface, such as the one shown in Fig. 3, is decomposed into two contributions: 

U(M) = US(M)+UP(M) (1)  

The contribution US(M) is obtained from the direct interpolation of the nodal displacements of neighbouring shell elements while the 
contribution UP(M) is due to the Poisson effect. The contribution US(M) is given by: 

US(M) =
∑2

k=1
(uk +(v ⋅ ez)Φ ⋅ θk)hk(η) (2) 

In the above equation, uk and θk respectively correspond to the nodal displacement and nodal rotation vectors of the shell element 
node Sk at the interface. Also, h(η) = (1 ± η)/2 is the first order shell element edge shape function when η = ±1. The unit vector ez is 
the normal to the shell element plane and v corresponds to the vector S1M. The second order skew-symmetric tensor Φis built from the 
components of the ez unit vector: 

Φ =

⎡

⎣
0 ez3 − ez2

− ez3 0 ez1

ez2 − ez1 0

⎤

⎦ (3)  

Eq. (2) couples the six degrees of freedom of the shell element nodes to the three degrees of freedom of the solid element nodes at the 
solid/shell element interface. To include the Poisson effect along the direction normal to the shell element plane (i.e. direction ez), the 
associated component of the displacement field can be deduced from the out-of-plane strain components of shell elements. Specifically, 
under the assumption of a plane stress state, the components of the strain tensor are given by: 

∊11 =
1
E

σ11 −
ν
E

σ22 (4)  

∊22 =
1
E

σ22 −
ν
E

σ11 (5)  

∊33 = −
ν
E

σ11 −
ν
E

σ22 (6) 

Fig. 3. Interface between shell elements and solid elements in a local finite element model. The three degrees of freedom of a solid element node 
(M) are connected to the six degrees of freedom of the corresponding shell element nodes (S1, S2,T1,T2). 



∊12 = ∊21 =
1 + ν

E
σ12 (7)  

∊23 = ∊32 = 0 (8)  

∊31 = ∊13 = 0 (9)  

where E is the Young’s modulus and ν is the Poisson’s ratio for the material of interest. The out-of-plane component of the strain tensor 
∊33 is then conveniently expressed from the in-plane components with: 

∊33 =
− ν

(1 − ν)(∊11 +∊22). (10) 

To consider the Poisson effect in the constraint equations, the strain components ∊αα of Eq. (10) are expressed in terms of the nodal 
displacements of the shell element nodes. Specifically, the contribution UP(M) is: 

UP(M) =
∑2

k=1
(v ⋅ ez)

( − ν
(1 − ν)

){([wk − uk

D1

]

hk

)

⋅ ex +

(
u1 − u2

D2

)

⋅ ey

}

ez (11)  

where wk is the nodal displacement vector associated with the shell element nodes Tk away from the interface. The distances D1 and D2 
correspond respectively to the norm of the vectors S1T1 and S2T2. The unit vector ex corresponds to the normal to the solid/shell 
interface and the vector ey is such that ey = ez × ex. 

To account for the Poisson effect, the assumption of plane stress state has been made. However, close to a notch, the local stress field 
can be triaxial. Hence, a minimum distance between the weld toe and the solid/shell interface must be defined in order to limit its 
influence on numerical results. The local model uses two geometrical parameters, denoted by L1 and L2 and whose definition is 
illustrated in Fig. 4. The influence of the parameters L1 and L2 on the stiffness behavior and on the local stress state is discussed in 
Sections 3.1.1 and 3.2.1. 

2.3. Equivalent stiffness matrix 

To accurately estimate the stress field with the local model of a weld detail, a fine mesh must be used in the vicinity of the weld toes 
and the weld roots. As a result, the size of the stiffness matrix Kl associated with a local model, which connects the nodal displacements 
U to the nodal forces F, can be very large. As a consequence, local models cannot be directly inserted into the global model of a welded 
structure without requiring significant computational resources. To circumvent this issue, the proposed strategy is to evaluate the 
equivalent stiffness matrix Ke, whose size is much smaller than that of the original matrix Kl, for each local model. The stiffness matrix 
Kl associated with a local model can be written as: 

(12)  

where Ksolid is the stiffness matrix associated with the solid element part, and Kshell is the stiffness matrix associated with the shell 
element part of the local model. The constraint equations between the solid/shell element parts are included in the stiffness matrix Kl 
as Lagrange multipliers Kλ. For the purpose of calculating the equivalent stiffness matrix of a local model, a distinction is made between 

Fig. 4. Local model of a weld detail with solid and shell elements. The geometrical parameter L1 is the length between the notch root and the solid/ 
shell element interface. The geometrical parameter L2 is the length of the connected shell element. 



master nodes (Um,Fm), which are common to the local and global models, and slave nodes (Us,Fs), which exist in the local model only 
(see Fig. 5). 

For the condensation of Kl into Ke, the following linear system is solved by imposing a unit displacement on one degree of freedom 
of the master nodes while the other degrees of freedom of the master nodes are set to zero: 

(13) 

The equivalent stiffness matrix Ke, which defines the relationship between the nodal displacements Um and the nodal forces Fm at 
the master nodes, is constructed from the concatenation of the nodal force vectors at the master nodes resulting from the application of 
a unit displacement on one degree of freedom of a master node. Once the equivalent stiffness matrices have been computed for each 
weld detail, they are injected into the global model. The global model of the welded structure is thus composed of shell elements and 
the equivalent stiffness matrices corresponding to the different weld details (see Fig. 2). The solution to the global problem is then 
obtained from the finite element method. 

For the purpose of evaluating the fatigue resistance of a weld detail, a restitution step is performed. This step consists of extracting 
the nodal displacements at the master nodes from the solution to the global problem. In the context of linear elasticity, the nodal 
displacement at the slave nodes for a welding detail are computed by superposing the solutions obtained for a unit nodal displacement 
on the corresponding master nodes. The strain field ε is then obtained from the nodal diplacements on both slave and master nodes. The 
stress field σ is finally computed from the strain field using a linear elastic isotropic constitutive model. 

2.4. Non local multiaxial fatigue criterion 

To account for the presence of stress gradients, the critical distance approach is used. This approach can take the form of either a 
point method, a line method or a volume method [22], see Fig. 6. Due to the type of structure studied here, as well as the numerous 
possible loading modes, the direction of the highest stress gradient can be difficult to identify. Hence, as the volume approach does not 
require this information, it is preferred here. The efficiency of this approach for notched components has been demonstrated by Taylor 
[23], Taylor [24] and Livieri and Tovo [25]. Also, to account for the influence of a multiaxial stress field, this approach can easily be 
coupled with a multiaxial criterion [26,27]. 

A local fatigue criterion can be defined as a function of (i) the stress state history and (ii) certain material parameters. If the loading 
cycle period is denoted by T, a local fatigue indicator σeq at position x can be calculated as follows: 

σeq(x) = E([σ(x, t)]T , aα=1,n) = 1 (14)  

where E is the fatigue function, a1…, an are n material parameters characterizing the fatigue resistance of the material. The material 
parameters are usually determined from the fatigue strengths obtained from different loading modes. It is worth mentioning that these 
parameters can depend on position x if material property gradients need to be considered. 

In the context of a non-local approach, it is convenient to introduce a volume-averaged equivalent stress Σeq such that: 

Σeq(x) =
1

V(x)

∫

V
σeq(x′) dv. (15) 

Fig. 5. Definition of master nodes and slave nodes for a local model. Master nodes are used to connect the local model to the global model. Slaves 
nodes are the remaining nodes of the local model. 



As illustrated by Fig. 6, V is defined as a spherical volume, centred at each centroid of finite element, with radius ρ. The spatial position 
of the centroid of each finite element is used to identify the finite elements inside the integration sphere. The local fatigue indicator Σeq 

is then calculated from the volume averaged stress tensor of corresponding elements. 
The above relation makes it possible to design welded structures against failure. It accounts for the effects of stress gradient and 

stress multiaxiality. According to the multiaxial fatigue criterion chosen, different parameters must be identified from different fatigue 
tests, other than the radius ρ of the integration volume V. 

3. Validation

The strategy discussed in the previous section should make it possible (i) to consider the stiffness of a weld detail and (ii) to evaluate
a non-local multiaxial fatigue criterion. To validate these aspects, the results obtained with the present strategy are compared to 
reference results presented in this section. The reference results used for the purpose of validation have been extracted from finite 
element simulations carried out with only 3D geometries using solid elements for different elementary welded structures. These 
structures are meshed with second-order tetrahedral elements. For the application of the proposed method, the solid part is meshed 
with second-order tetrahedral elements while the shell part is meshed with Q4γ24 elements [28]. The Q4γ24 element is a four nodes 
quadrilateral shell element with six degrees of freedom per node, including three translations and three rotations. This element is 
formulated from the combination of a plate element and a membrane element. In stress concentration zones, the element edge size is 
0.08 mm for both model types. The size of the shell element in the proposed model is approximately 4 mm. An in-house finite element 
software, which is based on the finite-element mesh generator GMSH [29] and on the MUMPS solver [30], has been developed to apply 

Fig. 6. 2D representation of the integration sphere. The parameter ρ defines the radius of the integration sphere for the computation of the non-local 
fatigue criterion. 

Fig. 7. Description of the three elementary welded structures used for validation: T-shaped joint (a), gusset (b) and lap joint (c). The boundary 
conditions are also indicated. 



the proposed approach. 
The elementary welded structures studied to validate the stiffness behaviour and the fatigue criterion are: a T-shaped joint, a gusset, 

and a lap joint. These structures are made with 15 mm thick steel plates, they have a weld throat thickness of 6 mm, and a gap at the 
weld root. The weld toes and the weld roots are modeled using a sharp angle, no fictitious notch rounding is considered. The ge
ometries and the corresponding boundary conditions are shown in Fig. 7. For each elementary welded structure three loading cases are 
considered. These cases correspond to the application of a 1 kN force in either the ex, ey or ez directions. 

Fig. 8. Relative error indicator eK
γ obtained when comparing the results of the proposed approach, the Fayard [15] approach and the Turlier et al. 

[7] approach to the reference results. Three different welded structures are considered: T- shaped joint (a), gusset (b) and lap joint (c). Three 
different loading directions are prescribed: ex, ey an.d ez. 



3.1. Global stiffness 

To discuss the estimation of the stiffness with the proposed approach, the stiffness Kγ along the γ direction (where γ = ex, ey or ez) 
has been evaluated by computing the ratio between the applied load Fγ and the resulting displacement Uγ calculated at the boundary 
where the forces are applied (see Fig. 7). In order to compare the stiffness of different models, a relative error indicator eK

γ is used: 

eK
γ =

⃒
⃒Kr

γ − Kγ
⃒
⃒

Kr
γ

(16)  

where Kr
γ is the stiffness of the reference model while Kγ is that of the model being evaluated. 

3.1.1. Influence of the L1 and L2 parameters 
As discussed in Section 2.2, the proposed approach uses two geometrical parameters, denoted by L1 and L2, for the construction of 

the local model associated with a weld detail. To choose these parameters, their influence on the stiffness must be studied. For this 
purpose, the relative stiffness difference eK

γ has been calculated for the different weld details for values of L1 and L2 ranging from 2 to 
24 mm. The maximum stiffness difference is obtained for the T joint structure when loaded along the ez direction. However, the 
stiffness difference is only 0.68%, which is negligible for most practical applications. This also indicates that the L1 and L2 parameters 
have little influence on the evaluation of the stiffness of a weld detail. 

3.1.2. Comparison with some other models 
To evaluate the stiffness of a weld detail, Fayard [15] and Turlier et al. [7] proposed approaches based on shell elements. For 

illustration purposes, the results obtained with the present approach are compared to those of Fayard [15] and Turlier et al. [7] as well 
as to the reference results for the different welded structures. The L1 and L2 have been fixed to 4 and 6 mm for the present approach. For 
the application of the Fayard [15] and Turlier et al. [7] approaches, the welded structures are meshed with first-order quadrilateral 
shell elements. RBE2 and RBE2-RBE3 elements are also used for the consideration of kinematic equations. For each welded structure, 
the total number of degrees of freedom used is similar for the different approaches. The NX NASTRAN software has been used for the 
application of the finite element method. The relative stiffness difference is plotted in Fig. 8 for the different configurations. 

For most of the investigated situations, the proposed approach provides the most accurate estimation of the stiffness. There are a 
few situations for which the Fayard [15] and Turlier et al. [7] provide some better estimations, but the maximum relative error with 
respect to the stiffness is eK

ex
≈ 0.68% (for the gusset structure loaded along the ex direction, see Fig. 8b). The difference between the 

Fayard [15] approach and the reference model is up to eK
ez
≈ 14.8% for the lap joint structure, and although the Turlier et al. [7] 

approach generally provides reasonable estimates of the stiffness, a maximum error of eK
ey
= 8.0% is obtained for the lap joint structure. 

These results highlight the limits of the strategies used by Fayard [15] and Turlier et al. [7], which fail to provide accurate estimate of 
the global stiffness behaviour in certain situations, even though this aspect is critical for the correct evaluation of the stress field history 
in a welded structure. 

3.2. Local stress state 

To evaluate the ability of the proposed approach to correctly estimate the fatigue resistance, a non-local fatigue criterion is 
calculated. It is then compared to the reference results obtained from finite element simulations with only solid elements. In the 
following, the Dang Van [4] fatigue criterion is used. According to Fayard et al. [3] and Callens and Bignonnet [31], this criterion [4] 
can take into account the stress multiaxiality in welded structures. The criterion uses the maximum shear stress amplitude τa and the 
hydrostatic stress p. For a material point, this criterion takes the following form: 

σeq(x) = max
n

(

max
t
(τa(x, n, t) + αp(x, t))

)

⩽β (17)  

where α and β are material parameters. In its non-local form, the radius ρ of the integration sphere is an additional parameter for the 
calculation of Σeq, defined by Eq. (15). Then, a stress triaxiality ratio can be expressed from the non-local Dang Van criterion quantities: 

ηγ =
Pγ

2Tγ
(18)  

where Pγ is the maximum value of the non-local hydrostatic stress and Tγ is the maximum value of the non-local shear stress for a load 
in the γ direction. For reference loading cases, the value taken by the triaxiality stress ratio are:  

• ηγ = 0: full shear stress state
• ηγ = 0.33: uniaxial stress state
• ηγ = 0.66: equibiaxial stress state

Considering an integration sphere radius of 0.4 mm [32], the degree of triaxiality of the reference models of the three welded



structures studied loaded in the ex direction is: ηex
= 0.50 for the T joint; ηex

= 0.56 for the gusset structure; ηex
= 0.47 for the lap joint. 

At the weld toes and weld root, the local stress state is multiaxial (ηex
> 0.33) and the degree of triaxiality is different on the three 

configurations considered. 
For the purpose of comparison, the maximum Dang Van stress Σmax,γ resulting from the application of a unit load along the γ di

rection (with γ = ex, ey or ez) has been calculated according to: 

Fig. 9. Evolution of the relative error indicator eΣ
γ as a function of the L1 geometrical parameter. Three different welded structures are considered: T- 

shaped joint (a), gusset (b) and lap joint (c). Three different loading directions are investigated: ex, ey and ez. 
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Σmax,γ = max
x

(
Σeq(x)

)
(19)  

To evaluate the relative error with respect to the reference solution, the following indicator eΣ
γ is used: 

eΣ
γ =

⃒
⃒
⃒Σr

max,γ − Σmax,γ

⃒
⃒
⃒

Σr
max,γ

(20)  

where Σr
max,γis the maximum value of the non-local Dang Van criterion obtained from the reference model while Σmax,γ is the value 

Fig. 10. Evolution of the relative error indicator eΣ
γ as a function of the radius of the integration sphere ρ. Three different welded structures are 

considered: T- shaped joint (a), gusset (b) and lap joint (c), for three different loading directions: ex, ey and ez. 

                                            



calculated from the proposed approach. 

3.2.1. Influence of the L1 and L2 parameters 
To evaluate the impact of the L1 and L2 geometrical parameters on the maximum non-local Dang Van stress, the parameters α and ρ 

must be fixed. Following the suggestion by Fayard et al. [3], a value of 0.33 is used for α. Also, according to Neuber, as cited by 
Kaffenberger and Vormwald [32], the radius ρ of the integration volume should be set to 0.4 mm.The influence of both parameters α 
and ρ on the maximum non-local Dang Van stress is discussed in the next sections. The distribution of the relative error eΣ

γ as a function 
of L1 is shown in Fig. 9 for the different welded structures presented in Fig. 7. To calculate the relative error indicator, the L1 parameter 
has been varied from 2 to 24 mm. It is seen that for all the structures and loading directions, the maximum errors are observed for the 
minimum value of L1. These results are consistent with the fact that, close to the weld toe, the assumption of a plane stress state is 
incorrect (Section 3.2). It can also be seen that the relative error indicator is inferior to 1% when L1 exceeds 6 mm, which is the size of 
the weld throat. When varying the L2 parameter from 2 to 24 mm, the relative error eΣ

γ is almost constant and always inferior to 0.1%. It 
can therefore be concluded that the L2 parameter has little influence on the accuracy of the proposed method. 

3.2.2. Influence of the α parameter 
The α parameter, which appears in the definition of the Dang Van criterion, characterizes the sensitivity of a material point to 

hydrostatic stress. To check whether the proposed approach is valid for any value of this parameter, the relative error has been 
calculated for the different structures and different loading directions for α ranging from 0 to 0.5. For these calculations, the L1 
parameter has been fixed to 6 mm while the L2 parameter is fixed equal to 4 mm as before. According to the results, the relative error 
indicator eΣ

γ is inferior to 1%, whatever the value of α. This indicates that the proposed approach can be applied to materials with either 
low or high sensitivity to the hydrostatic stress. 

3.2.3. Influence of the ρ parameter 
To investigate the influence of ρ, the radius the integration sphere, this parameter has been varied from 0 to 1 mm. The L1 and L2 

parameters are fixed to 6 mm and 4 mm respectively, while a value of 0.33 is chosen for α. The relative error eΣ
γ is plotted in Fig. 10 for 

the different welded structures and loading cases considered here. The error is generally higher for small integration volumes (for ρ⩽ 
0.1 mm, eΣ

γ ⩾2% for most of the studied cases), for which mesh sensitivity is higher. The proposed approach therefore makes it possible 
to circumvent the issues associated with mesh sensitivity, as long as the radius ρ of the integration sphere is greater than the element 
size in the stress concentration zones. 

3.3. Conclusion 

In this work, an approach based on a two-scale (global–local) model for the fatigue design of large welded structures has been 
proposed. The objectives are (i) to correctly estimate the stiffness behaviour of welded structures; (ii) to evaluate the local stress field at 
the weld toes and the weld roots of the different weld configurations found in a chassis structure with limited computational cost; (iii) 
to apply a non-local multiaxial fatigue criterion to take into account stress gradients and stress multiaxiality in the fatigue design of 
welded structures. 

Local models are first modelled with solid and shell elements. A condensation procedure is applied to obtain the equivalent stiffness 
matrix associated with each local model. The global model of a welded structure is then built from shell elements while welded 
connections are replaced by the corresponding equivalent stiffness matrices. After the global computation, a restitution step provides 
the local stress field in the welded areas, which is used to compute a multiaxial non-local fatigue criterion. The strategy proposed is 
adapted to large welded structures for a computation time similar to that of a full shell element model. 

The influence of the geometrical parameters of the model and the parameters of the fatigue criterion has been studied for three 
different welded structures for different loading cases. The proposed approach provides accurate estimates of the stiffness of the 
welded structures without any dependency on geometrical parameters in comparison with full solid element models (less than 0.68%). 
Also, the Dang Van criterion has been used in a non-local form to evaluate the ability of the proposed method to correctly estimate the 
stress field. When compared to its applications on full 3D finite element models, the proposed method provide correct estimates of the 
non-local criterion if (i) the integration volume is large enough (ρ⩾0.2mm) and (ii) the solid/shell element interface is far enough from 
the weld toe (6 mm). 

Future work will consist of carrying out fatigue tests on different welded structures to identify the fatigue criterion parameters and 
to validate the fatigue prediction of the proposed model. 
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