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It is well known that a particle put into an ultrasonic standing wave tends to move towards an equilib-
rium position, where the acoustic pressure-induced force on its surface compensates the particle weight.
We demonstrate, by means of a full three-dimensional numerical analysis and a thorough experimental
study, that the acoustic force, and thus the particle’s behavior, critically depends on its size. While par-
ticles within certain size ranges, including those smaller than half the wavelength, are trapped on axis
around the pressure nodes, particles in other size ranges are trapped off axis nearby the pressure antinodes.
This behavior, related with sign inversions of the radiation force, implies that the magnitude of the force,
and thus the trapping stiffness, can be maximum or null for some specific sizes. As a case of study, we
analyze expanded polystyrene particles levitated in air with an ultrasonic frequency of 40 kHz, a relevant
system due to recent applications for the development of volumetric displays. Yet, our results illustrate a
general behavior of radiation-based traps with structured wave fields.

DOI: 10.1103/PhysRevApplied.18.034026

I. INTRODUCTION

The idea of using acoustic waves for positioning mat-
ter by virtue of hydrodynamical forces dates back to
the 19th century, with the experimental work by Kundt
with standing sound waves in a resonant tube [1]. A lit-
tle after, Lord Rayleigh set the basis for the study of
scattering of sound waves by small balls in Volume II
of his famous “Theory of sound” [2], which in turn
would provide solid theoretical grounds for King’s study
on the acoustic radiation force in 1934 [3]. However, it
has been Gor’kov’s approach for the calculation of this
force on an object much smaller than the wavelength
in an ideal fluid, which has prevailed overtime due to
its elegance and simplicity [4], but also because of its
great success in predicting experimental observations [5].
According to Gor’kov, the potential of the conservative
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acoustic force is proportional to the mean-square fluctu-
ations of the pressure and particle velocity of the wave
at the point where the particle is located [4]. In air,
the result is that small particles are attracted towards
the regions with the lowest time-averaged acoustic pres-
sure and the highest particle velocity [6,7]. In a standing
wave, these two conditions are simultaneously satisfied
at the pressure nodes. This is why the earliest acous-
tic levitation devices were designed using single-axis
standing-wave configurations, with the aim of position-
ing matter in space first and then in terrestrial laboratories
[8–10].

As ultrasonic transducers and the design of resonant
cavities have improved, the technique of acoustic levita-
tion in midair has risen as a major tool for containerless
analysis and processing of materials [11–19]. For example,
by using a high-power Langevin transducer and a concave
reflector with appropriate geometrical parameters [20], the
magnitude of the acoustic forces can be enhanced to lev-
itate the heaviest solids and liquids in air [21]. Also, by
controlling the standing acoustic wave in space and time,
samples can be brought in contact to initiate chemical reac-
tions [22] or the agglomeration and growth of ice particles
can be achieved [23].
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Experimentally, acoustic trapping and levitation has
undergone a renaissance over the last decade, due to
a different technical approach: the high-power trans-
ducer was replaced by phased arrays of low-power ultra-
sonic emitters, whose main advantage is to allow the
dynamic reconfiguration of the acoustic field [5,22,24].
This concept expanded the capabilities of acoustic traps,
making it possible to control the motion of objects along
one or two dimensions by using either a single phased
array and a reflector [22] or pairs of confronted phased
arrays along orthogonal axes [24,25]. Phased arrays also
led to the development of dynamic acoustic holography,
which increased the manipulation volume and avoided the
multiple-axes configurations [26,27]. Indeed, holographic
elements produced by electronically controlling the phase
of each emitter have allowed rotation and translation of
particles along complex three-dimensional (3D) trajecto-
ries using a single-sided array. Of note, all these airborne
manipulation techniques rely on the appropriate structur-
ing of the acoustic field to generate pressure nodes in 3D,
where the particles can be trapped.

Despite the widespread use of standing waves for levi-
tation, little is still known on the levitation stability when
the particle size is comparable to, or larger than, the driv-
ing wavelength. One possible reason for this gap is that
the modeling of the radiation force is not straightforward.
Gor’kov’s acoustic potential approach is valid for particle
sizes roughly below D/λ ∼ 0.1, where D is the parti-
cle diameter and λ the wavelength, and this limit may
depend on the physical properties of the particle (den-
sity and compressibility). On this scale, fluctuations of
the pressure field and of its first-order gradient (veloc-
ity field) are sufficient to describe the forced dynamics of
the particle and higher-order spatial fluctuations can be
safely ignored. However, size effects for larger particles
are expected, including shape oscillations and conditions
of resonance, which should greatly modify the dynamics of
a levitated particle. Another possible reason is that, exper-
imentally, the generation of a resonant standing wave in
the presence of a large scattering particle is not always
feasible. Indeed, in the common single-axis configuration
comprising a source and a perfect reflector, the pres-
ence of the particle obstructs the emitted field that would
otherwise reach the reflector, making it hard to attain a
resonance of the cavity. Understanding this regime is use-
ful to trap larger objects with acoustic waves and could
enable precise measurements of mechanical properties of
the levitated objects [28].

In fact, considerable efforts have been invested in
exploring the upper limits of the size of the objects that
can be trapped or manipulated in air with acoustic waves.
For example, near-field strategies for levitation at a height
h, much smaller than the wavelength λ, have been imple-
mented to hold and move large and heavy objects with a

planar geometry by using the flexural waves excited along
a vibrating plate [29]. Another approach for short-distance
levitation has been to generate standing waves between the
sound radiator and the object, implemented so far in pla-
nar geometry as well [30] and for a big sphere suspended
by a tripodlike arrange of transducers [31]. Regarding
schemes relying on phased arrays, a technique based on the
generation of sequences of short-pulsed acoustic vortices
with helicity of equal magnitude but opposite chirality
was introduced in 2018, such that the angular-momentum
transfer can be tuned while a particle of the order of the
wavelength can be trapped in three dimensions at the cen-
tral pressure node of the focused time-averaged vortex. As
the size of the node increases with the topological charge,
so does the maximum size of the particles that can be sta-
bly trapped at distances of several wavelengths from the
transducers [32]. More recently, a numerical design tech-
nique, named “boundary hologram method,” was imple-
mented [33]. In this case, the drive of the phased array is
numerically optimized to yield a static levitation field that
stabilizes the body’s position and rotation for macroscopic
nonspherical rigid bodies larger than the sound wave-
length. Again, this method yields a low-pressure trapping
volume, circumvented by high acoustic intensity regions,
and adapted to the geometry of the object. Nevertheless,
the field optimization approach is not able to adapt to
changes in particle size or material properties, which calls
for a better understanding of the trapping dynamics of large
objects in levitation fields.

In this work, we present a full three-dimensional anal-
ysis of the acoustic radiation forces exerted on particles
with size comparable to the wavelength in a standing-
wave levitation device in air. For this purpose, we use
the theoretical model developed in Ref. [34], based on
the generalized Lorenz-Mie theory (GLMT), well estab-
lished in optics. Our results show that for this size regime,
the force exhibits sign inversions as a function of particle
size, which implies that some particles will stably levi-
tate at the highest average-pressure regions of a standing
wave, in clear contrast with previous work establishing the
stable equilibrium position of smaller particles near acous-
tic pressure nodes. Detecting this variation of the force
is only possible by using a model valid beyond the size
range in which the force is obtained as the gradient of an
acoustic potential [4]. We also show that there is an opti-
mum particle size for which the acoustical trapping force
is maximum for a given frequency. Regarding the trans-
verse forces in the case of a focused single-axis levitator,
we reveal that particles levitating at the pressure antinodes
find a transverse equilibrium off axis. We experimentally
demonstrate our numerical observations and, moreover, we
directly visualize the acoustic waves and the particle’s rel-
ative position with respect to the pressure field by using
schlieren imaging [35].
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II. STANDING-WAVE ACOUSTIC LEVITATION
BEYOND THE SMALL-PARTICLE

APPROXIMATION

The generalized Lorenz-Mie theory for the calculation
of radiation forces, which is valid regardless of the parti-
cle size, position, and topology of the incident wave front,
was introduced in optics in 1988 [36] and recently success-
fully developed in acoustics [34,37–39]. The theoretical
framework described in Ref. [34] has been experimentally
validated in the context of the acoustic manipulation of
solid particles and bubbles in liquids using single-beam
acoustic traps [40,41]. The analysis is based on the scat-
tering of an arbitrary acoustic field by an elastic spherical
particle, which is allowed to be arbitrarily located in an
inviscid fluid.

In brief, following the procedure described in detail in
Ref. [34], the monochromatic incident field is expanded in
a set of spherical harmonics in the basis centered on the
particle (r, θ , ϕ):

φi = φ0e−iωt
∞∑

n=0

n∑

m=−n

Am
n jn(kr)Ym

n (θ , ϕ), (1)

where φi is the complex acoustic velocity potential
related to the complex acoustic pressure change as p =
−ρm∂φ/∂t, with ρm being the external medium density,
ω = 2π f the angular frequency, f the frequency, k = ω/c
the wave number, and c the speed of sound in the medium.
jn represent the spherical Bessel functions of the first kind
and Ym

n = Pm
n (cos θ)eimϕ are complex spherical harmon-

ics formed with the associated Legendre functions, Pm
n .

To describe the incident ultrasonic standing field gener-
ated by two counterpropagating beams, either plane or
focused wave fronts, the beam-shape coefficients Am

n in
Eq. (1) are obtained as the superposition of a subset of
two fields, Am

n = am
n + ãm

n . The first set of coefficients is
obtained using spherical functions that involve the acous-
tic frequency, the transducer’s radius of curvature (in the
case of focused beams) and aperture size [38]. The second
set ãm

n describes the counterpropagating beam and can be
obtained by applying rotation relations for spherical har-
monics to am

n , using a rotation matrix with angle π about
the y axis [34]. By using the semianalytical formulation
of Ref. [38], we suppose each beam is generated by a
concave and baffled aperture, and freely propagates in a
semi-infinite free space. Therefore, we neglect the reflec-
tions that arise when each beam interacts with the opposite
surface. The good agreement between the experimental
and modeled fields presented later in this work confirm this
is a reasonable assumption in our configuration.

The interaction of the incident field with the trapped par-
ticle is obtained by computing the scattered field in the

same spherical basis:

φs = φ0e−iωt
∞∑

n=0

n∑

m=−n

RnAm
n h(1)

n (kr)Ym
n (θ , ϕ), (2)

where h(1)
n is the spherical Hankel function of the first kind

and the expression of the scattering coefficients, Rn, are
well established for elastic particles, and depend on the
mechanical properties of the particle and the surrounding
fluid (see, e.g., Refs. [34,37]). The initial beam-shape coef-
ficients, Am

n , describe the configuration where the sphere is
located on axis at the coincident center of curvature of both
concave surfaces [34,38]. The position of the particle rel-
ative to this position in the incident field (x, y, z) can be
changed by applying rotation and translation relations to
these coefficients. Following Ref. [34], the radiation force
components acting on the center of the particle, Fx, Fy , and
Fz, are computed from the total acoustic field [sum of Eqs.
(1) and (2)] and are functions of the vertical position z of
the particle and its transverse position, (x, y). The force
components involve infinite series (truncated numerically)
of the beam shape and scattering coefficients. Noteworthy,
the first two terms of these series, n = 0 and n = 1, corre-
sponding to the monopolar and dipolar contribution to the
acoustic force, reduce to Gor’kov’s popular expression of
the so-called gradient force in the limit of small particles
relative to the wavelength [4,40].

Here we analyze the acoustic force per Pa2, fz =
Fz Pa−2, and fx = Fx Pa−2, exerted on an expanded
polystyrene (EPS) particle (of density ρp = 13.8 kg m−3)
in air (ρm = 1.2 kg m−3) by an ultrasound field with a
frequency of 40 kHz. Compression and transverse acous-
tic wave velocity in the particle are cl = 900 m s−1 and
ct = 700 m s−1, respectively, while c = 343 m s−1 is the
speed of sound in air.

First, we consider the ideal case of a plane standing
wave, where no transverse forces are expected. Figure 1(a)
presents a comparison of the maximum axial force fz, cal-
culated at a fixed z plane (z = 0.125λ), using Gor’kov’s
approximation (black dotted line) and the GLMT (red
dashed line) as a function of the parameter D/λ, with D
being the particle diameter and λ the wavelength of the
acoustic field. It is seen from the close up in the inset
that both calculations coincide well for D <∼ 0.15λ. How-
ever, according to Gor’kov’s approximation, the maximum
force keeps growing as the particle size increases, while
the GLMT gives rise to an optimum value of the force for
D � 0.4λ, then the force decreases and becomes null for
D � 0.6λ before a sign inversion. This is of note, since the
magnitude of the force is related with the trapping stiffness.

In order to interpret the sign inversions of the force, a
full force map is presented in Fig. 1(b) as a function of D/λ

and the position z/λ along the levitator axis. As a refer-
ence, the pressure-field amplitude is illustrated on the right.
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(a)

(b)

FIG. 1. Acoustic radiation force in a plane standing wave. (a)
Axial radiation force per Pa2, fz , exerted by a plane standing
acoustic wave on an EPS spherical particle of diameter D sus-
pended in air as a function of the parameter D/λ; the particle
is located at z = 0.125λ, considering that z = 0 corresponds to
a pressure antinode. The black dotted line represents Gor’kov’s
approximation, while the red dashed line shows the results for the
GLMT. Inset: close up of the square-enclosed region. (b) Map
of fz as a function of particle size (D/λ) and position z/λ. The
red dashed line corresponds to the plot in (a). On the right, the
absolute value of the normalized pressure field is illustrated as a
reference; the dark (blue) color corresponds to the nodes.

The horizontal red dashed line corresponds to the cross
section plotted in Fig. 1(a). The map shows a set of ver-
tical bands through which the axial force is quasiperiodic,
alternating between positive (bright) and negative (dark)
values for a given particle size. Each band corresponds
to a different behavior regime, where the force distribu-
tion is out of phase with respect to its neighbors. Stable
equilibrium points along the z axis for a given value of

D/λ occur at the zero crossings from a positive to a nega-
tive region. Therefore, while particles with D <∼ 0.6λ and
∼ 0.95 < D/λ <∼ 1.25 find stable equilibrium positions
at the pressure nodes, particles with ∼ 0.6 < D/λ <∼
0.95 experience stable equilibrium at the pressure antin-
odes. This contrasting behavior was investigated in two
previous one-dimensional theoretical studies, one for solid
particles in liquid [42] and the other for two liquid particles
in air whose sizes differ in one order of magnitude [39].
This effect has several unnoticed implications. Observe,
for instance, that the particles whose size lies in between
the bands cannot be trapped in a standing plane wave,
since the force vanishes everywhere along the z axis. The
sign inversions and the vanishing force can be attributed
to the contribution of the higher-order multipoles to the
total change in the momentum flux, caused by the interac-
tion between the particle and the acoustic field. Indeed, the
higher multipole terms become relevant for large particles,
and seem to give rise to equal contributions to the radi-
ation stresses applied on the upper and lower surfaces of
the sphere [43]. Finally, we also observe that particles with
D >∼ 1.25λ exhibit a different behavior, where the force
magnitude grows abruptly before and after a sign inver-
sion around specific values of D/λ, which correspond to
mechanical resonances of the particle [44,45]. Hereafter,
we use the term size effect to refer to the magnitude and
sign dependence of the acoustic radiation force on the size
of the particle.

It is worthwhile to remark that the radiation force map in
terms of (D/λ, z/λ) for a plane standing wave is identical
regardless of the specific frequency of the acoustic field,
which means that we can always find optimum particle
sizes to maximize the acoustic force magnitude at a given
frequency and vice versa. For example, the first optimum
value of the force (maximum trapping stiffness) for levita-
tion nearby the nodes is achieved when D ∼ 0.40λ, which
corresponds to diameters of 3.4 and 4.9 mm for frequencies
of 40 and 28 kHz, respectively. As the magnitude of the
radiation force scales with the acoustic energy density [34],
the vibration amplitude of the transducers could always
be adjusted (in principle, not necessarily in practice) to
counteract the weight of a given particle. However, Fig. 1
suggests that considerably lower pressure levels would be
required for levitating a particle whose size corresponds to
an optimum magnitude of the force [maxima and minimum
at Fig. 1(a)]. This result might be of considerable practi-
cal interest for the development of 3D display technology
using EPS spheres in air [25,46]. Yet, a full dynamical
analysis, taking into account the weight and viscous drag,
would be required to determine optimum trapping condi-
tions for a particle that is rapidly moving in air, as well as
additional mechanical effects due to the fast acoustic field
reconfiguration.

Now we consider a focused single-axis standing-wave
acoustic levitator in a symmetric concentric configuration
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(a) (b) (c)

(d) (e)

FIG. 2. Acoustic forces acting upon a particle within a single-axis symmetric concentric levitator. (a) z component of the force
per Pa2, fz , as a function of particle size (D/λ) and position z/λ, when (x, y) = (0, 0) (on axis). (b),(c) show the x component of
the transverse force fx vs D/λ and x/λ, calculated at the transverse planes z = 0.28λ (pressure node of the focused field) and z = 0
(pressure antinode), respectively. (d) Top: axial force fz as a function of z/λ for particles of different sizes located on axis. (d) Bottom:
fx vs x/λ for particles of sizes D = 0.40λ located at the pressure node (z = 0.28λ) and D = 0.82λ located at the pressure antinode
(z = 0). Gray line in both plots represents the acoustic pressure magnitude as a reference. (e) In the background, pressure amplitude
and radiation force field (red arrows) for particles with diameters of 0.40λ (top row) and 0.82λ (bottom row) at the plane y = 0. In the
left column, both particles are illustrated in unstable equilibrium positions. In the central column, black arrows indicate the direction
of the net force acting on each particle at this location (not in scale). In the right column, particles have reached stable equilibrium
positions.

based on the TinyLev design [27], i.e., with an upper and
lower concave spherical caps with equal radii of curvature
Rc separated by a distance L ∼ 2Rc, which corresponds
to our experimental device. The curvature of the sources
plays a role in the particle positioning. Pressure gradients
due to the focusing of the field make the particle expe-
rience forces in the transverse direction (x-y plane), but
also modify the axial force, as can be appreciated from
Fig. 2(a), showing fz vs (D/λ, z/λ). In comparison with
Fig. 1(b), the magnitude of the force lowers in the second
vertical band, whereas the third band is more affected
by the pressure gradient and wave-front curvature aris-
ing from the focusing of the field. Namely, for particles

with D >∼ λ there is an increase of the axial force mag-
nitude outward from z = 0, being positive for z > 0 and
negative for z < 0. This is presumably due to the envelope
pressure gradient having a maximum at the focal point at
z = 0; the larger the particle, the more sensitive it becomes
to the effect of this long-range gradient. In contrast, small
particles respond basically to short-range gradients due to
the standing wave and are not sensitive to the wave-front
curvature.

The axial force along z/λ for different particle sizes
can be better appreciated from the top plot of Fig. 2(d),
showing fz along the vertical lines represented in (a), where
stable equilibrium points correspond to zero crossings with

034026-5



JHON F. PAZOS OSPINA et al. PHYS. REV. APPLIED 18, 034026 (2022)

negative slope. The profile of the acoustic pressure ampli-
tude is also illustrated (gray dotted line) as a reference.
Clearly, the smaller particle (D = 0.4λ, dash-dotted curve)
has stable equilibrium points at the pressure nodes, while
the larger particle (D = 0.82λ, dashed curve) has stable
equilibrium at the pressure antinodes. Here we can also
see that, in comparison, the force is very weak for a par-
ticle with diameter D = 0.67λ (red solid curve), although
not null, due to the wave-front curvature.

To determine whether a particle can indeed be trapped
or not, it is necessary to simultaneously analyze the trans-
verse acoustic force at the z planes where it exhibits axial
stable equilibrium. Namely, the x component of the force
per Pa2, fx, as a function of D/λ and the transverse posi-
tion x/λ is presented in Figs. 2(b) and 2(c) at the planes
z = 0.28λ (pressure node for the focused field) and z = 0
(pressure antinode), respectively. From Fig. 2(b) we can
see that a particle with D = 0.4λ has a stable equilib-
rium point at x = 0, hence it can be trapped on axis
at the pressure node. The same behavior is expected to
occur at the neighbor nodes, upwards and downwards. On
the other hand, Fig. 2(c) indicates that the particle with
D = 0.82λ does not exhibit stable equilibrium on axis,
but at x ≈ ±0.52λ, where the transition from a bright to
a dark region in the force map is located. This is more
clearly appreciated at the bottom plot of Fig. 2(d), show-
ing the normalized transverse force for the two particle
sizes illustrated in the vertical lines of Figs. 2(b) and 2(c)
at the pressure node and antinode, respectively. Notewor-
thy, the system has rotational symmetry around the z axis,
which means that the off-axis equilibrium points for the
larger particle correspond to a circumference of radius
ρ =

√
x2 + y2 ≈ 0.52λ, where the particle is free to move

around in the angular direction (see Fig. 3). As the particle
size increases, its surface becomes sensitive to the curva-
ture of the impinging wave fronts. Therefore, there seems
to be a curvature-driven unbalance of the radiation stress
acting on the surface of the sphere, which results in the
off-axis equilibrium.

Recapping, while small particles can be levitated on axis
near the pressure nodes, larger particles would be trapped
off axis near the pressure antinodes. This is graphically
summarized in Fig. 2(e): the left column shows an unsta-
ble equilibrium position for both particles, in the central
column the black arrow illustrates the net force direction
(not in scale) and motion trend when the particle is located
midway between the node and the antinode, and the right
column shows the stable trapping position for both parti-
cles. The total pressure field (incident + scattered) and the
vector force field (red arrows) are included in the back-
ground. The vector field represents the net force acting
on a particle whose center is located at the position of
each arrow onset. The standing-wave distribution may be
significantly modified by the scattered field, depending
on the particle size and position, as it is apparent in the

(a) (b)

FIG. 3. Radial component of the acoustic radiation force, fρ , in
the transverse plane for (a) the particle of D = 0.40λ located at
z = 0.28λ and (b) the particle of D = 0.82λ at z = 0. Red arrows
indicate the vector force field acting on the particle at each posi-
tion. Stable equilibrium is achieved where the arrows converge;
the center in (a) and the dotted black circle in (b).

bottom-right image of Fig. 2(e). This also impacts the
distribution of the radiation stress on the surface of the
sphere.

III. SIZE EFFECT: EXPERIMENTAL
OBSERVATION

A. Experimental setup

In order to verify our theoretical results, we conduct a
series of experiments using a single-axis symmetric con-
centric levitator [see Fig. 4(a)]. It consists of two concave
spherical caps made of aluminum, with a radius of curva-
ture of 60 mm, each one holding an array of 36 individual
emitters (MSO-A1040H07T, Manorshi) distributed around
in three concentric rings formed by 6, 12, and 18 trans-
ducers. The resultant radiating surface has a radius of
curvature of 55 mm [35]. The operation frequency is 40
kHz in air and either a square or a sinusoidal continuous
excitation signal is applied. The emitters are selected to
have similar sensitivity and phase [27].

For demonstrating the size effect, we use spherical EPS
particles with diameters in the range 1 mm < D < 8 mm
(0.12λ − 0.95λ). As the density of the EPS may vary over
a wide range, we determine it from the direct measurement
of the weight and diameter of the particle, giving ρp =
(13.8 ± 0.33) kg m−3. To observe and quantify the loca-
tion of the levitated spheres within the ultrasonic standing
wave, the pressure field is simultaneously characterized
with two different methods. On the one hand, the acous-
tic pressure distribution is directly measured by using a
calibrated microphone and a linear translation stage. On
the other hand, a schlieren imaging system [47] is used
to directly observe the acoustic waves and the relative
position of the particles within the field.

Although, in principle, the distance between the two
spherical caps in a concentric levitator would be L = 2Rc,

034026-6



PARTICLE-SIZE EFFECT IN AIRBORNE. . . PHYS. REV. APPLIED 18, 034026 (2022)

(a) (b) (c)

(d)

FIG. 4. Characterization of the acoustic pressure field. (a) Experimental setup for the generation and characterization of the standing
wave, consisting of a symmetric concentric levitator, a 1/8” calibrated microphone attached to an XZ translation stage, an arbi-
trary signal generator and a data-acquisition system (DAQ). (b) Comparison between the experimentally measured and the simulated
pressure-field distribution. (c) Experimental and simulated profiles of the normalized pressure along the acoustic axis. (d) Experimental
measurement of the levitator sensitivity (maximum pressure amplitude P0 against driving voltage Vd).

in practice it is necessary to adjust it to match a longi-
tudinal mode of the cavity, so that the largest pressure
gradients are achieved and the acoustic radiation forces
optimized. For this purpose, one of the spherical surfaces is
attached to a linear micrometric translation stage oriented
along the Z axis. The cavity length is fixed to a distance
where the contrast of the standing wave in the schlieren
images is maximized while the electric current consump-
tion is minimized, as reported elsewhere [35]. With this
adjustment procedure, we set L = 115 mm along the main
axis. In addition, small tilt deviations between the spherical
caps are corrected by coupling one of them to a mechan-
ical gimbal mount, whereas the other is attached to an
XY translation stage to correct lateral misalignments. Of
note, optimum alignment of the cavity and adjustment of
its length are crucial to achieve the levitation of the larger
spheres at the antinodes.

The acoustic pressure amplitude is characterized by
using a calibrated microphone (1/8 inch, type 4138 Brüel
& Kjær) attached to an XZ translation unit, as illustrated in
Fig. 4(a). The microphone calibration is validated using a
sound pistonphone (type 4231 Brüel & Kjær). A compar-
ison between the experimentally measured (normalized)
acoustic pressure and the corresponding simulation is pre-
sented in Figs. 4(b) and 4(c), showing a very good agree-
ment. The field exhibits a homogeneous and symmetrical
distribution around the center of the working volume.

To measure the pressure field within the levitator, the
microphone is oriented perpendicularly to the field (90◦
incidence), thus it is necessary to experimentally deter-
mine a correction factor for the microphone sensitivity. To
achieve this goal, we first measure the acoustic pressure for
a single transducer, placing the microphone at a given dis-
tance in a collinear configuration (0◦ incidence). Then we
repeat the measurements by reorienting the microphone in
a 90◦-incidence configuration, under otherwise equal con-
ditions. A correction factor of 0.53 at 40 kHz is determined
by comparing both measurements.

After the calibration procedure, we determine the levi-
tator sensitivity, i.e., the maximum acoustic pressure as a
function of the driving voltage P0(Vd). For this purpose,
we place the microphone tip at the absolute maximum of
the pressure field P0 within the levitator, found with an XZ
translation stage, and proceed to vary the operation voltage
Vd. The results for the acoustic pressure against the driv-
ing voltage are calculated from the spectral analysis of the
excitation and response signals at 40 kHz, in consistency
with the theoretical calculations of the radiation force. We
find that the data for P0(Vd) at 40 kHz starts departing
from a linear behavior as Vd increases [see Fig. 4(d)]. This
is mainly attributed to the unwanted excitation of higher
harmonic frequencies (harmonic distortion) in the input
signal. Further research is required for the study of the lev-
itator performance at high-pressure operation. The values

034026-7



JHON F. PAZOS OSPINA et al. PHYS. REV. APPLIED 18, 034026 (2022)

of the pressure at arbitrary driving voltages are obtained
by simple interpolation from the experimental data in Fig.
4(d). It is worth mentioning that reflections from the spher-
ical caps can become non-negligible. This explains the
relevance of optimizing the cavity length, so as the multi-
ple reflections increase only the effective value of P0(Vd),
without a significant spatial distortion of the field.

Schlieren system. We use a single-mirror schlieren con-
figuration [47] to visualize the acoustic waves. It consists
of a pointlike light source, a spherical mirror with a focal
length f = 1.5 m, a commercial razor blade, and a digital
single-lens reflex camera (6D, Canon) coupled to a tele-
photo lens (EF 100–400 mm, Canon). The spherical mirror
is placed behind the levitating assembly, at a distance 2f
from the source along its optical axis. To produce the
pointlike-source, the light from a white LED is coupled
to a 50-μm-diameter pinhole by means of a lens (25.4-mm
focal length) and a fiber optic bundle. In this configuration,
the diverging light from the pinhole illuminates the mirror
and is back reflected to focus onto the pinhole again, in the
absence of perturbations in the medium. To get access to
the image plane, a beam-splitter cube is placed in front of
the pinhole to deviate half of the light reflected from the
spherical mirror. To partially block the deviated light and
produce the schlieren effect, the razor blade is mounted on
a manual translation stage to finely adjust the knife edge
at the image point of the source. Light that is deflected by
the acoustic wave perturbations in the medium bypassed
the blade filter, reaching the camera. In this way, the local
variations of the air density are converted into distortions
of the collected light, forming the schlieren images. As

the light source has a continuous emission mode and the
images are obtained with an exposure time of 1 s, what
we actually image by schlieren deflectormetry is the time-
averaged pressure amplitude. In the camera we use an f
number of f /5, an ISO sensitivity of 800, and a focal length
of 248 mm.

B. Results

The experimental results shown in Fig. 5(a) correspond
to the normalized pressure amplitude measured along the
main axis in the absence of particles (red markers) and the
profile extracted from the schlieren image of the acoustic
field illustrated in Fig. 5(b) (blue line). There is a one-to-
one correspondence between the schlieren profile and the
pressure-field amplitude at the central region of the levita-
tor. The red dashed lines in Fig. 5(b) indicate the position
of the pressure antinodes. Although particles of different
sizes are levitated, Fig. 5(c) exhibits qualitative results
for two particles with diameters of D = 7.02 mm = 0.82λ

(top) and 2.30 mm = 0.27λ (bottom). In agreement with
our theoretical results, the large particle is levitated off
axis in the pressure antinode, while the small particle is
trapped on axis at the pressure node. An actual photo of
three levitated particles is shown in Fig. 5(d), where part
of the top and bottom arrays of transducers can be seen
as a reference and the inset displays the corresponding
schlieren image. As the two cameras captured different
perspectives of the same scene, the relative position of
the large sphere with respect to the small particles seems
shifted from one another, but it is clear that the large

(a) (b) (c) (d)

FIG. 5. Experimental results for the acoustic pressure field and the levitation of particles of different sizes. (a) Normalized amplitude
of the acoustic pressure measured in the absence of particles (red markers) and the profile along the z axis extracted from the schlieren
image of the acoustic field presented in (b) (blue line). The red lines in (b) indicate the location of the antinodes in accordance with
the pressure measurements. (c) Processed schlieren images including levitated particles with diameters D = 7.02 mm = 0.82λ (top)
and D = 2.30 mm = 0.27λ (bottom). (d) Photograph of three particles being simultaneously levitated. The inset shows a raw schlieren
image of the same scene from a different perspective.
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(a)

(b)

(c)

FIG. 6. Quantitative characterization of the axial radiation
force. (a) Schematic of the downward displacement of a levi-
tated particle as the driving voltage of the arrays of transducers
is decreased (from left to right), reducing the acoustic pressure
amplitude. (b) Measured displacement 
zexp of the particle with
D = 0.82λ as a function of the driving voltage Vd, with respect
to the value at Vd = 8.5 V. (c) Comparison between the exper-
imental (markers) and the theoretical (solid line) results for the
radiation force per Pa2, fz = Fz/P2

0 vs z/λ, where P0(Vd) is the
maximum pressure amplitude for a given driving voltage.

particle is off the principal axis of the levitator, which lies
along the line joining the two small particles. The col-
ormap of the schlieren pictures is directly correlated with

the time-averaged density gradients in the medium due to
the acoustic perturbation [35]. In Figs. 5(b) and 5(c) we
use false color image processing to enhance contrast; raw
schlieren images look as in the inset of Fig. 5(d).

Particles with diameters of approximately 0.67λ are also
tested for levitation. However, it is not possible to stably
trap them because this particle size approximately corre-
sponds to the transition zone in which sign inversion of
the axial force Fz takes place [see Fig. 2(a)]. Videos of
three different particles (D = 0.40λ, 0.67λ, 0.82λ) in the
levitator are included in the Supplementary Material [48].

Qualitatively, there is a positive correspondence
between the theoretical and experimental results. In addi-
tion, we perform a quantitative analysis of the axial radi-
ation force per Pa2. For this purpose, we characterize the
vertical displacement of the equilibrium position (
zexp)
of a levitated sphere as the acoustic pressure level is low-
ered by reducing the input driving voltage Vd of the arrays
of transducers, as schematically illustrated in Fig. 6(a).
This experiment is carried out with the sphere of diame-
ter D = 0.82λ, whose position is analyzed as a function
of time using a video-tracking algorithm. The vertical
displacement for each voltage, plotted in Fig. 6(b), is deter-
mined from the mean position with an associated standard
deviation. The maximum driving voltage at the operation
frequency (40 kHz) is Vd = 8.5 V, which set the reference
(zero) value for the displacement measurements. Notice,
however, that this point will never correspond to the max-
imum of the central antinode, z = 0, since the particle will
always shift downwards by a given distance due to its own
weight, regardless of the value of Vd. Indeed, at each equi-
librium position, the axial acoustic force Fz balances the
weight W of the particle, i.e., Fz = W, where Fz ∝ P2

0(Vd)

and P0(Vd) is obtained from the levitator sensitivity [Fig.
4(d)]. Therefore, we can plot the force per Pa2, fz = Fz/P2

0,
as a function of z, by taking fz = W/P2

0(Vd) for each point
of the graph 6(b). The experimental results for fz(z) are
depicted with markers in Fig. 6(c), where the correspond-
ing theoretical curve is also plotted (solid black line) for
comparison. We note that the measured displacement at the
lowest driving voltage (3.5 V), 
zexp = (−455 ± 9) μm,
practically coincide with the calculated value of the equi-
librium position for the corresponding pressure amplitude,
P0(3.5V) = 2.00 kPa, which gave zeq = −452 μm. This
allows us to presume that the shift between the actual posi-
tion z = 0 and the reference we take for the displacement
measurement is small enough to lie within the experimen-
tal uncertainty and could be neglected. This assumption led
to a very good quantitative agreement between the theo-
retical curve and the experimental results at lower driving
voltages [leftmost points in Fig. 6(c)]. Nevertheless, the
experimental results for higher driving voltages (rightmost
points) depart from the theoretical curve. This is due to a
nonlinear dependency between P0 and Vd arising when the
maximum pressure values reach over 3.50 kPa.
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IV. CONCLUSIONS AND OUTLOOK

Even though acoustic levitation in midair is nowadays
a well-established technique, most of the manipulation
strategies so far have relied on the generation and con-
trol of the acoustic pressure nodes or low-pressure trapping
volumes, assuming that these were the stable equilibrium
points for the radiation force. In this work, we demon-
strate that there are unnoticed aspects of this physical
phenomenon, showing that the size of the particle plays a
mayor role to determine its equilibrium positions within a
given acoustic field. Through simulations and experiments,
we are able to establish that particles with the same density
and sizes below approximately 0.6λ have stable equilib-
rium positions at the pressure nodes of a focused standing
wave, whereas particles with sizes between 0.6λ and 1.0λ

will be stably trapped nearby the antinodes and off axis, in
spite of the rotational symmetry of the field. Furthermore,
we demonstrate that particles whose sizes lie within cer-
tain ranges are minimally affected by the radiation force,
since it is either null all over the space, in the case of a
plane standing wave, or very weak, in the case of a focused
standing field. This has the largely overlooked implication
that levitation devices, operating at a fixed frequency, can
fail to levitate particles within specific size ranges.

The size effect can be interpreted in terms of the super-
position of multipole partial waves of the field scattered
by the particle, which contribute to the total change in
the radiation stress tensor [49]. The larger the particle, the
more preponderant the role of higher-order multipoles to
the scattered field, which interfere among each other and
with the incident field, producing a net force pulling the
particle either towards the pressure nodes, the antinodes
or, in fact, to produce no force at all. Mechanical reso-
nances will arise for particles larger than a wavelength,
but the acoustic pressure levels needed to counteract their
weight would be growing and nonlinear acoustic effects
may appear. The sign inversions of the acoustic force also
depend on the characteristics of the levitation device, such
as the degree of focusing of the ultrasonic field, which
induces additional pressure gradients and determines the
curvature of the wave fronts. Indeed, some of the observed
effects, like the off-axis trapping position, seem to be
curvature driven.

Understanding the size effect is fundamental for acous-
tic levitation applications. For instance, the shape of the
force maps as a function of the size parameter D/λ and
the space coordinates remains the same for plane standing
waves and it is very similar in the case of focused stand-
ing fields for different ultrasonic frequencies, for both axial
and transverse force components, implying that our discus-
sion about a maximum force magnitude (highest trapping
stiffness) for a given particle size as a fraction of the wave-
length has a more general validity. This fact could enhance
the performance of the nascent acoustic levitation-based
3D display technology [25,46,50], for example.

Finally, it is worthwhile to point out that the size effect is
not a particular feature of the standing-wave levitation trap,
although the experimental demonstration becomes very
neat by using this configuration. Certainly, any acoustic
field with a complex amplitude structure exhibiting alter-
nate regions of higher and lower average pressure could be
expected to interact differently with particles, depending
on their size and properties. Moreover, this phenomenon
is well known in optical traps in the presence of structured
light beams and complex optical potentials [51–53]. In that
sense, our results pave the way for a deeper understand-
ing of the physical phenomena behind noncontact radiation
traps, as well as for the sophistication of acoustic particle
manipulation applications.
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