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Abstract

Many destructive methods for measuring residual stresses such as the slitting

method require an inverse analysis to solve the problem. The accuracy of the

result as well as an uncertainty component (the model uncertainty) depends

on the basis functions used in the inverse solution. The use of a series expan-

sion as the basis functions for the inverse solution was analysed in a previous

work for the particular case where functions orders grew consecutively. The

present work presents a new estimation of the model uncertainty and a new

improved methodology to select the final basis functions for the case where

the basis is composed of polynomials. Including nonconsecutive polynomial

orders in the basis generates a larger space of possible solutions to be evaluated

and allows the possibility to include higher-order polynomials. The paper

includes a comparison with two other inverse analyses methodologies applied

to synthetically generated data. With the new methodology, the final error is

reduced and the uncertainty estimation improved.

KEYWORD S

inverse analysis, residual stress measurement, uncertainty estimation

1 | INTRODUCTION

Many destructive residual stress-measuring techniques are based on the relationship between the deformation measure-
ments obtained during a sequential material removal process that releases stresses in the work specimen. Because an
analytic solution in generally is not possible, an inverse solution approach is used to solve this problem.[1] In order to
implement this technique, the residual stress profile (RSP) is expressed as a linear combination of a known basis func-
tions. Multiple functions have been used in the literature such as some continuous series (the Legendre polynomials,
the power functions, the Chebyshev polynomials, etc.) or pulse functions (bounded Heaviside) as the basis.[2]

Previous work carried by Prime and Hill[3] studied the solutions based on series-expanded functions by looking the
optimal solution based on the total uncertainty reduction. Like most uses of a series expansion inverse, for example,
previous studies,[4–6] this study considered polynomials where the orders in the basis functions vary consecutively (1, 2,
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3, 4, 5, …). Thus, the maximal polynomial order to be included is limited by the number of strain measurements, since
the degrees of freedom of the system of equations is limited by the number of measurements.

The present work looks to improve this methodology by studying a wider range of solutions. For the polynomial
basis functions case, the solution is also based in the minimisation of the total uncertainty, so it can be interpreted as a
generalisation of the Prime and Hill methodology,[3] for a polynomial functions case.

This is done by including combinations of nonconsecutive polynomials orders. This choice allows including higher
polynomials orders in the solution. Thus, the identification and elimination polynomial terms that mostly only add
noise are achieved. In addition, a new model uncertainty for the residual stresses (a total uncertainty component) is
proposed and implemented. The spirit of this article is to bring new tools to analyse residual stresses. The same experi-
mental data can be analysed by using different inverse solution methodologies; consistent results would increase the
certainty of the results.

2 | METHODOLOGY

Different residual stress destructive measurement techniques require solution by inverse analyses. They are classified
based on the part geometry and the cutting process. The principal methods that can be found in the literature are the
layer removal method,[7] the hole drilling method,[8–10] and the slitting method.[2,11–15]

This section reviews the key points and the equations to solve a residual stress problem by the inverse analysis
approach. Detailed information of each specific method can be found in the references.

The basic approach in all these methods is to incrementally remove material from the specimen. At each removal
step, some internal stresses of the specimen are released, distorting the specimen. Two measurements are made: the
depth of the cut ai (where the i subindex refers to the cut number) and the correspondent measured strain, εmeas,i. The
strains are measured some place where the sensitivity of the released stresses is high; the scheme of Figure 1 represents
two typical strain gauge positioning (top edge and back edge) for the slitting method case. The residual stress is then
calculated as function of the measured strains εmeas.

The series expansion solution strategy is to represent the stress profile as a linear combination of a set of known
functions, called the basis functions P (in this work, only the case of polynomials will be considered). In matrix form,
this is expressed as follows:

fσg≈ ½P�½A�, ð1Þ

where σ (vector with m elements) represents the RSP at each depth ai, with m as the number of total cuts. Each column
of the P (matrix with a dimension of mxn, with n as the total number functions used) is the evaluation of each of n
functions composing the basis at each ai cut. A is a vector that is composed of the Aj function multipliers (one for each
polynomial in the used in the basis). To solve the problem, a compliance matrix K (with a dimension of mxn) is calcu-
lated, where each element kij represents the strain that would be obtained by a stress profile Pj, when a cut of depth ai
is performed. Based on linear elasticity theory and superposition, the relationship between strains and the compliances
matrix is as follows:

FIGURE 1 Strain gauge typical positions during strain measurement procedure for the slitting method.
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fεg¼ ½K�½A�, ð2Þ

where the only unknown term is the multipliers vector, A. Once A is calculated by a least square fit to best approximate
the measured strains,

fAg¼ ð½K�T ½K�Þ�1½K�Tfεmeasg¼ ½B�fεmeasg, ð3Þ

with ½B� ¼ ð½K�T ½K�Þ�1½K�T . The residual stress can be also found by applying Equation (1).
The challenge is finding a good set of basis functions P that can reproduce the RSP by applying Equation (1) with

the lowest possible error.
Equations (1)–(3) allow one to calculate an estimation of the RSP based on the strains measured during the cutting

process. However, they do not offer a criterion to choose the basis functions in order to obtain an optimal result. In the
following, a methodology for obtaining that optimal result by minimising the total uncertainty reduction is developed.

2.1 | Sources of uncertainties and errors

The sources of uncertainties and the error propagation in the case of a series-expanded basis functions for residual
stress-measuring process are covered in (3). In this work, a generalisation of this methodology is proposed for the poly-
nomials basis functions case, with a modification of the model uncertainty estimation (one of the total uncertainty
components).

There are two main sources of uncertainties. The first comes from the errors during the measurement process and
the fitting of Equation (2) and is known as the stress uncertainty due to the strain uncertainty propagation. The second
one and more complicated to estimate is associated with the capacity of the basis functions to actually reproduce the
stress profile, and it is known as model error.

The total variance is then calculated by the following:

Δσ2totali ¼Δσ2ε,iþΔσ2model,iþΔσ2F,iþ… ð4Þ

where Δσε represents the stress uncertainty due to the strain uncertainty propagation, Δσmodel is the model error and
ΔσF any other significant source of uncertainty not covered in this work.

The best possible solution can be based on the minimum total uncertainty, the solution giving the optimised com-
promise between all the sources of uncertainties.

2.1.1 | Strain error/uncertainty identification and propagation

For the case of the stress uncertainty due to the propagation of the strain uncertainty, the same methodology developed
by Prime and Hill[3] is used in this work. Thus, only the key points are highlighted. The strain error propagation can be
defined by the following:

Δσ2ε,i ¼u2A1

∂σi
∂A1

� �2

þu2A2

∂σi
∂A2

� �2

þ…þ2u2AjAr

∂σi
∂Aj

� �
∂σi
∂Ar

� �
, ð5Þ

where Δσε,i is the stress uncertainty at the aith position and uAj is the uncertainty in the parameter Aj.
From Equation (1),
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∂σi
∂Aj

¼PjðxÞ, ð6Þ

then Equation (5) can be written in its matrix form as follows:

fΔσεg2 ¼ diagð½P�½V �½P�TÞ, ð7Þ

with V representing the covariance matrix of the u2AjAr
terms and diag indicates a vector formed by the diagonal ele-

ments of the matrix. The covariance matrix can be calculated by the following:

½V � ¼ ½B� DIAG uε½ �2� �½B�T ð8Þ

where uε,i are the strain uncertainties values; in this case, DIAG½uε� indicates a diagonal matrix with the uε,i elements as
the diagonal elements.

There are two possibilities in order to estimate the strain uncertainty. The first one is the uncertainty due to the
inherent precision of the experimental apparatus (in which its root mean square [rms] value is represented by �e). The
second is an estimation based on the strain misfit and the degrees of freedom of the system uεmf ,i .

To be conservative, the maximum of those two possibilities is used at each cut depth:

uεi ¼ max ei, uεmf ,i

� �
, ð9Þ

where uεmf represents the strain uncertainty due to the strain misfit.
The rms misfit uncertainty uε is calculated by the rms mean is calculated as follows:

uε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m�n

Xm
i¼1

u2εi

s
, ð10Þ

which gives the individual uncertainty of the strain uncertainty due to the strain misfit at each cut:

uεmf ,i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m

m�n

r
jεmeasi � εcalci j: ð11Þ

Once the strain uncertainty is identified, uε, the correspondent stress uncertainty component can be calculated by
applying Equation (7).

2.1.2 | Model error/uncertainty

The second uncertainty component considered in this equation is the model error. In order to explain it, Equation (1) is
considered.

Each polynomial Pj in the series may be seen as a unique source of information (unavailable in other polynomials
for the case of an orthogonal basis). In the hypothetical case of a perfect fit of the multipliers A, the more polynomials
used in the series, the closer the approximation to the stress profile will be. But the number of available data is limited
to m values (the number of cuts). The maximum number of polynomials to be fitted is also limited to this value.

Considering the strain uncertainty given in Equation (11), if the number of polynomials (represented by n) used to
fit the RSP is equal to the number of available data m, the strain uncertainty will tend to infinity. The associated stress
uncertainty component also will tend to infinity.

4 of 21 BRÍTEZ ET AL.
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This fact forces reducing the number of polynomials used in the series. This truncation reduces the capacity to accu-
rately reproduce the stress profile. The uncertainty associated to this mathematical phenomenal is known as the model
uncertainty.

Model uncertainty estimation
The model uncertainty cannot be calculated directly because the real stress profile is not known, so it can only be esti-
mated based on hypotheses. In the Prime and Hill methodology,[3] this estimation is made based on the hypotheses that
the uncertainty is the standard deviation of a set of solutions considered similar to each other:

Δσ2model,iðqÞ≈
1

N�1

Xc

k¼b

σk,i�σlð Þ2, ð12Þ

where the i sub index refers that the calculation is made for a cut depth ai and b and c are solution identifiers where
their values represent the maximal polynomial order in the considered solution. The parameter q is the solution identi-
fier for which model error is computed, also representing the maximum order in this series composition. The subset of
solutions used to estimate the error is such that b≤ q≤ c. N is the number of total solutions considered in the set (from
b to c); the use of N ¼ 3 so, b¼ q�1 and c¼ qþ1 show a reasonable compromise between small and large ranges of
solutions.[3] Finally, σi is the mean solution in the considered range from k¼ b to c.

In this work, a new algorithm is going to be presented in a later section using a larger number of potential solutions.
In this case, a new estimation hypothesis is taken into account, expressed by the following:

Δσ2model,qi
≈

1
r�1

Xr

j¼1

σq,i�σj,i
� �2

, ð13Þ

where r is the total number of solutions considered to estimate the uncertainty, q and j are basis identifiers, where q
represents the particular evaluated basis solution and j all the basis solution set.

In this modelling, the uncertainty is estimated by the rms difference of the considered solution (identified by q) and
all the solutions in the set. With this new methodology, a different model uncertainty can be obtained for each solution
in the set considering the same set of possible solutions.

2.2 | New algorithm motivation

When using consecutive polynomials as the basis function, the set with three polynomials is composed of the polyno-
mials of order 2–4 (without considering the linear function), the set with four polynomials by 2–5 and so on. This
approach implicitly limits the maximum exponential order to be used, as it demands a big number of polynomials in
order to reach a high exponential order ð½2,3,:::,m�Þ. As previously discussed, a high number of polynomials in a solu-
tion set will increase the strain misfit uncertainty.

There are cases, for example, the additive manufacturing process, where the RSP shows cyclical peaks and valleys[16]

as a result of the cyclic thermomechanical manufacturing process. The fitting of these kind of profiles would not be possi-
ble by using only polynomials with low orders.

In other cases, numerical simulations and experimental results show that when the loading process and the part
geometry are symmetric in relation to the midplane of the part, the resulting residual stress are symmetric as well,[17,18]

for example, sheet rolling process. On the other hand, for a symmetrical part with an antisymmetrical loading, as, for
example, a bending test,[3,19] the RSP shows a tendency to be antisymmetrical. It may be expected for a symmetrical stress
profile to be well represented mostly by a linear combination of even functions and for the case of an antisymmetrical
function by odd functions.

Considering these particular cases, it is possible to assume a general hypothesis that when taking consecutive expan-
sion orders in the solution set, there may be many polynomials with low contributions or even that introduce noise to
the result. Furthermore, the presence of a polynomial with low contribution consumes available information, raising
the strain misfit uncertainty (Equation 8) and limiting the maximum exponential order to be evaluated.

BRÍTEZ ET AL. 5 of 21
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If these polynomials with low influence are not considered, it will allow the addition of other polynomials poten-
tially with a higher and better impact on the final solution. To achieve these benefits, an algorithm looking for the
smallest total uncertainty in a larger space of possible solutions is presented.

The methodology will analyse all possible solutions combination of polynomials without requiring sequential order-
ing and take as the final choice the one that minimises the total uncertainty given by Equation (4). The principal chal-
lenge results in identifying the sets that are going to be considered in order to estimate the model uncertainty described
in Section 2.1.2.1

2.2.1 | The space of possible solutions

Before introducing the new algorithm, it is important to define the space searched for solutions. As in Equation (1), the
RSP is represented by a finite series of known functions. The minimum and maximum numbers of polynomials used in
the series as well the polynomials orders considered define and bound the space of solutions. According to Equations (1)
and (2), the RSP can be evaluated if the measured strains and the polynomials composing the series are known.

The number of possible solutions to be analysed is only going to be limited by the associated computational cost,
which will be governed by the following parameters:

fQg Possible orders list: A 1D-array containing all the polynomial orders to be considered to include in the basis to
be analysed. Example: fQg¼ ½2,3,…,21,22�. Normally, all orders between the bounds should be considered. The lower
bound is known as the minimum polynomial order and the superior bound as the maximum polynomial order.

pmax: A scalar value representing the maximum number of polynomials to be included in a solution basis. The calcula-
tion cost also grows significantly as this parameter is big.
pmin: A scalar value representing the minimum number of polynomials to be evaluated in a solution basis, this parame-
ter is normally be set at 2 or 3.

Family of solutions: The solutions are going to be grouped by the number of polynomials p composing their basis,
where pmin ≤ p≤ pmax; these groups of solutions are called family of solutions.

Other definitions and variables obtained as a function of the previous mentioned are as follows:
[fBocg Basis orders composition:] A 1D- array containing the polynomial orders of a basis for a particular solution.

Example: Boc ¼ ½2,3,8,15�, the basis of the solution being analysed is composed of the polynomials of orders 2, 3, 8 and 15.
Considering a particular family of solutions with p polynomials and all the possible polynomials orders to be com-

bined in the basis, represented in fQg, the number of possible solutions in the pth family is given by the following:

No of solutions with p polynomials¼Cp
NQ ¼

NQ!
p!ðNQ�pÞ! , ð14Þ

where NQ is a scalar representing the total number of elements in fQg.
Now considering all the families of solution from pmin to pmax , the total number of solutions to be computationally

evaluated is going to be given by the following:

Total possible solutions¼Cpmin
NQ þC

pminþ1
NQ þ…þCp

NQþ…þCpmax�1
NQ þCpmax

NQ ð15Þ

A combinatorial algorithm of the elements found in Q combined in sets of p should be applied in order to identify
every single basis order composition fBocg.

2.2.2 | General sorting algorithm description

The algorithm consists of three sorting steps before choosing the solution giving the minimum total stress uncertainty;
a general chart of the algorithm is presented in Figure B1 in the Appendix.

6 of 21 BRÍTEZ ET AL.
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As presented, the total uncertainty is mainly composed of two components: the stress uncertainty due to the strain
uncertainty and the stress uncertainty due to the model error. The first component can be calculated directly with the
measured strains and the basis functions. The second component is more complicated; each residual stress solution can-
didate needs a subset of possible solutions to be compared with, in order to estimate the evolution of model error.
Therefore, the final problem comes down to identifying which possible solutions should be considered in the final sub-
set to obtain a good estimation of the model uncertainty.

The procedure was developed through extensive trial and error to optimise a solution between the sometimes-
competing goals of an accurate solution and an accurate uncertainty estimate. Most of the solutions inside the declared
space will give poor answers; they need to be identified and eliminated. This action will help not only to find the best
possible answer but also to correctly estimate the uncertainty.

As explained before, solutions with low number of polynomials should be considered in the model uncertainty esti-
mator, but for combining reasons, the number of these solutions is lower than those solutions with a large number of
polynomials. This fact would reduce their influence in the final uncertainty estimator to a minimum. In order to avoid
this problem, only one solution for each family of solutions is going to be considered. This guaranties the same weight
for each family in the final model uncertainty estimator.

The first and second sorting steps serve to identify the best possible solution in each family. The third sorting step
eliminates solutions that may cause overestimation of the model uncertainty. The final step chooses the best remaining
solution.

2.2.3 | First sorting procedure

The first step is to generate every single stress solution in the space of solutions and its corresponding uncertainties due
to strain uncertainty fΔσεg (given by Equation (7)). Each solution is then grouped in its family of solutions.

A significant number of the evaluated solutions will present a large strain uncertainty. In order to reduce the num-
ber of solutions to be included in following computational steps, a first sorting procedure based on Δσε (the mean value
of each fΔσεg) is carried on. Only a fixed number of solutions in each family are going to be kept inside each family of
solutions. The number of possible solutions with the lowest ( Δσε ) to be kept on each family is given by a new parame-
ter NP. A good range for this parameter is 8≤NP≤ 11. After several tests, not included in this work, it was found that
the influence of the choice of the value of NP is low when maintained in this range. The final answer has a low depen-
dence on this parameter because this first step represents coarse filtering.

2.2.4 | Second sorting procedure

The purpose of the second sorting procedure is to reduce each family of solutions to only one possible solution. The idea
is to calculate the total uncertainty for each possible solution in the group. The model error will be computed consider-
ing only the rest of the solutions of the family group, applying Equation (13). Then the total uncertainty (Equation (4))
and the correspondent mean total uncertainty are calculated for each candidate for the RSP. The solution ‘representing’
the family group in the subsequent stage is the one with the lowest total uncertainty.

2.2.5 | Third sorting procedure

At this point, only one solution candidate remains for each family. The model uncertainty for each solution should be
recalculated, where the comparison set of solutions is the remaining solutions, with different numbers of polynomials
in the basis, as the comparison set for the application of Equation (13). Once the model uncertainty has been rec-
alculated, the total uncertainty can be updated, again by Equation (4).

The main objective of this step is to reduce the overestimation of the total stress uncertainty generated by the model
uncertainty component. The overestimation is caused by the presence of solutions in the comparison set that differs
greatly from the reference result.

This is caused either by the addition of noise in particular solutions (normally when there are too many polynomials
in the solution) or by a lack of information (more polynomials are required in the series to generate an accurate

BRÍTEZ ET AL. 7 of 21
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answer). The solution giving the minimum total uncertainty is taken as the reference solution σref for the sorting proce-
dure. The rms difference (mean value of all the measurement points) between a possible solution r and the reference is
evaluated as follows:

Δσrmsr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
j¼1

σref j �σrj

	 
2

vuut , ð16Þ

then, a particular solution is going to be kept in the set of possible solution if:

Δσ2rmsr < αΔσ2ref total , ð17Þ

where Δσ2ref total is the mean total uncertainty of the reference solution and α a parameter that controls the sorting pro-
cess. A value of α equal to 1 would eliminate on average half of the possible solutions, a high number (bigger than 3 for
example) would eliminate few or even no possible solutions.

A value of α in the range 1:5≤ α≤ 2 offers the advantage of eliminating only those solutions that have a significant
difference compared with the reference.

2.2.6 | Final solution

The elimination of some possible solutions in the previous step will modify the model uncertainty for all the solutions
in the set, this may modify the solution giving the minimal final total uncertainty. As in the previous steps, the optimal
result is found by the calculation of the solution with the lowest total uncertainty.

2.3 | Parameters value justification

There are six parameters that control the algorithm: the minimum number of polynomials (pmin), the maximum num-
ber of polynomials (pmax), the maximum polynomial order, the minimum polynomial order, the number of polynomials
to keep after the first sorting (NP) and the final sorting severity parameter α.

The sensitivity of the final result to each parameter will depend on each particular problem. Nevertheless, it is possi-
ble to review how each one of these parameters may affect the result and justify the recommended values.

First four parameters, as studied before, control the space of solutions to be analysed. The wider the space of solutions
defined, the higher the possibility of obtaining a result with reduced error and low overall uncertainty. Low polynomials
orders normally have an important influence as shown by the highmultiplier values, for this reason they should be always
considered. This is achieved by setting the lowest polynomial order to 2 or 3. On the other hand, higher polynomial orders
can help to reduce error in presence high stress gradients. The parameter controlling this limit is the is maximum polyno-
mial order. Section 3.3.1 studies this computational cost growth as function of with this parameter.

A solution with a low number of polynomials will normally be composed of low polynomials orders. As a conse-
quence, a high stress gradient region may not be captured, increasing the error. Nevertheless, these solutions have a
noise filtering capacity and they may capture the stress profile when this profile is not complex. Furthermore, these
solutions contribute to a good model uncertainty estimation, and they are obtained with minimal computational cost.
For these reasons, the minimum number of polynomial parameter (pmin) should not be set greater than 3.

The last parameter defining the space of solution to analyse is the maximum number of polynomials (pmax). Adding
new polynomials to the series (usually with high polynomial orders with low contribution) can help to reduce error. At
the same time, this augmentation in the number of polynomials results in an increase in the strain uncertainty propaga-
tion (this effect is seen in Figure 5 and in Figures A1 to A9), increasing the overall uncertainty estimation. The growing
rate of this uncertainty component is a function of the number of data available and the noise level. High values of this
parameter will increase the computational cost. For all these reasons, the minimum recommended value for this
parameter is 9, in order to generate enough solutions (families) for the final model uncertainty estimation. The maxi-
mum value of this parameter is a compromise between the computational cost, the noise and the maximum polynomial
order.
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The number of polynomials to sample each family is given by the NP parameter. It has an impact only in the first
sorting stage. Values inside the recommended range should yield the same solution or a similar result. Such values are
enough to create a model error inside each family. Once the first sorting stage is completed, this parameter has no
impact on the final result.

The parameter α controls the severity of the last sorting. After the second sorting, the result showing the lowest
overall uncertainty may result in overestimated uncertainty. This is caused by the presence of solutions in the compar-
ing set of solutions with a large misfit compared to the reference solution. α serves to judge whether this misfit is big
enough to eliminate a particular solution from the final set. A value of α¼ 1 would be severe case, only those solutions
found in the uncertainty region of the reference solution would rest, risking to underestimate the uncertainty. A value
over 3 would give a wide range, it would only eliminate solutions if the misfit is way too big, but normally it would not
eliminate any solution at all. For this reason, authors recommend some point in between these two extremes.

3 | BENCHMARK APPLICATION

3.1 | Benchmark problem presentation

In order to evaluate the algorithm, a numerical example is carried out that consist in four different steps:
The first step consists of the generation of a RSP from a numerical simulation performed in Abaqus/Standard. The

RSP is then fitted to a polynomial series in order to obtain an analytical expression. During the second step, the RSP is
used to simulate the strains that would obtained at the back edge of the rolled plate when the slitting method through
the thickness is applied as described in.[2,11,13,14] The third step is to generate a compliance matrix by using Cheng et al.
equations[2] with the Legendre polynomials (Lp) defined from 0 to 1 (normalised thickness), with orders from 2 to 25.
This way 2 and 25 represent the minimum and maximum orders to be evaluated. Each column of the matrix represents
the evaluation of a different Lp, and each line the lecture of the strain for a different depth in the cutting procedure.
Finally, in the fourth step, the presented methodology is applied to the 12 sets of data (11 with random noise, detailed
in Table 1 and the noiseless strain set), and the results are compared with two different methodologies, one described
by Prime–Hill using polynomials[3] and the other one by Olson et al. using pulse regularisation[20]; this last method pre-
sents the advantage that is always possible to approximate a curve with the mean value in between two points of the
given curve, as long the interval is small enough.

In order to break the possible dependence of the generated strains and the reconstructed because of they are gener-
ated by the same basis, an unrealistic level of noise is going to be added in 11 sets to analyse.

3.2 | Data generation

3.2.1 | Stress profile data generation

A numerical simulation of cold rolling process is used to generate a RSP on a steel plate with a final thickness of
16 mm. The RSP is then fitted to a polynomial series in order to obtain an analytical expression of the profile.

The analytical fitted RSP are expressed in MPa and present a mean misfit of 1% related to the numerical simulation
(Figure 2). The resulting polynomial series is obtained by a linear combination of 29 Legendre polynomials (normalised
thickness from 0 to 1), which orders and multipliers are given in Table 1. The main advantage of using the Legendre
polynomials (Lp) for the fitting procedure is that any stress profile represented by a linear combination of Lp where the
polynomials orders are ≥ 2 will satisfy force and momentum equilibrium.

3.2.2 | Strain data generation

This analytical expression allows one to simulate the slitting method using the equations developed by Cheng et al[2]

and thus obtain synthetic strains. The strains are obtained at the back edge of the plate, during an incremental slit cut-
ting of 35 equal spaced cuts of 0.44 mm depth. Experimental procedures successfully carried out show that it is possible
to obtain incremental slits depth as small as 0.05 mm.[16]
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In order to simulate real measuring conditions, 11 sets of random noise are added to the synthetic strains. A com-
parison of the noiseless and noise random added strain data is presented in Figure 3 for one example. The description
of the mean standard deviation of each set is presented in Table 2. These levels of noise are considerably high compared
with those obtained experimentally with good practice.[20] For the uncertainty calculation, an inherent error of the
measuring device equal to 2με has been considered in all cases.

3.3 | Results and discussion

The individual ith error is evaluated as the absolute difference between the real stress profile and the calculated stress at
the measuring point. For the evaluation of the entire profile, the mean error is considered and compared with the mean
total uncertainty.

For the case without noise (set 12), Figure 4 shows how the methodology sensitivity captures the error by the esti-
mation of the model uncertainty. Without noise, only model errors are significant. Figure 4a represents the situation
before the last sorting step. At this point the uncertainty overestimates real error. For this particular case, the solutions
with 3 and 4 polynomials represent the solutions with higher uncertainty (and also with greater error). After the last
sorting step is applied using a sorting parameter α¼ 1:5 (which is going to be used for all the cases), these two polyno-
mials are eliminated and the overestimation is reduced obtaining a high correlation with the real mean errors. This
result is presented in Figure 4b.

TABLE 1 Legendre polynomials orders and corresponding multipliers

Polynomial order Multiplier Polynomial order Multiplier Polynomial order Multiplier

2 �199.65 14 �30.32 28 �5.997e-03

4 363.84 15 �6.98 29 �5.285e-04

5 �3.93 16 �23.78 31 1.503e-05

6 42.53 17 �4.69 33 �1.141e-06

7 �4.31 18 �0.48 34 �1.352e-08

8 117.78 21 3.12 36 1.619e-09

9 0.17 23 4.58 37 3.086e-10

10 12.59 24 �3.60 65 1.147e-30

12 �17.07 25 0.55 82 1.313e-44

13 �4.61 26 0.16

FIGURE 2 Numerical simulation and fitted polynomial stress profile.
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Figure 5 carries out the same analysis but this time with a noise-added set of data, in this particular case, set number
3. In Figure 5a, the total uncertainties estimations with a low number of polynomials (between 3 and 7) show a signifi-
cant difference compared with the real error. For these possible solutions, the model uncertainty is the main compo-
nent of the total uncertainty. This overestimation is due to the consideration of possible solutions with high noise levels
(solutions with 10 and 11 polynomials). As the model error is a ‘comparison’ with other possible solutions, considering
noisy solutions in the comparison test increases the estimation.

After applying the last sorting algorithm, solutions with 10 and 11 polynomials are eliminated from the comparison
set (for the particular case of set 3) as shown in Figure 5b. This has an effect on the model uncertainty estimation. The
total uncertainty is minimised by using five polynomials. In this case, its value and the mean absolute error are close to
each other: 32.92 and 26.86 MPa, respectively (Figure B1).

Table 2 summarises the results obtained for each different set with the new proposed method and two reference
methods; Prime–Hill[3] and Olson et al.[20] The uncertainty level of accuracy is measured as the fraction of the real
stresses that fall into the calculated uncertainty. For the one standard deviation uncertainties presented here, 68% of
the results should fall within the uncertainty. A number over 68% percent would represent a conservative

FIGURE 3 Comparison between the synthetic strains and the ones with a random noise (set 1).

TABLE 2 Results

Proposed method Prime–Hill method Olson et al. method

Set no.
Mean
noise ðμεÞ

Uncertainty
accuracy (%)

Mean error
(MPa)

Uncertainty
accuracy (%)

Mean error
(MPa)

Uncertainty
accuracy (%)

Mean error
(MPa)

1 33.67 80.00 11.49 34.28 23.33 65.71 20.14

2 39.63 74.29 24.18 37.14 27.2 51.42 25.04

3 41.05 71.43 26.86 62.86 22.91 60 25.24

4 33.39 60.00 24.27 51.43 23.63 68.57 22.28

5 41.39 97.14 7.43 51.43 25 60 26.48

6 41.66 8.57 51.29 40 28.63 68.57 23.76

7 46.89 57.14 22.25 57.14 23.03 65.71 24.88

8 43.67 94.29 7.87 51.42 25.35 68.71 23.51

9 42.44 54.29 22.18 42.86 26.7 57.14 27.04

10 38.83 68.57 22.57 60 23.35 80 18.5

11 45.11 60.00 22.16 22.86 31.73 65.71 23.68

12 0 80 7.59 71.42 11.48 45.71 12.28
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overestimation of uncertainty. Under 68% would underestimate uncertainty and could be dangerously nonconservative
if the stresses were used to inform a structural integrity decision.

When applying the Olson et al. methodology to estimate the model error, given the high level of noise, the maximal
allowed strain misfit parameter was set at 400με in order to obtain an acceptable regularisation and R (the span control-
ler parameter) was 1.0; the other parameters of this methodology were kept as recommended in Olson et al.[20]

In order to evaluate the different methodologies, the average (considering the 12 samples) of the mean error
through the thickness and the average mean uncertainty for each method are considered. The Prime–Hill method pre-
sents an average mean error of 24.4 MPa and an average uncertainty accuracy 46.49%. The Olson et al. methodology
results show a slightly improvement in the average error (22.7 MPa) but a significant improvement in the uncertainty
estimation, 63.1%. Finally, the proposed method shows the lowest average mean error (20.8 MPa) and the highest
uncertainty accuracy average 67.14% including set 6 and 72.46% not including it. It should be considered that these
results were obtained with a high level of noise. Nevertheless, further studies should be carried out to verify the consis-
tency of the proposed methodology in different situations. A representative case of the results obtained with set 3 of the
stress profile with its uncertainties compared with the original stress profile is presented in Figure 6.

FIGURE 5 Solution for data set 3. (a) Mean error, mean total uncertainty and its components as a function of the number of

polynomials used before the last sorting process for the data set 3. (b) Mean error, mean total uncertainty and its components as a function

of the number of polynomials used after the last sorting process for the data set 3.

FIGURE 4 Solution for data set 12. (a) Mean error, mean total uncertainty and its components as a function of the number of

polynomials used before the last sorting process for the data set 12. (b) Mean error, mean total uncertainty and its components as a function

of the number of polynomials used after the last sorting process for the data set 12.
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The case of set 6 is interesting. The Prime–Hill result presents a similar behaviour compared with those obtained
with other sets: low error compared to the noise level but underestimated uncertainty. The methodology with pulses
and regularisation gives the lowest error answer within the three methodologies. Finally, for this only for this particular
data set, the proposed methodology data set shows significantly nonconservative results. The results of the particular
case of the data set 6 are shown in Figure 8.

This phenomenon can be understood through an analysis of Figure 7. Figure 7a shows the mean error and uncer-
tainties before the third sorting procedure and Figure 7b after this sorting. The solutions with the closest mean total
uncertainty are solutions composed between 7 and 11 polynomials, which are the solutions that actually have the
greatest error. The solution with the lowest total uncertainty corresponds to the solution with eight polynomials (there-
fore, the reference solution for the last stage), while the one with the lowest error corresponds to the solution with six
polynomials.

The sorting process eliminates the solutions with the highest uncertainty difference compared with the reference
solution (eight polynomials solution) by applying the criteria given in (17). Therefore, the solutions composed of 3, 4
and 5 are eliminated (which are the ones that actually present the lowest error) from the possible solutions set.

The measurement methodologies based on the approximation to a set of functions are subject to the choice of cer-
tain parameters that regulate the performance of each method. In the case of the Prime–Hill methodology, it is the
number of polynomials in the set to be compared and the fact of taking consecutive orders. In the Olson et al. method-
ology, they are the maximum strain misfit allowed and the span of solutions regulated by the parameter R, and in the
current method, it is the parameter α.

As previously explained, the parameters used in the Olson et al. methodology were modified (in relation to the
values recommended in the original article) in order to obtain consistent results. In the proposed method, on the other
hand, the methodology provided satisfactory results except in set 6, where the filtering process has eliminated the

FIGURE 6 Set 3 residual stresses solutions. (a) Proposed methodology solution. (b) Prime–Hill methodology solution. (c) Olson et al.

methodology solution.
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options with the lowest error. Such difficulties are more important the higher the level of noise present. In this perspec-
tive, the results should always be compared as far as possible using different methodologies, in order to gain certainty
of the answer. The new methodology, based on the results obtained, represents a valid methodology to be used
(Figure 8).

FIGURE 7 Solution for data set 6. (a) Before third sorting process. (b) After third sorting process.

FIGURE 8 Set 6 residual stresses solutions. (a) Proposed methodology solution. (b) Prime–Hill methodology solution. (c) Olson et al.

methodology solution.
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In general, the methodology captures the evolution of the error when more polynomials are added into the solution,
this is evidenced in the results of set 12 in Figure 4), where the data is free of noise. The uncertainty tends to increase
when error increase and vice versa. The intensity of the rate of these changes is not always the same. This is why the
minimum mean total uncertainty does not coincide with the minimum error. For the case of data sets number 2, 5, 7, 8
and 10, the minimum error is coincident with the minimum total uncertainty estimation, which shows the strong corre-
lation between both of them.

Another advantage of the new methodology is that the solutions automatically satisfy equilibrium and are defined
throughout the workpiece, which is especially useful for initialising residual stresses in a finite element model. How-
ever, its performance should be verified against the pulse regularisation method in fitting complicated stress distribu-
tions like in earlier studies.[16,21,22]

3.3.1 | Computational cost

Four parameters, maximum polynomial order, minimum polynomial order, minimum number of polynomials and
maximum number of polynomials define the space of solutions that is going to be explored in the solution search. The
computation cost and the quality of the answer depend on these variables.

The computation of the results presented in this section was obtained with a single Intel(R) Core(TM) i5-8350U pro-
cessor. The biggest drawback of the presented methodology compared with the references is the computation cost,
because it requires an intensive search in the space of solutions chosen by the user. The number of solutions to be eval-
uated may vary from a few hundred to millions.

Figure 9 presents the computational time consumption evolution for a different combinations of these two most rel-
evant parameters.

Considering that the time axis is on a logarithmic scale, the computing time variates quickly from fraction of sec-
onds to nearly an hour. By comparison, the other methods in the literature take only seconds.

It is not a simple task to predict the benefits obtained by exploring a wider space of solutions. Each problem is
different, and the stress profile complexity determines the capacity of the basis be reproduced with a few or a
large number of polynomials. Furthermore, a good fit will always be related to the following factors: the quality of
the data and the capacity of the basis to reproduce the RSP. The wider the space explored, the better the likelihood of a
better solution. For the particular case of this benchmark, exploring a wider space reduced the obtained error. Never-
theless, using a smaller space still gave good approximations with correct uncertainty estimation in fractions of
seconds.

It is important to remark; this methodology may be applied to any other continuous expanded series. Legendre poly-
nomials were used because they have the orthogonality property that increases data utilisation efficiency. This fact does
not assure that solution lives in the space determined by the user. Furthermore, the use of higher-order polynomials
may promote noise propagation.

FIGURE 9 Computing time as function of parameters determining the space of solutions.
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4 | CONCLUSION

A new iterative algorithm to calculate the residual stress field by inverse analysis on destructive tests using polynomials
as the basis functions is proposed. Compared with previous work, this methodology explores a wider space of possible
solutions. This is achieved by not requiring consecutive orders of polynomials in the basis functions. As a result, higher
orders of polynomials are used without increasing the total number of polynomials in the solution. More complicated
stress fields can be fit well than with previous methods based on series-expanded solutions.

Based on the statistical nature of the problem, a new methodology for estimating the model error component of
total stress uncertainty is also proposed.

A benchmark test problem with a known solution was used to test the new methodology. The new method gave
more accurate answers when tested on noisy data. An improvement in the accuracy of the uncertainty estimation was
also achieved.

This new methodology is only limited by the computational cost. Compared with noncontinuous basis functions, it
offers the advantage of obtaining an analytical and continuous solution that automatically satisfies equilibrium. It
remains to study the effectiveness of the proposed new method under more complicated stress distribution conditions
in order to verify whether the advantages obtained in this study are still valid.
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APPENDIX A: UNCERTAINTIES AND ERROR COMPARISON OF DIFFERENT DATA SETS

The following figures represent the mean error through the thickness and the total uncertainty as well as its compo-
nents (stress uncertainty due to model error and to strain misfit) before (left figures) and after (right figures) for each
set of data sets not presented in the main text.

Observation: In this particular case of set 1, the third sorting procedure did not eliminate any possible solution of
the set; this is why both solutions (before and after this step) are identical.

FIGURE A1 Solution for data set 1. (a) Before third sorting process. (b) After third sorting process

FIGURE A2 Solution for data set 2. (a) Before third sorting process. (b) After third sorting process
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FIGURE A3 Solution for data set 4. (a) Before third sorting process. (b) After third sorting process

FIGURE A4 Solution for data set 5. (a) Before third sorting process. (b) After third sorting process

FIGURE A5 Solution for data set 7. (a) Before third sorting process. (b) After third sorting process
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FIGURE A6 Solution for data set 8. (a) Before third sorting process. (b) After third sorting process

FIGURE A7 Solution for data set 9. (a) Before third sorting process. (b) After third sorting process

FIGURE A8 Solution for data set 10. (a) Before third sorting process. (b) After third sorting process
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FIGURE A9 Solution for data set 11. (a) Before third sorting process. (b) After third sorting process
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APPENDIX B: ALGORITHM CHART

FIGURE B1 Algorithm chart
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