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A B S T R A C T

This study investigates the double-diffusive natural convection of the non-Newtonian Casson fluid in a square 
cavity based on the original viscoplastic stress model without simplification. Therefore, yield stress plays an 
essential role in understanding fluid behavior. The finite element approach provided a numerical solution to 
continuity, momentum, energy, and species governing equations. The governing parameters for this problem are 
Rayleigh number, Ra, yield number, Y, buoyancy ratio number, Nr, and Lewis number, Le. The influence of these 
parameters on heat and mass transfer, the morphology of yielded/unyielded regions, and fluid flow are thor-
oughly examined. 

The results show that unyielded regions increase at high Rayleigh numbers, despite the increase in buoyancy 
force and consequently increased heat and mass transfer. On the other hand, as the buoyancy ratio drops, the 
flow’s strength and heat and mass transmission diminish, leading to an increase in plug regions. Accordingly, the 
mechanisms influencing the growth of unyielded regions are complex and follow different patterns. However, the 
plug regions always grow with increasing Y. The results indicate that increasing the Lewis number (mass 
transfer) reduces the effect of the buoyancy ratio on flow, heat transfer, and the unyielded regions in every case. 
Quantitative analysis of the results indicates that, while buoyancy ratio affects heat and mass transfer almost 
equally, the Lewis number increases mass transfer up to three times the heat transfer. Meanwhile, changing the 
buoyancy ratio can increase the maximum yield stress to 400%, while changing the Lewis number has a 
maximum effect of 20%.   

1. Introduction

Double-diffusive convection occurs as a result of thermal and solutal
buoyancy effects caused by temperature and concentration gradients. 
Several numerical and experimental investigations have been conducted 
on this problem since it has wide applications in industries and science. 
Some of the fundamental ideas and circumstances required for the 
development of double-diffusive convection were outlined by Turner [1] 
in one of the early investigations on the subject. Afterward, the motion 
of a fluid confined between two long horizontal planes and heated and 
salted from below was studied by Huppert and Moore [2]. They com-
bined perturbation analysis with a direct numerical solution of the 
governing equations. Linden and Shirtcliffe [3] provided a model of the 
diffusive interface in double-diffusive convection with a high Rayleigh 
number. Griffiths’ research [4] revealed that layered double-diffusive 
convection of a fluid within a porous material is a real possibility in 
some cases. Costa and Weisst [5] have used a simplified model of 
two-dimensional thermosolutal convection to study the transition 

between oscillatory and steady convection. Knobloch and Proctor [6] 
analyzed oscillation stability in a two-dimensional nonlinear 
double-diffusive system. A comprehensive overview of the basic con-
cepts and first analyses (numerical and laboratory) in this field was 
provided by Huppert and Turner [7]. 

The analysis of double-diffusive convection within an enclosure has 
been the subject of significant research since the early 1990s. These 
studies have considered different modes of buoyancy ratios and Lewis 
numbers. Han and Kuehn [8,9] studied the effects of horizontally 
imposed temperature and concentration gradients in a vertical rectan-
gular cavity. Then, Beghein et al. [10] analyzed steady-state thermo-
solutal convection in a square cavity. Mamou et al. [11] considered an 
analytical and numerical natural convection model in a rectangular 
cavity containing a double-diffusive fluid with uniform heat and mass 
flux along the vertical sides. Xin et al. [12] explored the onset of con-
vection in double diffusion when thermal and fluid buoyancy forces are 
equal and opposite. Ghorayeb and Mojtabi [13] did a similar study in a 
vertical rectangular cavity. The natural convection of two gasses in a 
trapezoidal enclosure with an induced unstable thermal stratification 
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has been explored numerically and experimentally by Biezen and 
Bruining [14]. Some scholars were also conducting comparative studies 
on porous medium simultaneously. Mamou et al. [15] investigated 
double-diffusive natural convection in a rectangular fluid-saturated 
vertical porous enclosure. Karimfard et al. [16] analyzed 
double-diffusive natural convection in a square cavity filled with a 
porous medium. Several flow models were considered, including Darcy 
flow, Forchheimer and Brinkman extensions, and generalized flow. A 
similar study in a rectangular enclosure was done by Nithiarasu et al. 
[17]. Then, Bennacer and colleagues [18] ran a numerical simulation to 
understand how saturated anisotropic porous media influences 
double-diffusive convection in a rectangular cavity. 

Over the last decade, more in-depth studies have been conducted on 
the double diffusion process within enclosures. Given the relevance and 
growth of nanoscience, researchers have investigated the study of 
double-diffusive convection in nanofluids. Although nanofluids are 
typically studied for their heat transfer properties, they are a subset of 
heat and mass transfer problems. As a result, researchers were interested 
in the phenomena of double-diffusive convection in fluids with nano-
particles [19–26]. Another favorite research topic has been studying 
magnetic fields’ effect on double-diffusive convection. Sunil et al. [27] 
and Teamah et al. [28,29] conducted some preliminary studies in this 
field, which other researchers later pursued with a focus on details 
[30–34]. A further investigation that caught the researcher’s curiosity 
was the study of entropy generation in double diffusion natural con-
vection systems [35–37]. In most of the works listed, concentration and 
temperature interactions (Soret and Dufour effects) have been neglec-
ted. However, some have attempted to study these effects, especially 
when considering natural convection [38–43]. 

Along with the above-stated topics, double-diffusive convection in 
non-Newtonian fluids has lately gained interest. Although the combined 
effects of nonlinear stress relationship with heat and mass transfer in-
crease the complexity of double-diffusive convection analysis, due to the 
wide application of non-Newtonian fluids, achieving the results has been 
considered by researchers [44–49]. However, there has been no study on 
the double-diffusive natural convection of Casson fluid in a cavity, 
despite being one of the most extensively utilized and essential 
non-Newtonian fluids. 

Casson fluids are a class of non-Newtonian fluids defined by their 
yield stress. When a yield (viscoplastic) material is not adequately 
stressed (when the stress is less than the yield stress), the material acts 
like a solid and does not flow. Above the yield stress, it will flow as a 
viscous fluid. Viscoplastic fluids are identified by three main models: 
Bingham [50], Herschel-Bulkley [51], and Casson [52]. The Bingham 
model is the simplest way to describe the behavior of viscoplastic ma-
terials. On the other hand, the Casson model is the most complicated 
viscoplastic model. For this reason, most of the research on heat transfer 
of viscoplastic materials inside the cavity is based on the Bingham model 
[53–58]. However, some research has been done based on 
Herschel-Bulkley [59,60] and Casson model [61,62]. 

In recent years, studies on the Double diffusive natural convection of 
Casson fluids have attracted considerable attention because of their 
essential applications such as blood, jams, paints, sewage and petroleum 
production, etc. [63,64]. As far as we know, no research on 
double-diffusive convection in an enclosure has been conducted using 
the Casson yield stress model. Notwithstanding, there has been a great 
deal of interest in this issue in many geometries. Some examples of these 
studies are listed below. Mohan and Satheesh analyzed the 
double-diffusion convection flow of Casson fluid in a lid-driven porous 
cavity [65]. Ahmed and co-workers [66] studied the entropy generation 
of double-diffusive convection of Casson fluid over a nonlinear 
stretching sheet. Effects of MHD and thermal radiation on the 
three-dimensional convective double diffusion of Casson nanofluid over 
a Stretching Surface have been examined by Gireesh et al. [67]. 
Recently, Das and co-workers [68] analyzed the effects of porosity and 
magnetic field on the unsteady double-diffusive Casson fluid flow past a 
flat plate. Moreover, Oyelakin and co-workers [69] studied the effects of 
convective double diffusion on the flow of a Casson nanofluid at a 
stagnation point. More studies on the current topic can be found in 
[70–74]. 

The purpose of this study is to explain the mechanism of double- 
diffusion natural convection of Casson fluids in enclosures comprehen-
sively and in detail based on the original model without simplification. 
Thereby thorough analysis of the yield and unyielded regions’ behaviors 
become achievable. Based on the literature review above, this problem 
has not yet been investigated, despite its wide range of applications. This 

Nomenclature 

a, b Correlation  coefficients,dimensionless 
Bn Bingham number,Eq. (13) 
C concentration, dimensionless 
Cp specific heat capacity, kJkg− 1K− 1 

D mass diffusivity m2s− 1 

g acceleration due to gravity, ms− 2 

H reference value of length, m 
L length of the cavity, m 
Le Lewis number, Eq. (10) 
m Papanastasiou regularization parameter 
Nr Buoyancy ratio number, Eq. (9) 
Nu local Nusselt number,Eq. (16) 
Nu average Nusselt number, Eq. (17) 
p pressure,dimensionless 
p0 reference value of pressure,Pa 
Pr Prandtl number, Eq. (7) 
Ra Rayleigh number, Eq. (8) 
Sh local Sherwood number, Eq. (16) 
Sh Average Sherwood number, Eq. (17) 
T temperature of fluid, K 
u velocity component in x direction, dimensionless 
u0 reference velocity, ms− 1 

v velocity component in y direction, dimensionless 
x, y Cartesian coordinates,dimensionless 
Y yield number , Eq. (14) 
Yc critical yield number,dimensionless 

Greek symbols 
α thermal diffusivity of fluid, m2s− 1 

βT coefficient of thermal expansion, K− 1 

βC coefficient of concentration expansion, m3kg− 1 

γ̇ rate of strain tensor, dimensionless 
θ temperature, dimensionless 
ν kinematic viscosity, m2s− 1 

μ palstic viscosity, Pas 
ρ density of fluid, kgm− 3 

τ stress tensor, dimensionless 
τy yield stress of fluid, dimensionless 

Subscripts 
C cold 
H hot 
r reference value 

Superscript 
- dimensional variable  
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study has been accomplished by developing a numerical model based on 
the finite element method to obtain solutions for the governing equa-
tions. The authors propose the correlations for Nusselt and Sherwood 
numbers, which will allow the quantification of convective exchanges in 
this fluid type. 

2. Mathematical formulation 

We consider a two-dimensional square enclosure filled with non- 
Newtonian Casson fluid (Fig. 1). The horizontal boundaries of the cav-
ity are adiabatic and impermeable. Thereby, there will be no heat or 
concentration flux. Different concentrations and temperatures are 
maintained on the vertical walls. A high concentration (CH)  and tem-
perature (TH)  are applied to the left wall, while a low concentration (CC) 
and temperature (TC) are applied to the right wall. No-slip conditions are 
considered at walls. We assume that the thermophysical properties of 
the fluid will not vary except for density in the body force, analyzed 
using the Boussinesq model for both temperature and concentration. 
Using conservation of mass, momentum, energy, and concentration in 
two dimensions, the following equations govern natural convection 
flow: 

∂u
∂x

+
∂v
∂y

= 0

ρ
(

u
∂u
∂x

+ v
∂u
∂y

)

= −
∂p
∂x

+

(
∂τxx

∂x
+

∂τyx

∂y

)

ρ
(

u
∂v
∂x

+ v
∂v
∂y

)

= −
∂p
∂y

+

(
∂τyy

∂y
+

∂τxy

∂x

)

− ρgβT(T − Tr) − ρgβC(C − Cr)

u
∂T
∂x

+ v
∂T
∂y

= α
(

∂2T
∂x2 +

∂2T
∂y2

)

u
∂C
∂x

+ v
∂C
∂y

= D
(

∂2C
∂x2 +

∂2C
∂y2

)

(1) 

According to the above definitions, the various dimensional quanti-
ties are: u, horizontal velocity, v, vertical velocity, T, temperature, C, 
concentration, and p, pressure.Tr and Cr are reference values of tem-
perature and concentration (Tr = (TH + TC)/2 and Cr = ( CH + CC )

/2).  ρ is the density, g is the gravity acceleration, βT and βC are the 
thermal and concentration expansions, respectively. α is the thermal 
diffusivity, and D is the mass diffusivity. 

Casson’s model predicts the stress-deformation behavior as follows: 

τij =

(
̅̅̅μ√
+

(
τy

|γ̇|

)1
2
)2

γ̇ij if |τ| > τy

γ̇ = 0 if |τ| < τy

(2) 

Here,  τ is the shear stress, γ̇ is the shear rate, μ is the plastic viscosity, 
τy is the yield stress, and |γ̇| is the magnitude of the symmetric rate-of- 
strain tensor. 

The dimensionless variables are obtained using the characteristic 
scales H for length, u0 = (gβHΔT)1/2 for the velocity and p0 = (ρu2

0) for 
the pressure. 

The dimensionless temperature θ and concentration C are defined by: 

θ =
T − Tr

TH − TC

C =
C − Cr

CH − CC

(3) 

Based on the above assumptions, the governing equations in their 
nondimensionalized form can be written as: 

∂u
∂x

+
∂v
∂y

= 0

u
∂u
∂x

+ v
∂u
∂y

= −
∂p
∂x

+ Pr
1
2Ra

− 1
2

(
∂τxx

∂x
+

∂τyx

∂y

)

u
∂v
∂x

+ v
∂v
∂y

= −
∂p
∂y

+ Pr1
2Ra− 1

2

(
∂τyy

∂y
+

∂τxy

∂x

)

+ (θ + Nr.C)

u
∂θ
∂x

+ v
∂θ
∂y

= (Ra.Pr)
− 1
2

(
∂2θ
∂x2 +

∂2θ
∂y2

)

u
∂C
∂x

+ v
∂C
∂y

=
1

Le
(Ra.Pr)

− 1
2

(
∂2C
∂x2 +

∂2C
∂y2

)

(4) 

Hereu, v, θ, C, and p are non-dimensional forms of u, v, T, C and p, 
respectively. 

The relevant boundary conditions of temperature and concentration 
are given as follows: 

∂θ
∂y

= 0 ,
∂C
∂y

= 0 at y = 0 and y = 1

θ = 0.5, C = 0.5 at x = 0

θ = − 0.5, C = − 0.5 at x = 1

(5) 

No-slip conditions apply to the solid boundaries: 

u = 0 , v = 0 on all walls (6) 

The non-dimensional parameters are defined as: 
Prandtl number: 

Pr =
μCp

k
(7) 

Rayleigh number: 

Ra =
gβT ΔTH3

αν (8) 

Buoyancy ratio number: 

Nr =
βCΔC
βT ΔT

(9) 

Lewis number: 

Le =
α
D

(10) 

The stress-deformation behavior of the Casson model in non- 
dimensional form can be written as: 

Fig. 1. Schematic diagram of the physical model and coordinate system. The 
horizontal boundaries of the cavity are adiabatic and impermeable. A high 
concentration and temperature is applied to the left wall, while a low con-
centration and temperature is applied to the right wall. No-slip conditions are 
considered at walls. 
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τij =

(

1 +

(
Bn
|γ̇|

)1
2
)2

γ̇ij if |τ| > Bn

γ̇ = 0 if |τ| < Bn

(11) 

In this equation, |τ| is the second invariant of the shear stress and |γ̇|
is the rate-of-strain tensors. Here γ̇ij is defined as below: 

γ̇ij =
∂ui

∂xj
+

∂uj

∂xi
(12) 

The second invariant of the strain and stress tensors are: 

|γ̇| =
̅̅̅̅̅̅̅̅̅̅̅
1
2
γ̇ij γ̇ij

√

and |τ| =
̅̅̅̅̅̅̅̅̅̅̅
1
2

τijτij

√

.

Where Bn is the Bingham number: 

Bn = ( Pr/Ra )
− 1/2 τy

ρβgΔTH
= ( Pr/Ra )

− 1/2 Y (13) 

Here Y is the yield number: 

Y =
τy

ρβgΔTH
(14) 

The Papanastasiou [75] regularization prevents discontinuity be-
tween yielding and unyielding regions. Hence, Eq. (11) can be rewritten 
as follows: 

τij =

(

1 +

(
Bn
|γ̇|

)1
2(

1 − exp
(
−

̅̅̅̅̅̅̅̅̅
m|γ̇|

√ )
)2

γ̇ij (15) 

Regularization parameter m is usually set to be very large; here, it is 
set to m = 104. This value of m coincides with that of the non-regularized 
Casson model for viscosity values. 

Moreover, the local Nusselt and Sherwood numbers can be written 
as: 

Nu = −

[
∂θ
∂x

]

x=0

Sh = −

[
∂C
∂x

]

x=0

(16)  

and the mean Nusselt, Nu and Sherwood, Sh numbers are defined as 
follows: 

Nu = −

∫1

0

[
∂θ
∂x

]

x=0
dy

Sh = −

∫1

0

[
∂C
∂x

]

x=0
dy

(17)  

3. Numerical methodology 

Researchers have used various numerical methods to analyze heat 
and mass transfer problems. Utilizing a similarity solution, for example, 
is an optimal and practical way of analyzing flow over a plate [67,76,77] 
or at the stagnation point [69,78]. Still, when it comes to natural con-
vection in the enclosure, methods based on finite elements make up one 
of the most common choices [79–81]. Accuracy, flexibility, and 
modeling are just a few benefits of using the finite element approach to 
solve complicated issues. 

In this research, the coupled conservation equations in their non- 
dimensional forms (Eq. (4)) are numerically solved using the Galerkin 
weighted residual method of the finite element formulation. The uni-
form structured grid is constructed by means of nine node bi-quadratic 
elements. The numerical algorithm described in [61] was used to 
solve the discretized equations. Here, this method is developed for heat 
and mass transfer cases by adding the concentration equation and 

considering its effects on momentum equations. Therefore, the following 
can be stated briefly as the solution procedure:  

1) The initial values of velocity variables should be considered. (These 
values can be assumed zero or obtained by solving Stokes linear 
equations.)  

2) According to the known velocity values, the shear rate and stress 
tensor are obtained based on Eq. (12) and Eq. (15), respectively.  

3) The known velocity values are also used to linearize the convective 
terms in the momentum, energy, and concentration equations.  

4) The governing equations (4) are linearized by applying steps 2 and 3 
and then discrete and integrated using the Galerkin weighted resid-
ual method of the finite element formulation (Details are provided in 
reference [61])  

5) After applying the boundary conditions, the resulting matrix is 
solved using algebraic relations.  

6) As new velocity values are obtained, the computational process is 
repeated from step 2 until convergence is achieved. 

When the difference between the new and old value of velocity 
components, temperature, and concentration fields was less than 10− 4, 
convergence was considered to have occurred. 

A grid-independent solution was ensured through a comprehensive 
mesh testing procedure. The deviation values in Table 1 indicate that a 
uniform grid of 40×40 nine node bi-quadratic elements is sufficient to 
achieve grid independence. Extensive comparisons between the present 
numerical method and the prior studies for pure Casson fluid are re-
ported in recent studies [61,62]. Additionally, the results obtained for 
double-diffusion natural convection of a Newtonian fluid within a cavity 
with differentially heated side walls were compared with the numerical 
results obtained by Beghein et al. [10], Teamah et al. [29], and Oueslati 
et al. [36] (Fig. 2). Excellent agreement has been observed for all the 
results. 

4. Results and discussion 

Extensive new results embracing wide ranges of dimensionless pa-
rameters as yield number (fromzerotothemaximumvalue: 0 ≤ Y ≤ Ymax), 
Rayleigh number (for the effective range of laminar flow: 103 ≤ Ra ≤
106), buoyancy ratio number (for cooperative buoyancy convection, Nr 
= 1, thermal buoyancy convection, Nr = 0, and opposing solutal 
buoyancy force, Nr = − 0.5), and Lewis number (for three different ratios 
of thermal diffusivity to mass diffusivity: Le < 1, Le = 1, and Le > 1)at 
constant Prandtl number (Pr = 100 since results are not sensitive to Pr in 
the tested range 10 ≤ Pr ≤ 103). These parameters were studied pri-
marily for their effects on fluid flow and the thermal and concentration 
fields. 

4.1. Effects of Rayleigh number,  yield number, and buoyancy ratio 

First, we consider the combined effects of Rayleigh number, yield 
number, and buoyancy ratio on fluid flow and solutal and thermal dis-
tributions in the enclosure. The constant value for Lewis number (Le=1) 
is considered in this section. 

Fig. 3 depicts the variation of velocity profile, v, and non- 
dimensional temperature, θ, with Rayleigh number, Ra, at horizontal 
mid-plane (y = 0.5) of the enclosure for Ra = 104,105,106. 

Stream functions, isotherms, and shear rate contours are also shown 

Table 1 
Grid independence study at Ra = 105,Nr = 1, Le = 5.  

Grid elements nodes Nub Shb vmax 

G1 30×30 3721 5.086 9.936 76.96 
G2 40×40 6561 5.097 10.024 76.93 
G3 50×50 10, 201 5.101 10.061 76.94  
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in this figure. One can see that, as Ra increases, fluid velocity increases, 
and the boundary layers are more closely confined to the walls due to 
stronger circulation. This phenomenon also increases the nonlinearity of 

the temperature distribution. As a result, with increasing Ra, stream 
functions exhibit stronger flow patterns in the cavity, and the temper-
ature contours become more curved. Shaded parts have represented the 

Fig. 2. Validation of the present code results for: (a)  local Nusselt number Nu (present study and Beghein study [10]). (b) mean Nusselt number Nu and mean 
Sherwood number Sh (Teamah study [29], Oueslati study [36] and present study). 

Fig. 3. Effects of Rayleigh number: (a) Variations of non-dimensional velocity (top) and non-dimensional temperature (bottom) along the horizontal mid-plane. (b) 
Contours of non-dimensional stream functions (top), temperature (midle), and shear rate (bottom), at Ra = 104 − 106,Y = 0.004, Nr=− 0.5,and Le=1. ( Since Le=1, 
the temperature contours also represent the concentration contours.). 
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unyielded (plug) regions in these figures. It is worth mentioning that the 
unyielded areas also increase with the increasing Rayleigh number. High 
Rayleigh numbers limit the flow circulation to thin boundary layers 
along the vertical walls, and hence in the center of the cavity, a large 
portion of the fluid is stagnant, which leads to a lower shear rate (see 
shear rate contours). As a result, the unyielded regions grow in this area. 

Fig. 4 depicts the influence of the buoyancy ratio numbers (Nr) on 
flow properties. As can be observed, the fluid velocity is substantially 
larger for Nr = 1 than for Nr = 0 and − 0.5, indicating cooperative 
buoyancy convection (both solutal buoyancy and thermal buoyancy are 
in the same direction). For Nr = 0, thermal buoyancy is the only force 
that drives the flow (the solutal buoyancy force does not affect the flow). 
As the buoyancy ratio number becomes negative (Nr = − 0.5), the 
opposing solutal buoyancy force weakens the flow driven by the thermal 
buoyancy force. It can also be seen that, as Nr increases, the extent of 
non-linearity of temperature distribution increases, and the boundary 
layer is more closely confined to the walls due to stronger convection 
effects. Velocity vector profiles and the unyielded regions are also shown 
in Fig. 4 for different buoyancy ratio numbers. It is seen that decreasing 
the buoyancy ratio number leads to a monotonic decrease in the flow 
strength and causes a more uniform flow distribution inside the cavity 
due to weaker convective transport. As a result, unyielded areas grow 
with decreasing Nr. 

On the other hand, as shown in Fig. 5, by increasing the yield 
number, the fluid velocity decreases inside the enclosure due to stronger 
viscous resistance, which suppresses the convective currents. For this 
reason, the temperature distribution becomes more uniform with 
increasing yield numbers. Velocity vector profiles show a strong (wall- 

inclined) flow in the Newtonian case (Y = 0) without unyielded areas. 
However, as the yield number increases, the flow’s intensity decreases, 
its distribution becomes more uniform, and the unyielded areas subse-
quently increase. 

Fig. 6 depicts the effects of yield number on the mean Nusselt 
number for the hot wall at different Rayleigh and buoyancy ratio 
numbers. As mentioned before, the increase in Rayleigh number 
strengthens the intensity of convection and improves heat and mass 
transfer performance. The maximum heat and mass transfer is observed 
for Newtonian fluid (Y = 0) and then decreases as Y gradually increases 
from Y = 0to the maximum yield number where dominant conductive 
heat and mass transfer occur. It should be mentioned here that the 
concentration distribution is similar to the temperature distribution 
because of the Lewis number (Le=1). Hence, the value of Sherwood and 
Nusselt numbers are also identical in this section. 

4.1.1. Correlation for the mean Nusselt (Sherwood)number 
In this section, correlations for the average Nusselt (Sherwood) 

number are proposed, including the Nusselt and Rayleigh numbers as 
well as the yield and buoyancy ratio numbers. 

Using the physics of the problem, we can determine that the quantity 
of heat transfer at zero yield stress corresponds to Newtonian fluid, and 
that at maximum yield stress, it corresponds to thermal conductivity. 
Hence, a correlation for the mean Nusselt number of yield stress Casson 
fluid, Nu can be proposed in a general form as below: 

Nu = 1 + (NuN − 1)
[

1 −

(
Y

Ymax

)a]b

(18) 

Fig. 4. Effects of buoyancy ratio number: (a) Variations of non-dimensional velocity along the horizontal mid-plane. (b) Variations of non-dimensional temperature 
along the horizontal mid-plane. (c)  Velocity vectors and plug regions for cooperative buoyancy convection (left),   thermal buoyancy convection (midle), and 
opposing solutal buoyancy force (right) at Ra = 106 , Y = 0.01, and Le = 1. 
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The numerical solution results are then used to calculate the pa-
rameters and coefficients involved in the equation. 

First, a correlation for the mean Nusselt number of Newtonian fluids 
NuN is given as follows: 

NuN = anRabn + cn (19) 

Where: 

an = 0.2841exp(0.1573Nr) − 0.08509exp(− 1.449Nr)
bn = 0.01755exp(− 2.359Nr) + 0.2618exp(− 0.005785Nr)
cn = − 0.3439exp(0.5629Nr) + 0.06353exp(− 4.098Nr)

(20) 

This new correlation has improved the results of the previous 

correlation, especially in low Rayleigh numbers (Table 2). 
The correlation of maximum yield number can be defined as: 

Ymax = aY RabY + cY (21) 

Where: 

aY = 0.05529exp(− 2.29Nr) + 0.03987exp(0.3725Nr)
bY = 0.04826exp(0.4097Nr) − 0.01067exp(− 1.849Nr)
cY = − 0.02921exp(− 3.032Nr) − 0.08729exp(− 0.08665Nr)

(22)  

Ymaxrepresents the maximum amount of stress causing the Nusselt 
number to converge to one, indicating conductive heat transfer in the 
cavity. 

Fig. 5. Effects of yield number: (a) Variations of non-dimensional velocity along the horizontal mid-plane. (b) Variations of non-dimensional temperature along the 
horizontal mid-plane. (c)  Velocity vectors and plug regions for Newtonian fluid (left),   mide range yield number (midle), and high yield number (right) at Ra = 106 , 
Nr = 1, and Le = 1. 

Fig. 6. Variations of mean Nusselt number  Nu with yield number, Y, for cooperative buoyancy convection (left),   thermal buoyancy convection (midle), and 
opposing solutal buoyancy force (right) at Ra = 103 − 106 and Le = 1. 
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Finally, the coefficients a and b are calculated as follows: 

a = 0.56
b = a′

.exp(b′

.Ra) + c′

.exp(d′

.Ra) (23) 

The coefficients used in the above relation are calculated as follows: 

a′

= 0.1177exp(− 1.036Nr) + 0.3043exp(0.07423Nr)
b
′

= − 0.0001837exp(0.3779Nr) + 0.00002618exp(− 2.236Nr)
c′

= 2.223exp(− 0.2657Nr) − 0.3826exp(− 1.471Nr)
d′

=
( (

4.291 ∗ 10− 9).exp(− 5.667Nr) +
(
3.153 ∗ 10− 7).exp(0.4724Nr)

)

(24) 

The results of the numerical solution and correlation are depicted in 
Fig. 6. There is a high degree of agreement between the outcomes. 
Table 3 shows the relative difference between the correlation and the 
numerical findings. 

4.2. Effects of Lewis number 

This section examines the combined effects of yield stress (Y), 
buoyancy ratio number (Nr), and Lewis number (Le) on the fluid flow 
and both the thermal and concentration fields for Casson fluid. Fig. 7 
shows the effects of Lewis number and buoyancy ratio on velocity, v, and 
concentration, C. One can observe that the fluid velocity profiles have 
quite the opposite behavior for Nr = − 0.5compared with Nr = 1. In the 
assisting flow, increasing the Lewis number decreases the positive effect 
of Nr and thus decreases the flow strength. Still, in the opposing flow, the 
Lewis number reduces the negative effect of Nr, and the flow strength 
increases. However, with increasing Lewis number, the concentration 
distribution becomes nonuniform for both aiding and opposing solutal 
buoyancy force, representing the direct relationship between mass dis-
tribution and Lewis number in both cases. 

The combined effects of Lewis and buoyancy ratio numbers on 
stream function and morphology of yielded/unyielded regions are 
shown in Fig. 8. Results show that as the Lewis number increases, the 
effects of the buoyancy ratio parameter on flow characteristics decrease 
for both aiding and opposing solutal buoyancy force. Hence, for Nr =
− 0.5, the flow becomes stronger, and the unyielded regions decrease 
with increasing the Lewis number, while an opposite trend can be seen 
for assisting flow (Nr = 1). This is due to the high intensity of mass 
distribution at high Lewis numbers, as seen in concentration contours. 
However, it is worth noting that the overall shape of the flow pattern and 

the unyielded areas are determined by the buoyancy ratio (see the red 
dot lines). 

Fig. 9 depicts the combined influence of yield number (Y), buoyancy 
ratio (Nr), and the Lewis number (Le) on the mean Nusselt number. 
Similar results for the Sherwood number are shown in Fig. 10. It is 
observed that the mean Nusselt number for assisting flow (Nr = 1) de-
creases with increasing Le, while an opposite trend could be observed for 
Nr = − 0.5. This must occur because, as previously described, increasing 
Le reduces the effect of the solutal buoyancy force. However, in the case 
of Nr = 0, because concentration does not affect buoyancy force, the 
amount of heat transfer is independent of the Lewis number. On the 
other hand, the results show that for high Lewis numbers (Le = 5, 10), 
there is an insignificant change in Nu. 

As mentioned above, increasing the Lewis number enhances mass 
transfer in the cavity. Consequently, the average Sherwood number in-
creases significantly when the Lewis number rises. According to the 
findings, when the Lewis number rises, the rate of mass transmission can 
increase by up to three times that of heat transfer. However, as previ-
ously indicated, increasing the Lewis number decreases the effect of the 
buoyancy ratio on heat transfer. As a result, for Nr > 0, there is a rise in 
the gap between the Nusselt and Sherwood numbers. For Nr < 0, how-
ever, the relative difference between Nusselt and Sherwood numbers 
decreases. 

From these figures, it is apparent that heat and mass transfer 
decrease as the yield number increases. However, the effect of yield 
stress is more significant for the opposing flow (Nr = − 0.5). Results 
show an abrupt change in Sherwood number at high yield numbers due 
to the dominance of viscous force (especially for higher Lewis numbers). 

4.2.1. Correlation for the Nusselt number 
Based on the explanations in the previous section (4.1.1), a corre-

lation for the mean Nusselt number of yield stress Casson fluid )Nu( 
corresponding to different values of Lewis number (Le), buoyancy ratio 
number (Nr), and yield number (Y)  can be proposed in a general form as 
below: 

Nu = 1 + (NuN − 1)
[

1 −

(
Y

Ymax

)a]b

(25) 

The mean Nusselt number of Newtonian fluids NuN,  maximum yield 
number Ymax, and the coefficients a and b are summarized in Table 4. 

The results of the numerical solution and correlation are depicted in 
Fig. 8. There is a high degree of agreement between the outcomes. 
Table 5 shows the relative difference between the correlation and nu-
merical values. 

4.2.2. Correlation for the Sherwood number 
The correlation of the Sherwood number is more complicated than 

the Nusselt number. This is (as mentioned earlier) due to the abrupt 
change in the Sherwood diagram. Similar to what was done for the 
Nusselt number (Section  4.1.1), the correlation for the mean Sherwood 
number (Sh) corresponding to different values of Lewis number (Le), 

Table 2  
Comparison of the measured NuNwith the correlations (present study and Beghein study [10]).  

Ra NuN 

Nr 

1 0 − 0.5 

PresentStudy BegheinStudy Num.Data PresentStudy BegheinStudy NumData PresentStudy BegheinStudy NumData 

Value Error Value Error Value Error Value Error Value Error Value Error 

103 1.306 1.14% 1.712 29.65% 1.321 1.090 2.39% 1.420 27.16% 1.117 1.025 0.86% 1.178 13.92% 1.034 
104 2.886 1.12% 3.189 11.75% 2.854 2.327 2.39% 2.645 16.36% 2.273 1.886 5.07% 2.193 22.2% 1.795 
105 5.774 0.36% 5.938 2.48% 5.795 4.681 0.75% 4.925 4.41% 4.717 3.683 3.45% 4.084 7.06% 3.815 
106 11.053 0.04% 11.058 0.09% 11.048 9.159 0.07% 9.171 0.19% 9.153 7.435 1.43% 7.6 0.82% 7.543  

Table 3 
Relative difference between the correlation and numerical results.  

Ra Error(%) 

Nr 

1 0 − 0.5 

106 0.79 0.86 1.31 
105 2.08 2.81 2.44 
104 0.66 1.88 1.67 
103 0.47 2.45 1.23  
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buoyancy ratio number (Nr), and yield number (Y)  can be proposed as 
below: 

Sh = Shm + (ShN − Shm)

[

1 −

(
Y

Ymax

)a]b

(26) 

The mean Sherwood number of Newtonian fluids ShN,  minimum 
Sherwood number Shm,   and the coefficients a and b are summarized in 
Table 6. 

Fig. 10 shows the results of numerical solution and correlation. There 
is a good agreement between the results (Table 7). 

5. Conclusions 

The analysis of double-diffusion natural convection of Casson fluid 
was extended in this study to the flow within the enclosure. The gov-
erning equations and the numerical solution model were derived based 
on the geometry of the problem and its boundary conditions. Addi-
tionally, the original Casson fluid stress model was used without 
simplification in this study. Consequently, the findings were acquired 
and evaluated based on the yield stress and its influence on heat and 
mass transmission, as well as the formation and development of un-
yielding zones. Various representative numerical results were presented 
for a variety of control parameters, including Rayleigh number, yield 

Fig. 7. Effects of Lewis  number on velocity and concentration distribution: (a) Variations of non-dimensional velocity along the horizontal mid-plane. (b) Variations 
of non-dimensional concentration along the horizontal mid-plane. (Ra = 105,Y = 0.005). 

Fig. 8. Effects of Lewis  number on stream functions and concentration contours: (a)  Contours of non-dimensional stream functions and concentration at Le=10 for 
cooperative buoyancy convection (left) and opposing solutal buoyancy force (right) (b)  Contours of non-dimensional stream functions and concentration at Le=0.5 
for cooperative buoyancy convection (left) and opposing solutal buoyancy force (right). The red dot lines indicate that the overall shape of the flow pattern and 
unyielded areas in the cavity is determined by the buoyancy ratio. (Ra = 105,Y = 0.005). 
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number, buoyancy ratio, and Lewis number. The research results are 
concluded as below. 

Effects of Rayleigh number: It is observed that increased buoyancy 
owing to a rise in Rayleigh number lessens the influence of yield stress 
on heat and mass transmission. On the other hand, increasing the 

convective force causes the flow to be more closely confined to the walls 
due to stronger circulation. Thus, the shear rate in the central areas of 
the enclosure decreases, resulting in the growth of unyielded areas. 
Because of this, with an increasing Rayleigh number, the areas closest to 
the wall will experience the most significant changes in temperature and 

Fig. 9. Variations of mean Nusselt number  Nu with yield number, Y, for cooperative buoyancy convection (left),   thermal buoyancy convection (midle), and 
opposing solutal buoyancy force (right) at Le = − 0.5, 0, 5, 10 and Ra = 105. 

Fig. 10. Variations of mean Sherwood number  Sh with yield number, Y, for cooperative buoyancy convection (left),   thermal buoyancy convection (midle), and 
opposing solutal buoyancy force (right) atLe = − 0.5, 0, 5, 10  and Ra = 105. 

Table 4 
Scaling laws for Newtonian Nusselt number NuN, maximum yield number Ymax, and the coefficienta and b.  

Nr NuN Ymax b a 

1 3.24Le− 0.1335 + 2.522 − 0.0005923Le0.9898 + 0.06092 2.292.exp(0.005028.Le) − 1.004.exp( − 0.4611.Le) 0.52 
0 4.717 0.0293 1.64 0.52 
− 0.5 − 0.9008Le− 0.6486 + 4.71 0.0006771Le0.927 + 0.01318 Le ≤ 1 Le > 1 Le ≤ 1 Le > 1 

1.75.exp ( − 0.0597.Le) 0.935.exp (0.0135.Le) 0.52 0.44  

Table 5 
Relative difference between the correlation and numerical results of Nu (Effects 
of Lewis number).  

Le Error(%) 

Nr 
1 0 − 0.5 

0.5 0.95 0.61 0.44 
1 0.85 0.61 1.28 
5 1.57 0.61 1.46 
10 2.62 0.61 1.15  

Table 6 
Scaling laws for Newtonian Sherwood number ShN ,  minimum Sherwood number Shm,   and the coefficients a and b.  

Nr ShN Shm b a 

1 7.574Le0.2776 − 1.801 0.02424Le1.382 + 0.99 0.996.exp( − 1.575.Le) + 1.5.exp( − 0.0041.Le) 0.52 
0 9.497Le0.2314 − 4.858 0.01829Le1.541 + 0.9941 2.71.exp( − 1.87.Le) + 1.191.exp( − 0.00704.Le) 0.52 
− 0.5 16.84Le0.1447 − 13.16 0.04844Le0.7282 + 0.971 3.12.exp( − 1.037.Le) + 0.4408.exp(0.007446.Le) Le ≤ 1 Le > 1 

0.52 0.25  

Table 7 
Relative difference between the correlation and numerical results of Sh (Effects 
of Lewis number).  

Le Error(%) 

Nr 
1 0 − 0.5 

0.5 1 0.81 1.33 
1 1.31 1.1 2.8 
5 1.03 2.54 4.11 
10 1.14 2.14 4.39  
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mass distribution, while in the unyielded areas of the center, such 
changes will be negligible. 

Effects of buoyancy ratio: Compared to Newtonian fluids, the bene-
ficial effect of the positive buoyancy ratio is less pronounced in Casson 
fluids because of stronger viscous force. On the other hand, the adverse 
impact of the opposing solutal buoyancy force on heat and mass trans-
port grows. Plug regions are visible in all cases, but at negative buoyancy 
ratios, these zones occupy more space in the enclosure. In other words, a 
positive buoyancy force act as a deterrent to the growth of plug regions, 
while an opposing buoyancy force stimulates their growth. 

Effects of the yield number: The results indicated that the yield 
number plays a crucial role in the heat and mass transfer of the Casson 
fluid in the enclosure. By increasing the yield stress, the viscosity in-
creases, and the strength of the buoyancy force is reduced. Thus, a more 
uniform temperature and concentration distribution can be observed in 
the cavity. As a result, unyielded regions grow with increasing Y. The 
combined effect of increasing the yield number and decreasing the 
buoyancy ratio causes the unyielded areas to invade the whole cavity, 
indicating conduction-driven transport. 

Effects of the Lewis number: It is observed that, in general, increasing 
the Lewis number reduces the effect of the buoyancy ratio. Therefore, 
for  Nr < 0, the unyielded regions decrease as the Lewis number in-
creases. However, yield stress and Lewis number have similar effects on 
plug regions in positive buoyancy ratios.  As a result, in this case, 
unyielded areas increase with increasing Lewis number. According to 
the results, the maximum yield stress is more a function of temperature 
and flow than concentration. Therefore, at high Lewis numbers and 
negative buoyancy ratios, an abrupt change in the Sherwood number is 
observed in the maximum yield stress zone. 
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