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Self-similar temporal turbulent boundary layer flow

Damien Biau

Dynfluid Laboratory, Ecole Nationale Superieure d'Arts et Métiers., 151 Boulevard de I'Hépital, 75013 Paris, France

Direct numerical simulations of temporally evolving boundary layer flows are considered with solutions

Houndary layers
Turbulent boundary layers
Self-similar solution

restricted to self-similar profiles. A new set of modified Navier-Stokes equations is solved with periodic
boundary conditions in the streamwise direction, and solutions reach statistically steady states, independent
of the initial conditions. The results are presented for different cases, with and without a pressure gradient,

and found to be in agreement with existing results of spatial turbulent boundary layer flows. Thus, self-similar
temporal solutions are able to reproduce the general features of turbulent boundary layer flows. Finally, the
model is applied to simulate a turbulent spot in equilibrium, which is difficult to obtain otherwise,

1. Introduction

In his famous memoir on the effect of air on the motion of pen-
dulums, Stokes [1] also introduced in a note the resolution of the
incompressible temporal boundary layer over an impulsively started
flat plate. That analytical solution is currently known as the error
function, so named by Glaisher [2]. Later, Rayleigh [3] applied the
results by Stokes to a case where a force propelling a plane is given,
taking as an example the sudden fall of lamina under the action of
gravity. Blasius [4,5], following the work of his supervisor Ludwig
Prandtl on boundary layer equations, showed an easier method of
solution using similarity transformation. The original system of partial
differential equations was then reduced to an ordinary second-order
differential equation, and this method is currently found in many
textbooks; see, for example, the monography by Schlichting [6].

The Stokes solution is valid if the plate is infinite in extent and does
not take the leading-edge effect into account. In the case of a semi-
infinite flat plate, the development of a flow from the initial Stokes
solution to the ultimate Blasius solution was analytically investigated
by Stewartson [7,8]. The results agreed with the numerical resolution
by Dennis [9] for unsteady boundary layer equations. The calculations
of Dennis [9] have shown a quick transition to the steady spatial
solution; thus, the transient is marginally relevant in a general study
of boundary layer flows. Nonetheless, despite its limited scope of
applications, the temporal boundary layer is still a regular subject of in-
vestigations, mainly motivated by the simplification of the streamwise
homogeneity.

The linear stability analysis of the unsteady Stokes solution has
been investigated by Otto [10] with a quasi-steady approach, and the
perturbations are a solution of the classic Orr-Sommerfeld equation
linearized around a frozen laminar solution. The method was improved
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by Luchini and Bottaro [11] with a multiple-scale approach to consider
the temporal growth of the boundary layer. That correction shows
slight modification of the critical Reynolds number, which was found
to be lowered by 2%.

Beyond the linear analysis, numerical simulations of the full Navier-
Stokes equations have been performed. In fact, preliminary simulations
of transitions in boundary layer flow have used the temporal approach;
see the review by Kleiser and Zang [12]. The numerical results have
shown good agreement with experimental measurements and flow
visualizations at corresponding stages of development. Thus, despite
their limitations, these studies have achieved some notable successes,
advancing to the accurate simulation of the complete transition to
turbulence.

Kozul et al. [13] performed the first direct numerical simulations
(DNS) of the incompressible temporally developing turbulent boundary
layer as a counterpart to the spatially developing boundary layer in
a similar spirit to those temporal counterparts studied for canonical
free-shear flows, see [14,15] among others. The transport of a passive
scalar is also simulated. The initial laminar flow is perturbed with a
wall-mounted trip which triggers transition to turbulence and after
an initial transient, a developed turbulent state settles, Kozul et al.
[13] compared the results with those obtained in spatial framework
by Schlatter and Orlii [16] at two Reynolds numbers, Re, = 1000
and 2000, based on the momentum thickness and the free-stream
velocity. Comparisons of the skin friction coefficient, velocity and scalar
statistics demonstrate that the temporally developing boundary layer is
a good model for the spatially developing boundary layer. Kozul et al.
[13] suggest that the spatial and temporal boundary layer becomes
similar at high Reynolds numbers, when the ratio between the skin




friction velocity and the free stream velocity tends to zero. Nonetheless,
the advantage of the temporal DNS comes with some issues. The final
boundary layer thickness for a desired final Reynolds number is not
known a priori. Additionally, the grid must be calibrated for that final
boundary layer thickness and final Reynolds number; thus, the domain
size and the resolution are oversized during the initial transient before
the developed turbulence. Moreover, the influence of the initial forcing
necessary to trigger the transition remains for a long time, but the
flow eventually reaches a fully developed Couette flow. These two
constraints result in a limited temporal range to obtain statistically
converged results.

Topalian et al. [17] solved this difficulty considering a temporal
slow-growth formulation of the compressible Navier-Stokes equations,
thus adapting the seminal work by Spalart [18] dedicated to the
incompressible spatial boundary layer flow. The shift to a temporal
framework avoids a complication inherent in the spatial case since
the additional temporal slow-growth terms leave the mass continuity
equation unchanged, which facilitates implementation in an existing
solver. Indeed, the equations obtained by Topalian et al. [17] only
introduce an additional parameter, the temporal growth of the bound-
ary layer thickness. That method has been applied to two problems:
an essentially incompressible, zero-pressure-gradient boundary layer
(at Rey, = 422 and 703) and a transonic boundary layer over a
cooled, transpiring wall. The results show that the approach produces
flows that are qualitatively similar to other slow-growth methods as
well as spatially developing simulations. The temporal slow-growth
model flow is able to reproduce many of the important features of
the statistics of a zero-pressure-gradient, spatially evolving boundary
layer. Topalian et al. [17] shown that the mean velocity, the streamwise
rms velocity, and dominant near-wall terms in the kinetic energy
budget are well-represented. They also shown that the Reynolds shear
stress, wall-normal rms velocity, and spanwise rms velocity are lower
in the temporal simulation than in the spatially homogenized or spa-
tially evolving cases. The temporal slow-growth model by Topalian
et al. [17] is an important improvement for studying wall-bounded
turbulence more generally or for RANS model evaluation. Nonethe-
less, Topalian et al. [17] did not relate the thickness growth to the
characteristic length of the flow, so the relation with nondimensional-
ization, such as the Reynolds number, is not obvious. As a consequence,
the equations introduced by Topalian et al. [17] are governed by
two non-dimensional parameters, the Reynolds number and the non-
dimensional thickness growth, the latter being not a control parameter
of the flow. The lack of an explicitly defined boundary layer thickness
introduces a difficulty when considering the extension of the method
to more general boundary layer with pressure gradient because the
non dimensionalization of the external pressure gradient is not obvious.
Moreover, Topalian et al. [17] restricted the self-similar assumption
to the averaged velocity profiles which does not permit an extension
to transient flows such as the transition to turbulence or flows with
unsteady boundary conditions.

In the present work, the instantaneous wall-normal profiles are
assumed to be self-similar, Similarity analyses of turbulent shear flows
can be found in [19,20]. The momentum thickness @ is used as the
reference length scale; as a consequence, the nondimensional temporal
thickness growth is calculated so that the nondimensional momentum
thickness remains unitary. Hence, the model presented in the next sec-
tion is free from arbitrariness, consistent with nondimensionalization
and adapted to the transient behaviors encountered, such as in the
laminar-turbulent transition or with unsteady boundary conditions.

Before introducing the equations in the next section, it is worth
mentioning the main limitation of the self-similarity applied to wall
bounded flows. While self-similarity is exact for the laminar solution,
as shown by Blasius, it is highly questionable in turbulent regimes. The
loss of momentum at the wall results in an additional characteristic
length-scale for the inner layer, based on the wall shear stress and

the kinematic viscosity. Two distinct length scales make exact self-
preservation impossible; however, the self-similar transformation acts
mainly in the outer layer, where it is physically relevant. For the
purposes of validation, the results are compared with existing results
of spatial turbulent boundary layer flows in the third section.

2. Method

We consider a wall impulsively stopped beneath a fluid moving at
constant velocity. The wall is assumed to be infinite, so the leading-
edge effect is neglected. Because of the no-slip boundary condition,
a temporal boundary layer develops, characterized by the kinematic
viscosity v. The characteristic velocity is U, the asymptotic streamwise
velocity far from the wall. The length scale is defined as the momentum
thickness; note that displacement thickness can be used as well.

The usual nondimensional set of Cartesian coordinates (x, y, z) and
nondimensional velocity components u = (u, v, w) are adopted in the
streamwise, wall-normal and spanwise directions.

The temporal boundary layer simulations realized in the finite
domain in the wall normal direction eventually evolve towards a linear
velocity profile. To obtain statistically steady boundary layer solutions,
the velocity field is assumed to be instantaneously adapted to the
boundary layer growth, so the solution exhibits a self-similar profile
in the wall normal direction:

2 1) — 2 .
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To be consistent with the nondimensionalization, # corresponds to
the nondimensional momentum thickness,

0=/ U(l=Uydy (2)
0

U =< u > is the streamwise and spanwise averaged nondimensional
streamwise velocity.
The time derivative of the self-similar velocity (1) results a in fast
time term and a slow-growth term decomposition:
M ow v 0w
an ar a2 diy/B)
That slow-growth formulation is based on the assumption that the
boundary layer grows much more slowly than the evolution of the
turbulence; see also Topalian et al. [17]. The time derivative in the
momentum equations introduces the nondimensional thickness growth
@, which is computed so that the self-similar renormalization @ = 1 is
fulfilled at each time.
The nondimensional Navier-Stokes equations, restricted to self-
similar solutions in the wall-normal direction, take the form
V-u=0
du du

— —fy—+u-Vu=-Vp+ Re 'V'u
a ady
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The self-similar transformation appears in the equations only with
the slow-growth term -8 y du/dy, which acts as an advection force
towards the wall, balancing diffusion. We could have used dedicated
notation for the self-similar coordinate y/@(r), but since the nondimen-
sional momentum thickness @ is maintained as unitary, we keep the
notation y for simplicity. These Navier-Stokes equations are associated
with impermeable and no-slip boundary conditions on the wall u(y =
0) = [0.0.0] and the far-field condition u(y - o) = [1,0.0]. The far-
field boundary conditions are simpler here compared to the spatial
case, which requires suction at the top boundary to avoid spurious
acceleration induced by the downstream thickness growth.

The Navier-Stokes equations (3), with boundary and initial con-
ditions is complete but @ is implicitly known through the condition
# = 1. Thus, @ can be calculated with a bisection method, however, per-
forming such iterative method directly on the Navier-Stokes equations
would be numerically prohibitive, instead it is much more convenient
to use the streamwise and spanwise averaged equation. The equation
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Fig. 1. Boundary layer with zero pressure gradient. Inner-scaled mean streamwise velocity (@) and total shear stress (7') at Reynolds numbers 1000 and 2000. Continuous lines,

present results, dashed lines results by Schlater and Orlii [16].

for the mean flow U =< u >, i.e,, the streamwise and spanwise averaged
streamwise velocity, is
au . dU  d<uv> 1
A TR T T @
The associated nondimensional boundary conditions are U(y = 0) = 0
and U(y = oo) = 1. All terms in the averaged Eq. (4) are known
excepted & and U at the next time step. The mean velocity U at the
previous time steps and the Reynolds stress < ur > come from the
Egs. (3) and there is no need for a turbulence model. A bisection
method is applied to compute ¢, and the iterations are stopped when
160 = 1] = 107, Thus, the averaged Eq. (4), associated with bisection
method to compute #, is solved together with the Navier-Stokes equa-
tions (3). A less efficient but simpler alternative would be to solve
01 + Aty = (1) + a(@(r) - 1), with a =~ 4, that has been successfully
tested but not used for the results shown hereafter.

Since the momentum thickness is not usual for the nondimension-
alization of the Stokes problem, it may be useful to give the expression
of the laminar solution of Eq. (4),

Ulmw =erf ( V olnm Rc/Z )) (5)

With é,,,, = 0.1092267/ Re. That laminar profile is a self-similar solution
of the first type since the thickness growth rate can be obtained from
dimensional analysis, 8, o« Re~'. For turbulent regimes, The self-
similar solution is of the second type [21], and the scaling law must
be determined from numerical simulations.

The equations are solved with a Chebyshev collocation method in
the wall-normal direction (y) and a Fourier pseudospectral method in
the homogeneous streamwise (x) and spanwise (z) directions. The time-
marching is a second-order finite difference scheme with a viscous term
treated implicitly. Further details can be found in [22]. The numerical
parameters are indicated, case by case, in the following section.

The initial velocity field consists in the laminar solution plus ran-
dom fluctuations. Once the velocity field reaches the statistically steady
state, the equations are integrated further in time to obtain a run-
ning time average of the various statistical correlations, which are
independent of numerical initialization.

&U

3. Results

For validation purposes, the model is applied to three problems
whose results are of independent interest. First, turbulent simulations
with zero pressure gradient are obtained for Reynolds numbers Re, =
1000 and 2000, followed by a case with adverse pressure gradient at
Re, = 1400. Finally, a turbulent spot is obtained at Re, = 120.

In the following, the overbar indicates streamwise, spanwise and
temporal averaging. The relevant velocity and length scales close to the
wall are obtained from the wall shear stress r,, = u(di/dy)|,-, leading
tou, =/t /pand !, =v/u_. Quantities in wall scaling, referenced with
the + superscript, are thus written as, e.g., v* =ufu_and y* = y/I_.

Table 1
Some computed time-averaged parameters. Present temporal simulations/spatial simu-
lations by Schlatter and Orlii [16]. The nondi | thickness temporal growth @,
specific to the present simulations, is also indicated,
Rey H “, Trms 0
1000 1.4253/1.4499 0.0476/0.0462 0.4023/0.4059 1.5971
2000 1.3835/1.4135 0.0433/0.0421 0.4194/0.4146 1.3651

3.1. Boundary layer without pressure gradient

The domain size is Lx = 70, Ly = 30 and Lz = 40. The number of
points in the x-, y-, and z-directions are 256 x 150 x 256 for Reynolds
number Re, = 1000 and 512 x 300 x 512 for Re, = 2000, while the
time steps are 4r = 0.02 and 4r = 0,005, respectively. The results are
compared with the spatial direct simulations by Schlatter and Orlii [16]
at identical Reynolds numbers. Other reference results were obtained
by Simens et al. [23], similar to those obtained by Schlatter and Orlii
[16]; thus, they will not be shown for clarity.

The mean streamwise velocity profiles, in wall units, are displayed
in Fig. 1. The agreement with the reference results is correct in the
buffer layer (y* < 30) and just above in the log layer. Farther from
the wall, in the wake region, the self-similar solution scaled with
the skin friction velocity is significantly below, which reflects the
overestimation of the skin friction velocity. The difference with the
spatial boundary layer is more pronounced for the total shear stress
(r = Re™'du/dy—uv), displayed in the right part of Fig. 1. The averaged
streamwise momentum gives the equation for the momentum flux,
dr di
iy~
The effect of the slow-growth term on the right-hand side acts mainly in
the outer layer and linearly vanishes towards the wall, which explains
the excessive negative slope that appears near the wall in the total
stress profile. The same behavior was observed by Topalian et al. [17]
and Kozul [24].

The mean and root-mean-squared (rms) velocity profiles are shown
in Fig. 2 with inner scaling, which confirms the previous observations.

(6)

Some quantitative comparisons are also proposed in Table 1. The
shape factor H, i.e., the ratio between the displacement 4, and the
momentum thicknesses @, is an indicative parameter for the analysis of
boundary layer flows. In the laminar regime, the shape factor takes the
value 2.41 for the temporal boundary layer and 2.59 for the Blasius
boundary layer. In the turbulent regime, values move closer, and the
self-similar temporal boundary layer seems to approach the spatial case.
The skin friction velocity, «., is slightly overestimated compared to the
value found by Schlatter and Orlii [16], as seen on the mean velocity
profile, scaled in wall units, in Fig. 1. As an additional comparison, the
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Fig. 2. Boundary layer with zero pressure gradient. Root-mean-squared velocity profiles at Reynolds numbers 1000 (left) and 2000 (right). Continuous lines, present results. Dashed

lines result from Schlatter and Orlu [16].
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Fig. 3. Boundary layer with adverse pressure gradient. Inner-scaled mean streamwise velocity and root-mean-squared velocity profiles. Continuous lines, present results. Dashed

lines result from Spalart and Watmuff [25].
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Fig. 4. Turbulent spot at Re, = 120, where the fluid is moving from left to right, The
vortical structures are visualized by the isosurface of the Q criterion,

normalized shear-stress fluctuation, defined by Alfredsson et al. [26]
as = lim,_qu,, /U, is found to be in good agreement, which
confirms the realistic behavior of the self-similar turbulent boundary
layer in the near-wall region. The nondimensional boundary layer
growth rate, #, decreases with increasing Reynolds number, as shown in
Table 1. Hence, the influence of the slow growth term is gently reduced
with large Reynolds numbers, so the exaggerated momentum flux at
the wall normal is presumed to reduce in the limit of high Reynolds
numbers.

3.2. Boundary layer with adverse pressure gradient

With a pressure gradient, the far-field velocity (noted Uj)) is no
longer constant in time; then, the equation for the self-similar base flow

Up(t) Ulr. y/8(1)], now takes the form:
U

w . AU _dP 1

W _sy d < uv >
dx  Re ay?

— 4+ U —_— =
- dy+((,u+ 3

The far-field limit gives U, = —d P/dx. This results in an additional term
on the right-hand-side of the streamwise momentum equation, keeping
the same boundary conditions:
au . dU  d<uv> dpP

P -0y oy +d—y=—H(I—U)+

1 &'U
Re oyt 7)
The physical non dimensional parameters are Re, = 1400 and
dPfdx = 2.2 % 107* to match the value used by Spalart and Watmuff
[25] at x=0.9, the pressure gradient has been normalized with the
local free-stream velocity and momentum thickness. The domain size
is Lx = 100, Ly = 30 and Lz = 50, and the number of points
in the x-, y-, and z-directions are 512 x 200 x 512 with a time
step 4r = 0.005. The mean velocity profiles and rms fluctuations are
shown in Fig. 3 and present good agreement with the spatial numerical
results by Spalart and Watmuff [25], although the second peak on the
streamwise fluctuations is absent from the self-similar solution. The
shape factor is // = 1.53, compared to H = 1.55 [25], while the
nondimensional pressure gradient is § = &,/r, dP/dx = 1,94 in our
case and equal to 2 in [25].

3.3. Turbulent spot

To illustrate the possibility offered by the model, the simulation of
a localized turbulence, or spot, with zero pressure gradient at a low
Reynolds number is now presented. Turbulent spots were first observed
by Emmons [27] in shallow water flowing down an inclined plate. That
case moves away from the domain of validity of the model because
of the low Reynolds number value; nonetheless, that compromise is
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Fig. 5. Conditionally averaged streamwise velocity profiles for laminar (left) and turbulent (right) regions. The Stokes erf profile (see Eq. (5)) is also depicted for comparisons.

compensated for by the possibility of obtaining a converged turbulent
spot, independent of the initial condition, which is impossible to obtain
otherwise,

The domain size is larger than in the previous paragraphs with
Lx = 1200, Ly = 50 and Lz = 400. The number of points in the x-,
y-, and z-directions is 2048 x 100 x 1024 with a time step 4r = 0.01. In
the turbulent region, the maximal spacing between collocation points,
in wall units, is 4x* < 7 and 4z* < 4.6; in the wall-normal direction,
there are at least 20 non-uniformly spaced points within 12 wall units.

To reach a turbulent regime close to its onset, the Reynolds number
is slowly decreased, starting from Re=300. For Re, < 160, turbulence
condenses in the spanwise direction, and for Re, < 130, it also localizes
in the streamwise direction. The minimal value for the sustained spot
is Rey = 120, and the turbulent patch is localized in both homogeneous
directions. At such low Reynolds number the laminar flow is linearly
stable, and the turbulent state is a relative attractor coexisting with the
laminar basin of attraction, see Biau [28]. After a transient, the overall
shape does not change in time, and the turbulent spot exhibits features
independent of the initial condition, which appears as a universal struc-
ture in a laminar boundary layer. A snapshot of the three-dimensional
vortical structures identified by the Q-criterion [29] is shown in Fig. 4.

In this figure, the flow direction is from the bottom left to the
top right. The spot has a characteristic arrowhead shape, with the
apex of the arrow oriented in the downstream direction, as for the
zero-pressure-gradient boundary layer [30]. In addition to the overall
shape of the spot, Fig. 4 also reveals streak-like structures elongated
in the flow direction. In front of a spot, where the flow is still lami-
nar, elongated streaks extending nearly to the size of the shear layer
are observed. Further downstream towards the back side of the spot,
where reverse transition from the turbulent to the laminar state occurs,
turbulent fluctuations vanish, leading to the reappearance of streaky
patterns, which are less sensitive to viscous damping. They are rem-
iniscent of the streaks observed near the wall in turbulent boundary
layers. The vortex structures present some A-vortices that are typically
observed in transitional regimes. Close to the wall we have the typical
low- and high-speed streaks turbulent spots feature generic small-scale
coherent structures in the form of elongated counter-rotating vortices.

The normal velocity ¢ has significant fluctuations only in the tur-
bulent region, making it suitable as a marker of the interface between
laminar and turbulent flow. The intermittency function is then defined
as I = 1 where E, > 0.2 max(E,), elsewhere I=0; with E, = L o dy.
Conditionally averaged streamwise velocity profiles in both the laminar
and turbulent area are shown in Fig. 5. Despite the low Reynolds
number, the mean flow presents the characteristics of a developed
turbulent wall flow, i.e. the linear region close to the wall and the
(small) log region away from the wall, as observed by Wygnanski et al.
[31).

In order to estimate the propagation velocity, the streamwise trans-
port term in the Navier-Stokes equations (3) is modified: ud, — (u—c)d,.
The constant velocity ¢ is adjusted in such that the spot is no more

traveling. The propagation velocity is found as 70% of the free stream
velocity, in agreement with the 65% value reported by Wygnanski et al.
[31].

4. Conclusion

This article presents direct numerical simulations of a temporally
evolving boundary layer restricted to self-similar solutions. In the
turbulent regime, the solution evolves to a statistically steady state.
That solution represents the intermediate-asymptotic behavior of the
Navier-Stokes solution in the sense that the solution is no longer
dependent on the details of the initial condition, but the system is
not in the state of equilibrium reached at infinite Reynolds number;
see Barenblatt and Zel'dovich [21].

The results are illustrated with simulations at moderate Reynolds
numbers and compared to the spatial boundary layer, with and without
a pressure gradient. Peculiar features of boundary layer flows are
conserved, and the mean and fluctuation profiles are found to be in
correct agreement with the spatial case, The log layer of the mean
profile as well as the peaks in the fluctuation profiles are reproduced.
The most notable difference is observed for the total shear stress, which
presents a negative slope at the wall as a direct effect of the slow
growth term added in the Navier-Stokes equations. As a consequence,
the skin friction velocity is overestimated. Nonetheless, the amplitude
of the slow-growth term decreases with increasing Reynolds numbers.
Simulations at higher Reynolds number values could provide informa-
tion on the asymptotic similarity of the turbulent boundary layers. In
particular, the implications of competing inner and outer scales on
profile invariance are still the subject of debate; see, for example, the
discussions in [32,33].

By considering the numerical advantage of the present model, a
streamwise-shortened domain is combined with periodic boundary con-
ditions, and keeping in mind its limits, further applications can be
considered. The slow-growth term can be added, in conjunction with
the recycling method [23], to generate the inflow conditions for spa-
tially developing simulations. Application to more complex flows could
include system rotation, curvature, thermal stratification and unsteady
boundary conditions. The numerical simplification can also be pushed
forward in association with turbulent models. Since the self-similar
assumption permits a local simulation of the boundary layer, the flow
over an airfoil at a realistic Reynolds number could be performed at
different streamwise locations with independent simulations.

Temporal simulation with the self-similar assumption is more reli-
able for free shear flow. All free shear layers, regardless of how they
are generated, should asymptotically achieve the same self-preserving
state; see many examples in the book by Townsend [19]. However,
even if the self-preserving property of the flow is satisfied, the slow-
growth condition assumption is not always observed. As an example,
for the mixing layer, Rogers and Moser [14] found a value independent
of the Reynolds number, # = 0.014, which is too strong for the



turbulent fluctuations to adapt quickly to the thickness growth; thus,
slow processes such as vortex merging are not compatible with the
present model. The application to the far-wake seems more promising
and could extend the work by Redford et al. [15] and Nedi¢ et al. [34]
on the existence of a universal asymptotic turbulent wake.
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