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ABSTRACT

In manufacturing systems, there are several essential tasks to perform before and after the

production process. In traditional systems, these tasks were done manually, which can lead

to more resource consumption and the risk of human error; however, advanced manufacturing

systems and Industry 4.0 tend toward a more autonomous manner. To ensure the compliance

of the machining process and the safety of the personnel as well as the machines at the shop

floor, the inspection of the overall factory prior to any machining process and the control of

conformity of the manufactured parts are necessary in order to know the status of the manu-

facturing line. This paper proposes a novel modular smart vision system for machine inspection

and conformity control of machined parts. Our system uses smart vision technologies em-

bedded in industrial robots and enhanced with image processing and analysis capabilities.

The solution also integrates a user interface for human–machine interactions that has been

developed with a modular approach, and is designed, launched, and controlled by the manu-

facturing execution system, allowing agile and customized configuration. By this new ap-

proach, the robot inspects all the machines in the factory to check the status before

launching the production plan. After the machining process, the system interprets the in situ

dimensional analysis for the machined parts and makes decisions about whether the parts are

acceptable or require additional machining.
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Introduction

The traditional philosophy of the current automated manufacturing system is to use robots and automated ma-

chines to perform repetitive and specific tasks that were performed by humans. This philosophy has massively

increased the production rates of goods and services with good quality and has reduced labor and raw material

costs. However, today’s industry is facing a great deal of constraints and economic challenges, such as decreased

availability of natural resources, rising energy prices, and adaptation to constantly changing market demands.

The fourth industrial revolution, also known as Industry 4.0, is presented to overcome these constraints and

restrictions by combining embedded production system technologies, such as advanced robotics, with intelligent

production processes to pave the way for a new technological age that will fundamentally transform industry

value chains, production value chains, and business models.1

Advanced robotic systems are playing a major role in enabling Industry 4.0 implementation, in which the

integration of robots in a smart network as well as with humans through virtual reality, augmented reality, and

mixed reality have great added value.2 Nowadays, advanced robotic systems can communicate directly with the

manufacturing execution system (MES), which improves the flexibility of the production process and therefore

the mass customization aspect.3 In addition, sensing devices together with artificial intelligence (AI) can be added

to a modern robotic system to form a system in which the communication between the machines is achieved

autonomously and in a decentralized way. This can extend the decentralization aspect. This challenge concerns

a new generation of interactive robots known as cyber-physical systems (CPS).4 CPS consists of computational

components connected with the surrounding physical components, working together to implement a real-time

process.5 CPS collect and manage vast amounts of diverse data generated by sensors in real-world environments,

including autonomous vehicles, automated production technologies, and machine vision systems.6 These data can

be managed locally or in a cloud-based manner.7

Smart vision systems provide innovative solutions in the direction of industrial autonomy and im-

prove productivity as well as quality management. Originally, a smart vision system was composed of a main

processor, image procession hardware, a camera, and an illumination.8,9 Now, because of advanced technol-

ogies, all the components are combined in one smart camera integrated with detection software. Machine

vision systems employ machine learning algorithms and neural networks for object detection, classification,

and recognition and utilize imaging solutions such as cameras to identify and label information based on

pretrained image models. A machine vision system in CPS can improve the reliability and robustness of

the system.10

To increase the intelligence and autonomy in the shop floor, some industrial tasks were identified as cost and

time consuming and require frequent human interventions. First is the task of checking the status, availability,

compliance, and readiness of the production lines prior to the start of production, which is commonly known as

the industrial inspection process.11 Second is an in situ dimensional analysis task that uses smart cameras to

improve the control of conformity of the process control.12 In the presented approach, smart cameras are con-

sidered to give industrial robots the capability of performing machine inspection and in situ parts dimensional

analysis. It is important to note that the proposed modular smart vision system is not just achieved by adding

smart vision technology to the industrial robots but also by reaching a certain level of modularity and decen-

tralization on the control and the plant operation level of the shop floor to create a modular smart vision system

that is designed and launched by the MES in a modular way.

The rest of the paper is organized as follows: the section “Related Work” presents the related research work.

It is essential to indicate that modular smart vision systems could not be found in the literature review; hence,

smart vision systems that are dedicated to do a specific task are presented in “Related Work.” “Proposed Modular

Smart Vision System” explains the proposed smart vision system. “Implementation of the Proposed System”

presents the experimentation of the proposed system, and “Results” and “Discussion” show the results and dis-

cussion. Finally, “Conclusions” concludes the research.
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Related Work

The proposed smart vision system for control of conformity and industrial inspection is achieved by reaching

a certain level of modularity on the control level. Thus, works related to the modularity in the context of Industry

4.0 will be presented first, and then a literature review for the applications of the industrial control of conformity

and inspections by the use of smart vision system will be investigated.

MODULARITY IN THE CONTEXT OF INDUSTRY 4.0

Modularity, which is a design principle of Industry 4.0, can be defined as the capability of system components and

processes to be separated and combined easily and quickly in order to reach new functionalities that respond to

different industrial requirements.13 Modules can be added, rearranged, or relocated in the production line based

on manufacturing requirements. Hence, based on the plug-and-play principle, manufacturing systems will

become loosely coupled and reconfigurable.14

Looking back to the literature review, various research and development contributions have been made and

published in the context of modular production systems. The study that most closely relates to the smart vision

system proposed by this paper is the design methodology presented by El Zant et al.15 They proposed a modular

process methodology with the objective of replacing a rigid production process with a more agile one, by creating

functional modules out of standardized machining and transfer operations, and also by transferring the control to

the planning layer (MES), thus allowing the orchestration of production plans by the production manager of its

human–machine interface (HMI). According to Perzylo et al.,16 rather than mass-producing similar products,

firms must respond to market demand for customized or even individualized products in order to reach clients’

satisfaction. As a result, their production lines can have many different variations of products and services, which

can only be produced in small batch sizes. In the same context, Gorecky et al.17 explore the requirements for

a modular system architecture such as modular process components, modular supply infrastructure, integrated

product tracking, and modular information technology interface in order to be able to react appropriately to

current and future challenges. Um et al.18 designed a real-time virtual reality system of a modular factory by

a loosely coupled architecture. The proposed system shows the technological enablers of the synchronization

of the physical production module to the virtual environment. Closed-loop adaptive machining based on func-

tional blocks has been proposed by Fan et al.19 for adaptive process planning and execution. Low-level controllers

are implemented to handle low-level tasks, such as motion control and data acquisition. On the other hand,

Schioenning Larsen et al.20 explore the challenges, based on development steps, in developing modular services

in manufacturing companies. According to them, in order to shift from manufacturing products to offering a

product-service system, the key challenges are establishing relationships between products and services, making

the business case for implementing service modularity, service communication, and managing new service

variants.

In this paper, the proposed smart vision system uses modularity at the MES level in order to launch a flexible

inspection plan and react based on the result of the control of conformity system. To the best of our knowledge,

the integration of modularity with smart vision systems was not found in the literature review.

SMART VISION SYSTEM FOR THE CONTROL OF CONFORMITY AND INDUSTRIAL INSPECTION

There are many computer vision systems that are used for control of conformity and dimensional analysis in

a wide variety of applications. These applications are mainly quality control, measurement, surface and depth

inspection, thermal inspection, parts tracing, anomaly detection, and robot vision.21 The agriculture sector has

captured the attention of researchers for the last decade. Devi, Neelamegam, and Sudha22 designed a machine

vision system to inspect the size and quality of rice grains. The proposed system uses canny edge detection to

obtain the contours of the rice grains, then develops a region of interest around the contours. The features ex-

tracted using this system are area, length, width, and diagonal, which were used to classify rice types with 90 %

accuracy. In the context of advanced manufacturing systems, a smart vision system is used for dimensional
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analysis of manufactured parts and quality control of welding rods. Huang et al.23 introduce a visual inspection

system for empty bottle quality detection, which mainly includes the precise localization and monitoring of de-

tection zones in addition to defect detection. In the process, many algorithms were used, such as edge points

double classification, least squares fitting, and Fourrier transform, in order to improve the speed and accuracy of

the system. In the same concept, Akundi and Reyna24 designed an automated quality control system based on

machine vision for product dimensional analysis. The proposed system offers a simple setup capable of iden-

tifying defects of various shapes such as cubes, cylinders, and sinusoidal objects. In addition, the vision system was

able to identify millimeter-sized defects, making it practical to use. In the construction field, Kazemian et al.25

present a computer vision system for real-time monitoring of extrusion quality. The developed system is reliable

and accurate and uses 2-D videos that are easy to capture and analyze. In the same field, Wójcik and Żarski26

introduce an Red Green Blue-Depth camera for the measurements of surface defect area for bridge inspection. By

this solution, infrastructure inspections and maintenance processes are improved in terms of precision, speed,

safety, and data exchange between different parties. Moru and Borro27 explore the quality control of gears pro-

duction by using a special optical lens and a comprehensive standard software for machine vision (Halcon). In

this approach, gears are inspected by a smart fixed camera. Li et al.28 proposed a novel cognitive vision anomaly

detection method that mimics human cognition ability and focuses not only on normal data but also particular

vision properties of abnormal data. The results of their experimentations show that the proposed method exhibits

higher accuracy and is more concrete in terms of anomaly detection.

It is obvious from the literature review and according to the best of the authors’ knowledge that a modular

smart vision system that can be considered as a module in the production line and can be deployed to perform

many tasks for different machines and products, guided by the MES in a modular way, based on the industrial

need, does not exist, which is the main contribution of this paper. In addition, the dimensional analysis is done in

situ without the need to remove the machined parts from the machine, which is a secondary contribution of the

proposed system.

Proposed Modular Smart Vision System

The developed smart vision system is divided into two subsystems: (i) industrial inspection of the shop floor

machines and (ii) control of conformity that ensure the sizes of the machined pieces.

Industrial inspections are frequently performed in industries. They are intended to check the shop floor for

irregularities, alarms, warnings, and machine status and availability before starting a production process. These

tasks can be relatively time consuming, and the operator could still miss some information. The proposed modu-

lar smart vision system presents how these tasks could be incorporated in a flexible environment, hence fixing

both limitations mentioned previously. This system increases the performance of the production line and make

the control systems inside the shop floor more autonomous. The collected information during the machines’

inspection is communicated with the MES and displayed on its HMI. Thereby, the MES offers the capability

to design and configure an inspection plan from the predefined functional modules. The MES customizes, with

its own HMI, the different areas to be audited and then launches the inspection plan remotely in a modular and

focused aspect. In order to design the modularization of the industrial inspection through the MES, two criteria

should be taken into consideration: first, the industrial needs behind the inspection that define the consistency of

the controls, such as repetitiveness, dangerousness, complexity and so on, and second, the critical machines

and areas inside the shop floor that should be inspected as well as the sequence of operation of the industrial

inspection that defines the elementary modules for inspection, such as movements, controls, and interpretation of

controls.

In the same context, the smart vision system for control of conformity has the objective to give robots the

ability to effectuate, autonomously, an in situ dimensional analysis that traditionally required manual interven-

tion. First, on the MES, the dimensional analysis job is designed and launched, taking into consideration the

machine that will be inspected, the diameter of the machined piece, and the accepted tolerance. After the
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manufacturing of a part is completed, the machine sends information to the MES that the job is done, which in

turn sends a command to the smart vision system to perform an in situ dimensional analysis to the manufactured

part. The robot detects its environment by using sensors and cameras, takes pictures and analyzes them by the use

of intelligent cameras, and communicates the results with the MES. The objective of the proposed conformity

control system is to check the dimensional conformity of the manufactured parts while they are still mounted

inside the machine in order to limit the defects and save time. In many cases, a deviation from the desired di-

mension may exist because of tool wear or positioning inaccuracies, which may require additional machining

processes to achieve the desired dimension by shifting the cutting tool. The proposed in situ control of conformity

is crucial when dealing with continuous production in order to increase production quality and to save time that

can be used more efficiently.

Looking at the smart vision system, smart cameras have been integrated with industrial robots by installing

the cameras on the side of the robots’ tool flanges to obtain the necessary movement for them to reach all affected

areas. The smart camera is calibrated to measure the specified dimensions and to check the status of machines.

It is considered as a single entity with the robot and thus allows for the autonomy of the tasks. The cameras could

then collect images from the shop floor and carry out a set of image processing algorithms, such as pattern

identification, brightness and contrast detection, and tool wear detection.

The architecture of the proposed smart vision system, shown in figure 1, consists of four layers:

• The MES layer plays the role of an orchestrator that the production engineer uses to design and launch the
smart vision system to perform a customized industrial inspection and control of conformity. The MES
layer is the layer that add the modularity and flexibility aspects to the proposed system by the possibility to
design, in a customized manner, the system based the industrial requirements. After designing the system,
the MES sends all “Activation Trajectory Inspection (ATI)” Booleans (Bool) to the Programmable Logic
Controller (PLC) via PROFINET, which is an open Industrial Ethernet solution based on international

FIG. 1 Layers of the proposed framework, including the different components and communication protocols. OPCUA =

Open Platform Communications United Architecture.
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standards. As a result, the PLC sends back to the MES three variables (one Boolean [Bool] and two integers)
that indicate the position of the robots and detect and count the anomalies.

• The PLC layer plays the role of a moderator that arranges and distributes the variables between the MES
and the smart vision system in a standardized way. In addition, the PLC is connected to the smart vision
system via PROFINET and to the input/output of all machines on the shop floor by using a local network
(Ethernet cables).

• The smart vision system layer is the inspection system composed of two smart cameras mounted on one
fixed robot and one mobile robot. The smart cameras take photos and analyze them with their associated
software and then communicate the analysis with the robots via Transmission Control Protocol/Internet
Protocol communication protocol. Robots with smart cameras are combined together to form one com-
ponent because of the full integration of the smart cameras with the robot software. Hence, the camera does
the detection job and communicates the result only with the robot, which in turn exchanges information
with the PLC and the MES.

• The shop floor layer is connected to the PLC and consists of all machines and stores on the shop
floor.

Implementation of the Proposed System

The smart vision system was carried out and experienced in Platform 4.0 at the Product Design and Innovation

Laboratory, Arts & Métiers Institute of Technology. This platform, presented in figure 2, consists of three com-

puter numerical control (CNC) machines: a two-axis lathe (Tormach), a three-axis milling machine (Tormach),

and a laser cutting machine (Universal Laser System). In addition, there was a 3-D scanner (FARO) for quality

control and two six-axis robots (KUKA) that allow part movements between these different areas.

The fixed robot only has access to the two storage areas and the conveyor, whereas the mobile robot can

attend all machines, the table of the 3-D scanner, and the transition store area. Two embedded intelligent cameras

(Sensopart VISOR Allround V20) were mounted on the robots, forming the smart vision system and enabling the

industrial inspection and in situ control of conformity of the machined pieces. The camera communicates with

the robot using PROFINET protocol. There is no direct communication between the camera and the PLC

(Siemens S7-1500).

FIG. 2 ENSAM Industrial Platform 4.0 (3-D model). IoT= Internet of Things; T'C = Temperature.
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SMART VISION SYSTEM EMBEDDED IN INDUSTRIAL ROBOTS FOR SHOP FLOOR MACHINE

INSPECTION

The production engineer designs an inspection plan from functional modules by using the HMI of the MES

(AVEVA System Platform). Each location that can contain parts is considered as an inspection module or in-

spection area, for instance, lathe machine or initial store (Init_Store). Table 1 summarizes the list of all modules

for the two robots with the corresponding cycle codes. Each module is predefined on the MES as well as on the

robots in the form of a cycle. Once the MES communicates the corresponding cycle code to the robot, the in-

spection will be launched.

For better understanding of inspection modules, they are composed of a sequence of preconfigured and

standardized operations and robot trajectories. Table 2 shows a breakdown list of operations of lathe machine

inspection module (Cycle Code 223 of Table 1). For instance, Robot Transfer is a robot trajectory that moves the

robot from one place to another, camera triggering operations are used to start a detection program on the smart

camera, and machine door handling is used to open and close machine doors. For the parameters, S refers to the

robot’s speed, Pi refers to the next position of the robot, and JobID is the program number from the smart camera

software. Camera recognition programs are called jobs, and in the configuration shown, the robot is responsible

for sending the JobID to be performed. Therefore, the results of the visual calculations are collected by the robots

and sent to the MES together with the robot’s current position.

Figure 3 presents the sequence diagram of the proposed system, showing the different executed tasks during

the system operation.

The production engineer can arrange the sequence of the inspection by priority in the MES’s HMI. The

Inspection Modules box contains all the inspection trajectories currently available, and the operator drags

TABLE 1
List of machines’ inspection modules

Functional Module Robot Cycle Code

Initial store inspection Fixed robot 121

Transfer store inspection Fixed robot 122

Conveyor inspection Fixed robot 123

Laser cutting machine inspection Mobile robot 221

Milling machine Inspection Mobile robot 222

Lathe machine inspection Mobile robot 223

Scanner 3-D inspection Mobile robot 224

TABLE 2
List of operations of the lathe machine inspection module

Operation ID Operation Description Parameters

1 Robot transfer (S, P1)

2 Trigger lathe panel inspection job (JobID)

3 Open lathe door (…)

4 Robot transfer (S, P2)

5 Trigger tool identification job (JobID)

6 Trigger tool wear detection job (JobID)

7 Robot transfer (S, P3)

8 Trigger part detection job (JobID)

9 Robot transfer (S, P4)

10 Trigger unidentified part job (JobID)

11 Robot transfer (S, P0)

12 Close lathe door (…)
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and drops the trajectories after the START to create an inspection plan that is executed from left to right. Once

finished, the operator adds the END block and can then SAVE the plan for each of the robots. Figure 4 shows an

example of the designed functional modules for fixed and mobile robots to perform industrial inspections. To

start the inspection, the operator clicks on the LAUNCH button, which opens the figure 5 interface. This inter-

face allows the operator to get the robots ready for external usage and start the plan by pressing the RUN button.

The two inspection boxes showcase the result of the camera in real time.

The detected parameters by this industrial inspection are the presence of parts inside the machines, type of

parts, tool identification, and tool wear detection. In addition, the machine’s electrical panels are inspected in

FIG. 3 Sequence diagram for shop floor machine inspection.

FIG. 4 Inspection plan configuration on the MES’s HMI for Fixed Robot (RF) and Mobile Robot (RM).
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order to verify the position of the keys and check the light-emitting diode lights to identify the emergency stop of

the machine and the door status if it is locked or not. If any anomaly is detected, the MES will send an error

message for an operator to fix the issue. The output of the industrial inspection is visualized on the HMI mon-

itoring screen of the MES, as shown in figure 5, where the statuses of all the machines and the stores at the lab are

presented. Therefore, the smart vision system is integrated with the HMI of the MES to orchestrate the inspection

design and visualize the associated results.

SMART VISION SYSTEM EMBEDDED IN INDUSTRIAL ROBOTS FOR MACHINED PIECES’ IN SITU

CONTROL OF CONFORMITY

The in situ control of conformity is autonomously performed by using the same smart vision system previously

described after the finished operation on CNCmachines. Right after the lathe machine completes the execution of

FIG. 5 Inspection’s result on the HMI monitoring screen and the acquired images by the cameras.

FIG. 6 Camera installation on the robot and robot inspecting a machined part inside the lathe machine. (A) The camera

mounted at the end of the robot, behind the gripper. (B) The robot entering the lathe machine to take a photo.

(C) Close-up of (B) showing inside the machine.
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the G-code, the machine sends to the MES that the machining is done, so the MES commands the mobile robot to

move inside the machine to take images of the manufactured part and analyze it (fig. 6). Several dimensions of a

machined part are inspected, and the deviation is measured. In the experiment, the diameter of machined parts is

checked inside the lathe machine. The measurement obtained by the smart camera is compared with a reference

dimension, and then the deviation between them is identified. The decision of the dimensional analysis is made

based on the error value, and the robot communicates the dimension result to the MES.

The proposed approach is applied to a simple cylindrical part in which the original diameter is 30.00 mm and

the desired diameter is 25.000 mm with an accepted tolerance of ±0.05 mm. After performing a dimensional

analysis of the part, the diameter is 25.680 mm, which is not acceptable and needs to be rectified. A new G-code

is generated by the MES and sent to the lathe for execution to rectify this error. The new diameter is rechecked,

and it is equal to 25.036 mm, which is acceptable. Figure 7 presents the sequence diagram of the in situ control of

the conformity system in order to better explain the concept.

Results

To validate the usefulness of the proposed solution, the time it takes for an operator to manually realize the

operation is compared with the time the robot with a camera takes.

For the first application (in the section “Smart Vision System Embedded in Industrial Robots for Shop Floor

Machine Inspection”), an operator needs 3 min to inspect the entire platform, and the robots take 3 min 25 s. At

first glance, the operator seems faster; however, human error is more likely to occur, especially because operators

can forget to inspect some machines or validate this step without doing it carefully. Secondly, the platform is a

simple production line with a small area; however, a factory can have huge number of machines to inspect,

distributed in a huge space. In that case, the operator will take much more time than a robot. Finally, it is im-

portant to note that during the robot inspection, the operator is free to do other industrial tasks that will be more

efficient for the production.

For the control of conformity application (the section “Smart Vision System Embedded in Industrial Robots

for Machined Pieces’ In Situ Control of Conformity”), other means to attain it are either by an operator directly

measuring the feature on the part or using a quality control machine, such as a 3-D scanner. The results are as

FIG. 7

Sequence diagram of the

smart vision system for

control of conformity.
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follows: 29 s for the robot, 54 s for the operator, and 4 min for the scanner. The scanner takes much longer because

measuring a part with the camera or manually with a caliber takes a few seconds, whereas scanning is a long

process. However, scanning gives better and more complex results than a simple dimension. The operator takes

almost double the time compared with the robot. In addition, the operator has to enter the platform, which

requires completely stopping the production for security. The other problem with quality control solutions is

that they often require removing the part from the CNC, which decreases the precision.

The experiments show that the proposed solution leads to reducing the time required to perform dimen-

sional analysis of products and is a promising solution for industrial inspection, especially in large-scale factories

in terms of time, accuracy, and autonomy of the process.

Discussion

In industries, control of conformity and industrial inspections are critical tasks that are identified as cost and time

consuming and require frequent human intervention. The proposed system in this paper uses smart vision tech-

nologies embedded in industrial robots to perform industrial inspection of all machines in a factory before

launching the production plan and control of conformity through an in situ dimensional analysis of the manu-

factured parts after the machining process in an autonomous and flexible manner. This modular smart vision

system shows flexibility, high efficiency, and time-reducing results, as previously explained.

On large production lines, the proposed industrial inspection and control of conformity system saves cost and

time, not to mention its congeniality with mass customization production aspects in an evolving shop floor 4.0.

Furthermore, the proposed system is in line with Industry 5.0 of the European Commission29 because it complies

with a more sustainable industry thanks to the gains in terms of safety and saving raw materials. In the experiments,

a simple part was machined for demonstration. However, in more advanced factories with a huge number of

machines and therefore more complex manufactured parts and a more dangerous environment,30 the manual

inspection and control of conformity of machined parts become more challenging. Hence, by using the proposed

system, inspection time and cost as well as production quality could be improved dramatically.

Conclusions

In manufacturing systems, there are several essential tasks to be performed before and after the production proc-

ess. In traditional systems, these tasks are done manually, which can lead to more resource consumption and the

risk of human error; however, advanced manufacturing systems or Industry 4.0 tend toward a more autonomous

manner. This study has presented a modular industrial inspection and control of conformity, combined into a

single system, that uses a smart vision system embedded in industrial robots. This system, compared with the

manual execution of the inspection and parts measurement tasks, shows high efficiency, high level of shop floor

visualization, and time-reducing results.

Finally, the proposed system remains rigid and depends on various restrictions, such as the uncertain con-

ditions of the workshop. Thus, as future research will show, the use of AI will enhance the system to detect

disturbances and adjust measures according to them. In addition, it is important to utilize the collected data

from this system in order to train a predictive maintenance model and to integrate the results into a numerical

digital twin that can generate recommendations, such as changing cutting tools. Finally, a novel idea is under

development at the platform 4.0 of LCPI, which is the installation of smart vision cameras inside the machines in

order to continuously control the conformity of the parts during the machining process and to implement a

corrective action in real time.
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