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Thermally-activated hardening recovery in viscoplastic materials with
kinematic hardening at high temperatures
Léo Thiercelin, Francis Praud, Fodil Meraghni ∗, Eric Fleury
Arts et Métiers Institute of Technology, CNRS, Université de Lorraine, LEM3-UMR 7239, F-57000, Metz, France

A B S T R A C T

In this work, a new constitutive model is proposed to describe the thermally-activated hardening recovery
mechanism in metallic materials. This model takes up the concept of hardening recovery variable, which
is extended to the case of kinematic hardening within a thermo-viscoplastic formulation including high
temperature dependencies for both elastic and viscoplastic properties. The model is identified for AISI
316L austenitic stainless steel using experimental data from uni-axial tests conducted over a wide range of
temperature (from room temperature to 1273 K) and at two different strain rates (2.5 × 10−4 and 2.5 × 10−3

s−1). Validation is further achieved with rather good agreements by comparing the simulated responses with
additional experimental data where the material is subjected to complex thermomechanical loading paths
while other examples are presented to provide a better insight of the model and to illustrate its predictive
capabilities.

1. Introduction

It is well-established that the properties of metals and alloys strongly
depend on temperature. It is commonly established that the solicita-
tions at high temperatures can have detrimental effects due to the re-
duction of strength properties, or the development of residual stresses,
possibly resulting in material failure (Withers, 2007). However, in some
other cases like in the annealing process or in hot metal forming,
thermal exposure may be beneficial by helping the material to relax
stresses (Totten et al., 2002; Angkurarach and Juijerm, 2020) and by
promoting ductility (Humpreys et al., 2017). Whatever the purpose, to
meet industrial challenges and needs, the thermomechanical behaviour
of metallic materials must be well understood to accurately predict
their response.

A wide variety of phenomenological and constitutive models have
been developed over the past decades to address plastic and viscoplastic
response of materials upon monotonic and cyclic loadings (Chaboche
and Nouailhas, 1989; Lemaitre and Chaboche, 1990; Chaboche, 2008;
Besson et al., 2010; Karvan and Varvani-Farahani, 2019b,a; Shekarian
and Varvani-Farahani, 2019; Karvan and Varvani-Farahani, 2020).
These models introduced different types of hardening, like isotropic,
kinematic or combined with temperature-dependent parameters to
capture the rate- and temperature-dependent non-linear behaviour of
metallic materials.
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The temperature dependence of the material parameters reflects
microstructural changes and the activation of various physical phenom-
ena taking place at the microscopic scale. Among them, the hardening
recovery is a particular phenomenon that enables the material to
partially or fully restore its initial properties upon thermal exposures, as
the result of dislocations rearrangement and annihilation, grain recrys-
tallization and their subsequent growth (Humphreys, 1997; Humpreys
et al., 2017), as illustrated in Fig. 1.

Several phenomenological models have been proposed to integrate
the annealing under temperature exposures. Commonly used models
consider the existence of an activation temperature from which the
hardening recovery is complete or initiated. In this case, the hardening
variables are artificially reset to zero (Muránsky et al., 2012a,b; Deng
et al., 2017). In other models, two annealing stages are considered:
a starting temperature for partial recovery and another one, beyond
which the recovery is total and instantaneous. Despite predictive re-
sults (Hendili, 2016; Depradeux and Coquard, 2018), these approaches
display a lack of physical consistency, since they only consider the
recovery mechanism when a certain temperature is reached without
accounting for the time of exposure.

Recrystallization models based on Johnson–Mehl–Avrami–
Kolmogrov laws have also been developed (Avrami, 1939, 1940; Fan-
foni and Tomellini, 1998). These models are often limited to simple
heat treatments like isothermal conditions or anisothermal with con-
stant heating rates, and are hence not applicable to practical real cases.
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Fig. 1. Representation of the microstructural mechanisms behind the thermally-activated hardening recovery phenomenon. Namely: dislocations rearrangement and annihilation,
grain recrystallization and their subsequent growth.
Source: Figure adapated from Humpreys et al. (2017).

Nevertheless, Suo et al. (2020) have recently proposed a time- and
temperature- dependent corrective factor directly derived from the
Avrami’s equation to correct the kinematic hardening variable of their
model.

One can also mention the dislocation-based models that repre-
sent the competition between annihilation and creation of dislocations
under the combined effects of stress and temperature (Mecking and
Kocks, 1981; Estrin and Mecking, 1984; Kocks and Mecking, 2003;
Blaizot et al., 2016; Lin et al., 2018; Yuan et al., 2019; Voyiadjis
and Abed, 2005; Voyiadjis et al., 2019). Since these models involve
dislocation physics, they rather well describe the recovery mechanism.
However, the identification of those models remains quite cumbersome
and requires non-conventional experimental techniques to quantify the
dislocation density and to follow their kinetics during the tests, e.g.,
Transmission Electron Microscopy. Moreover, the hardening recovery
is not only related to the annihilation of dislocations, particularly in
metals with low stacking fault energy, such as austenitic stainless steel,
since the recrystallization and the dislocations annihilation seem to
occur simultaneously (Humpreys et al., 2017).

In an alternative approach, some of the authors of this paper
has previously introduced the concept of hardening recovery vari-
able within a classical elastoplastic formulation with isotropic hard-
ening (Mouelle et al., 2020). The main idea behind this concept is
to consider an internal state variable, referred to as the recovery
variable, that gradually counteracts the effect of the hardening through
a temperature-dependent evolution law. Although this model was
able to capture some interesting tendencies, some features are still
clearly missing to properly reproduce the material responses at high
temperatures (Mouelle, 2020). This was mainly caused by the fact that,
the hardening recovery was only formulated in the case of isotropic
hardening without any other time- or temperature-dependencies with
regards to the elasto-plastic properties. Indeed, isotropic hardening is
not always appropriate to well describe the material behaviour upon
alternate tension–compression. Such loading conditions are common
in metal-forming applications like in multi-pass welding. Moreover,
accounting for time- and temperature-dependencies appears to be
necessary to well describe the material behaviour at moderate and high
temperatures, even when the hardening recovery is not yet active.

Therefore, to address these issues, a new constitutive model is
proposed in this work. The latter takes up the concept of the hardening

recovery variable, but extends it to the case of kinematic hardening.
The model is formulated considering an elasto-viscoplastic formulation
since it is well established that metallic materials exhibit viscous effects
at high temperatures. Furthermore, temperature dependencies are set
in the elastic and viscoplastic properties to account for the prevailing
thermal influences on the material response. The model is then iden-
tified for AISI 316L austenitic stainless steel using experimental data
from Depradeux (2004) and Hendili (2016), who conducted uni-axial
tension tests over a wide range of temperature (from room temperature
to 1273 K) and at two different strain rates (2.5 × 10−4 and 2.5 ×
10−3 s−1). Validation is further achieved with rather good agreements
by comparing the simulated responses with additional experimental
data (Depradeux, 2004) where the material is subjected to complex
thermomechanical loading paths including tension-relaxation and fully
constrained dilatation tests. Other examples are presented to provide
a better insight of the model, as well as to illustrate the kinetic of the
hardening recovery in relation with the temperature and the time of
exposure.

In this work, the following notation is adopted: bold and blackboard
symbols denote second and fourth order tensors, respectively, whereas
other symbols are scalar quantities. The product operators ∶ and ⊗
depict the twice contracted and the dyadic products, respectively, such
as:

[𝑨 ∶ 𝑩] = 𝐴𝑖𝑗𝐵𝑖𝑗 , [A ∶ 𝑩]𝑖𝑗 = 𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙 , [𝑨⊗ 𝑩]𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗𝐵𝑘𝑙 .

Moreover, all the second order tensors are symmetric (𝐴𝑖𝑗 = 𝐴𝑗𝑖) and
all the fourth order tensors have at least the minor symmetries (𝐴𝑖𝑗𝑘𝑙 =
𝐴𝑗𝑖𝑘𝑙 = 𝐴𝑖𝑗𝑙𝑘). Consequently, they can be respectively reduced to 6 × 1
and 6 × 6 matrices according to the Voigt notation. 𝑰 and I stand for
the second and fourth order identity tensors, respectively. The positive
part of a scalar quantity 𝑎 is denoted by

⟨

𝑎
⟩

+, such that
⟨

𝑎
⟩

+ = 𝑎 if
𝑎 ≥ 0 or

⟨

𝑎
⟩

+ = 0 if 𝑎 < 0. The operators hyd(𝝈) and 𝐃𝐞𝐯(𝝈) designate
the hydrostatic pressure and the deviatoric part of a stress tensor 𝝈,
respectively:

hyd(𝝈) = 1
3
tr(𝝈), 𝐃𝐞𝐯(𝝈) = 𝝈 − hyd(𝝈)𝑰 ,

while eq(𝝈) is the equivalent von Mises stress:

eq(𝝈) =
√

3
2
𝐃𝐞𝐯(𝝈) ∶ 𝐃𝐞𝐯(𝝈).



2. Constitutive equations and thermodynamic framework

2.1. State laws

The proposed constitutive equations are based on a viscoplastic
model with kinematic hardening (Lemaitre and Chaboche, 1990). Ac-
cordingly, the energetic state of the material is described by the follow-
ing form of the Helmholtz free energy potential:

𝜌𝜓(𝜺, 𝑇 , 𝜺𝑝, 𝝃𝑝, 𝝃𝑟) = 1
2

(

𝜺 − 𝜺𝑝 − 𝜺𝑡ℎ(𝑇 )
)

∶ C(𝑇 ) ∶
(

𝜺 − 𝜺𝑝 − 𝜺𝑡ℎ(𝑇 )
)

+
𝑐(𝑇 )
2

(𝝃𝑝 − 𝝃𝑟) ∶ (𝝃𝑝 − 𝝃𝑟) + 𝜌𝜓𝑡ℎ(𝑇 ), (1)

which involves the total strain 𝜺 and the absolute temperature 𝑇 as
observable state variables. Furthermore, the Helmholtz free energy also
depends on a set of internal state variables, among which are the plastic
strain 𝜺𝑝, the back strain 𝝃𝑝 and the back strain recovery variable 𝝃𝑟,
simply referred to as recovery variable.

In (1), 𝜌 denotes the mass density considered as constant under the
small strains assumption. C(𝑇 ) is a temperature-dependent fourth order
material stiffness tensor defined as:

C(𝑇 ) = 𝑔𝑒(𝑇 ) C0, (2)

where C0 is the stiffness tensor at the reference temperature 𝑇0, clas-
sically defined for bulk isotropic materials by 𝐸0 and 𝜈0, the Young
modulus and the Poisson ratio, respectively. Note that, in this work, the
reference temperature is the room temperature such that 𝑇0 = 293 K. As
written in (2), the elastic stiffness at a given temperature is connected
to the one at the reference temperature through a shift function 𝑔𝑒(𝑇 )
that will be defined later in Section 3. This function is equal to 1 at the
reference temperature and tends to 0 for high temperatures. Similarly
to the elastic stiffness, 𝑐(𝑇 ) is a temperature-dependent hardening
parameter defined as:

𝑐(𝑇 ) = 𝑔𝑝(𝑇 ) 𝑐0, (3)

where 𝑐0 is the hardening parameter given at the reference temper-
ature, while 𝑔𝑝(𝑇 ) is another temperature-dependent shift function
associated with plasticity. Like 𝑔𝑒(𝑇 ), 𝑔𝑝(𝑇 ) is equal to 1 at the reference
temperature whereas it tends to 0 for high temperatures. Its expression
will also be defined later in Section 3. 𝜺𝑡ℎ(𝑇 ) stands for the thermal
strain, usually expressed for an isotropic material as:

𝜺𝑡ℎ(𝑇 ) = 𝛼𝑰(𝑇 − 𝑇0), (4)

where 𝛼 denotes the coefficient of thermal expansion. The last term of
(1), namely: 𝜓𝑡ℎ(𝑇 ), represents the calorific energy, which depends on
the temperature. Its expression is given by:

𝜓𝑡ℎ(𝑇 ) = 𝑐𝑝

[

(𝑇 − 𝑇0) − 𝑇 ln
(

𝑇
𝑇0

)]

− 𝑠0𝑇 + 𝑒0, (5)

where 𝑠0 and 𝑒0 are the entropy and the internal energy at the refer-
ence temperature 𝑇0, whereas 𝑐𝑝 denotes the specific heat capacity at
constant pressure.

By following the standard thermodynamic derivation, it yields for
the stress:

𝝈 = 𝜌
𝜕𝜓
𝜕𝜺

= C(𝑇 ) ∶
(

𝜺 − 𝜺𝑝 − 𝜺𝑡ℎ(𝑇 )
)

, −𝝈 = 𝜌
𝜕𝜓
𝜕𝜺𝑝

, (6)

and for the back stress:

𝑿 = 𝜌
𝜕𝜓
𝜕𝝃𝑝

= 𝑐(𝑇 )(𝝃𝑝 − 𝝃𝑟), −𝑿 = 𝜌
𝜕𝜓
𝜕𝝃𝑟

. (7)

Furthermore, the specific entropy per mass unit 𝑠 is associated to the
temperature such that:

𝑠 = −
𝜕𝜓
𝜕𝑇

. (8)

The state and associated variables are summarized in Table 1.

Table 1
State and associated variables. The present formulation involves the total
strain 𝜺 and the absolute temperature 𝑇 as observable state variables, to
which the stress 𝝈 and the specific entropy 𝑠, respectively, are associated.
Furthermore, the plastic strain 𝜺𝑝, the back strain 𝝃𝑝 and the recovery
variable 𝝃𝑟 are involved as internal state variables, to which −𝝈, the
back stress 𝑿 and −𝑿, respectively, are associated.
State variables Associated variables

Observable Internal –

𝜺 𝝈
𝑇 𝑠

𝜺𝑝 −𝝈
𝝃𝑝 𝑿
𝝃𝑟 −𝑿

Note that, unlike classical kinematic hardening formulations, the
back stress 𝑿 does not only depend on 𝝃𝑝, but rather on the difference
between the 𝝃𝑝 and 𝝃𝑟, as given in Eq. (7). Thus, through its evolution,
the recovery variable 𝝃𝑟 will play an antagonistic role with regard to
the back strain 𝝃𝑝, by gradually cancelling the effect of the hardening
when 𝝃𝑟 gets close to 𝝃𝑝. This process will be further detailed later in
Section 2.2.2.

2.2. Evolution laws

To guaranty the thermodynamic admissibility, it is important that
the evolution laws, expressing the kinetic of the internal state vari-
ables, are well in line with the Clausius–Duhem inequality, stating that
the intrinsic dissipation must be positive or null. For the proposed
formulation, this gives:

�̇� = 𝝈 ∶ �̇� − 𝜌(�̇� + 𝑠�̇� ) ≥ 0

= 𝝈 ∶ �̇� − 𝜌
(

𝜕𝜓
𝜕𝜺

∶ �̇� + 𝜕𝜓
𝜕𝑇

�̇� +
𝜕𝜓
𝜕𝜺𝑝

∶ �̇�𝑝 +
𝜕𝜓
𝜕𝝃𝑝

∶ �̇�𝑝 +
𝜕𝜓
𝜕𝝃𝑟

∶ �̇�𝑟 + 𝑠�̇�
)

≥ 0

= 𝝈 ∶ �̇�𝑝 −𝑿 ∶ �̇�𝑝 +𝑿 ∶ �̇�𝑟 ≥ 0.

(9)

In the above equation, two contributions can be identified: the dis-
sipation associated with viscoplasticity, i.e., 𝝈 ∶ �̇�𝑝 − 𝑿 ∶ �̇�𝑝, and
the one associated with the hardening recovery, i.e., 𝑿 ∶ �̇�𝑟. Since,
the viscoplasticity and the hardening recovery mechanism may occur
independently from one another, each of these two contributions must
be positive or null. For these reasons, two potential functions will
be used to derive the evolution laws, one for the viscoplasticity, and
another for the hardening recovery.

2.2.1. Viscoplasticity with kinematic hardening
Non-linear kinematic hardening (Armstrong and Frederick, 1966)

is commonly employed to represent the asymmetrical behaviour of
metallic material, i.e., the Bauschinger effect, upon alternate ten-
sion/compression loading stages. Such type of hardening necessitates to
be formulated in the context of non-associative plasticity. Accordingly,
the evolution laws derive from the normality rule of a convex indicative
potential function defined as:

𝐹 (𝝈,𝑿; 𝑇 ) = 𝑓 (𝝈,𝑿, 𝑇 ) + 𝛾
2 𝑐(𝑇 )

𝑿 ∶ 𝑿 (10)

where 𝛾 is an additional hardening parameter, which is assumed to be
temperature-independent, while 𝑓 (𝝈,𝑿, 𝑇 ) represents the yield func-
tion given by:

𝑓 (𝝈,𝑿, 𝑇 ) = eq(𝝈 −𝑿) − 𝜎𝑦(𝑇 ). (11)

One can notice that the yield function depends on the temperature
through the yield threshold 𝜎𝑦(𝑇 ), which is defined as:

𝜎𝑦(𝑇 ) = 𝑔𝑝(𝑇 ) 𝜎𝑦0 . (12)



Like the expression of the hardening parameter 𝑐(𝑇 ) in (3), the tem-
perature dependency of 𝜎𝑦(𝑇 ) is expressed by multiplying the yield
threshold at the reference temperature 𝜎𝑦0 by the same shift function
𝑔𝑝(𝑇 ).

Following the normality rule of 𝐹 (𝝈,𝑿; 𝑇 ), it yields for the evolution
laws:

�̇�𝑝 =
𝜕𝐹
𝜕𝝈

�̇� = 𝜦(𝝈,𝑿) �̇�, �̇�𝑝 = − 𝜕𝐹
𝜕𝑿

�̇� = 𝜴(𝝈,𝑿, 𝑇 ) �̇�, (13)

where 𝑝 is a multiplier (�̇� ≥ 0), whereas 𝜦(𝝈,𝑿) and 𝜴(𝝈,𝑿, 𝑇 )
respectively denote the plastic strain and back strain flows:

𝜦(𝝈,𝑿) = 3
2
𝐃𝐞𝐯(𝝈 −𝑿)
eq(𝝈 −𝑿)

, 𝜴(𝝈,𝑿, 𝑇 ) = 𝜦(𝝈,𝑿) −
𝛾

𝑐(𝑇 )
𝑿. (14)

Note that the convexity of the indicative function 𝐹 with regard to the
associated variables guarantees that the plasticity-related dissipation is
always positive or null, i.e., 𝝈 ∶ �̇�𝑝 −𝑿 ∶ �̇�𝑝 ≥ 0.

To account for a viscoplastic behaviour, the evolution of the multi-
plier 𝑝 is connected to the yield function 𝑓 (𝝈,𝑿, 𝑇 ) through a Norton-
like law (Norton, 1929):

�̇� = 1
𝜂

[⟨

𝑓 (𝝈,𝑿, 𝑇 )
⟩

+
𝜎𝑦(𝑇 )

]𝑁

(15)

where 𝜂, 𝑁 are viscosity parameters. It is worth noticing that in the
above equation, the yield function is normalized by the yield thresh-
old 𝜎𝑦(𝑇 ), which itself depends on the temperature through the shift
function 𝑔𝑝(𝑇 ), as defined in Eq. (12). In this manner, 𝑔𝑝(𝑇 ) acts as
a unique temperature-dependent function for the whole viscoplasticity
mechanism.

2.2.2. Thermally-activated hardening recovery
The recovery kinetic is mainly governed by the temperature 𝑇 and

the dislocation density (Petkovic et al., 1979; Farzadi, 2015; Mouelle
et al., 2020). From a phenomenological standpoint, the hardening,
through the back stress 𝑿, can be considered as a representative
quantity of the actual dislocation density. For these reasons, 𝑇 and 𝑿
are considered as driving forces of the hardening recovery process. To
this end, the recovery kinetic is based on a dual dissipation potential
defined as a convex function of the back stress and in which the
temperature acts as parameter. This gives:

𝜑∗
𝑟 (𝑿; 𝑇 ) = 𝑔𝑟(𝑇 )

𝐴𝑋
2

𝑿 ∶ 𝑿, (16)

where 𝐴𝑋 is an amplitude parameter and 𝑔𝑟(𝑇 ) is an activation func-
tion of the recovery mechanism. The latter is formulated using a
Johnson–Mehl–Avrami–Kolmogorov-like law (JMAK) (Avrami, 1939,
1940; Fanfoni and Tomellini, 1998):

𝑔𝑟(𝑇 ) = exp
(

−
(

𝑇𝑟
𝑇

)𝑛𝑟)

. (17)

This form is motivated by the fact that the hardening covers not only
the annihilation of dislocations but also the grain recrystallization
whose effects are well predicted by the JMAK laws. Fig. 2 shows that, in
𝑔𝑟(𝑇 ), 𝑇𝑟 represents a transition temperature from which the recovery
process becomes predominant, whereas 𝑛𝑟 is a sensitivity parameter
regarding this transition.

The evolution law of the recovery variable is then achieved after
derivation of this potential with respect to its associated variable, i.e.,
−𝑿. accordingly, it yields:

�̇�𝑟 =
𝜕𝜑∗

𝑟
𝜕𝑿

= 𝑔𝑟(𝑇 )𝐴𝑋𝑿. (18)

With this formalism, the hardening recovery variable rate is nearly null
when the temperature is far below the transition temperature 𝑇𝑟, as
𝑔𝑟(𝑇 ≪ 𝑇𝑟) → 0, making the recovery mechanism quasi-inactive at
low temperatures. However, the recovery mechanism starts becoming
significantly active when the temperature approaches 𝑇𝑟 and eventually
becomes fully active, when the temperature is far beyond 𝑇𝑟, as 𝑔𝑟(𝑇 ≫

Fig. 2. Activation function of the recovery mechanism 𝑔𝑟(𝑇 ). This function involves
two parameters, namely: a transition temperature 𝑇𝑟 and 𝑛𝑟, a sensitivity parameter
regarding this transition.

𝑇𝑟) → 1. The hardening recovery variable rate is further amplified by
the actual value of 𝑿 through the parameter 𝐴𝑋 .

Note that the convexity of 𝜑∗
𝑟 (𝑿; 𝑇 ) necessarily implies that the

hardening recovery-related dissipation is positive or null, i.e., 𝑿 ∶ �̇�𝑟 ≥
0, making the proposed constitutive relation well thermodynamically
admissible.

2.3. Description of the hardening recovery mechanism

During the hardening recovery, 𝝃𝑟 runs towards 𝝃𝑝 as a result of a
temperature exposure. This process can be emphasized by combining
Eqs. (7) and (18) together such that:

𝝃𝑟 + 𝜏𝑟(𝑇 ) �̇�𝑟 = 𝝃𝑝. (19)

This equation appears to be a first order differential equation high-
lighting a temperature-dependent characteristic time 𝜏𝑟(𝑇 ) that can be
identified as:

𝜏𝑟(𝑇 ) =
1

𝑐(𝑇 )𝑔𝑟(𝑇 )𝐴𝑋
, (20)

where 𝑐(𝑇 ) and 𝑔𝑟(𝑇 ) are given in Eqs. (3) and (17), respectively.
𝜏𝑟(𝑇 ) provides a useful information about which range of time the
hardening recovery is expected to occur, for a given temperature.
One can notice that when the recovery mechanism is quasi-inactive
at low temperatures, 𝜏𝑟 tends to very long times whereas it becomes



Fig. 3. Illustrative case of an already yielded material, undergoing hardening recovery without any active yielding, i.e., 𝝃𝑝 ≠ 𝟎 and �̇�𝑝 = 𝟎, as a result of a sudden temperature
exposure held constant, i.e., �̇� = 0, from an instant 𝑡0.

much shorter when the hardening recovery becomes active at higher
temperatures.

Let us consider the case of an already yielded material, undergoing
hardening recovery without any active yielding, i.e., 𝝃𝑝 ≠ 𝟎 and �̇�𝑝 = 𝟎,
as a result of a sudden temperature exposure held constant, i.e., �̇� = 0,
from an instant 𝑡0. Under these conditions, Fig. 3(a) then shows that 𝝃𝑟
asymptotically tends to 𝝃𝑝 through an exponential growth:

𝝃𝑟(𝑡; 𝑇 ) = 𝝃𝑝

(

1 − exp
(

−
𝑡 − 𝑡0
𝜏𝑟(𝑇 )

)

)

. (21)

According to Eq. (7), since the back stress 𝑿, for a given temperature,
is proportional to the difference between 𝝃𝑝 and 𝝃𝑟, Fig. 3(b) shows that
𝑿 relaxes to zero by following an exponential decay:

𝑿(𝑡; 𝑇 ) = 𝑿0(𝑇 ) × exp
(

−
𝑡 − 𝑡0
𝜏𝑟(𝑇 )

)

, with 𝑿0(𝑇 ) = 𝑐(𝑇 )𝝃𝑝, (22)

gradually shifting the yield function, in Eq. (11), back to the stress
space centre, as illustrated in Fig. 3(c). Note that according to Eqs. (21)
or (22), 3 × 𝜏𝑟 represents to time needed to recover 95 % of the
hardening. It is worth noticing that a similar trend is obtained with the
Zener–Wert–Avrami equation that is commonly utilized to predict the
thermal relaxation of residual stresses (Totten et al., 2002; Angkurarach
and Juijerm, 2020).

2.4. Assumption regarding the temperature field equation

The energy balance equation governs the temperature field within
the material domain. By combining together the first law of thermo-
dynamics in its local form with the Fourier law, one obtains for an
isotropic medium:

𝑟 + 𝜔 + 𝑘𝛁2
𝒙𝑇 = 0, (23)

where 𝜔 stands for an eventual applied heat source, 𝑘 is the material
conductivity and 𝛁2

𝒙 the Laplace operator. Furthermore, 𝑟 represents
the differential energy density rate between the mechanical power and
the rate of internal energy. Knowing that the latter is connected to the
Helmholtz free energy by 𝑒 = 𝜓 + 𝑇 𝑠, it yields for 𝑟:

𝑟 = 𝝈 ∶ �̇� − 𝜌�̇� with �̇� = �̇� + 𝑠�̇� + 𝑇 �̇�

= 𝝈 ∶ �̇� − 𝜌(�̇� + 𝑠�̇� ) − 𝜌𝑇 �̇�,

= �̇� − 𝜌𝑇 �̇�

(24)

where the intrinsic dissipation �̇� is given in (9) for the proposed model
formulation.

According to (23) and (24), It is clear that the deformation as well
as the hardening recovery processes obviously play a role in the energy
balance through the energy dissipated by the material and the variation
of entropy, resulting in temperature changes within the material. This
makes the mechanical and thermal problems interdependent such that



they should be solved through a fully-coupled thermomechanical anal-
ysis, where the equilibrium equations (mechanical problem) and the
energy balance equation (thermal problem) are simultaneously solved,
while integrating all the coupling terms as detailed in Chatzigeorgiou
et al. (2016, 2018). However, since the temperature sensitivity of
metallic materials is usually quite low compared to the temperature
elevations that can be caused by the intrinsic dissipation, its effect can
be neglected in the expression of 𝑟, i.e., �̇� ≈ 0. Moreover, it can also
be assumed that most of the entropy results from the differentiation of
the caloric energy 𝜓𝑡ℎ, given in (5), with respect to the temperature.
Therefore, since 𝜓𝑡ℎ only depends on the temperature, it yields:

𝑠 = −
𝜕𝜓
𝜕𝑇

≈ −
𝜕𝜓𝑡ℎ
𝜕𝑇

⇒ �̇� ≈ −
𝜕2𝜓𝑡ℎ
𝜕𝑇 2

�̇� = 𝑐𝑝
�̇�
𝑇
. (25)

With these two assumptions in mind, the differential energy density
rate reduces to:

𝑟 ≈ −𝜌𝑐𝑝�̇� , (26)

which renders the thermal problem independent from the mechanical
one. In this context, the whole problem can be conveniently treated by
means of an uncoupled thermomechanical analysis, where the thermal
problem is first solved prior to the mechanical one. The temperature
field computed from the thermal analysis is then utilized as input data
for the subsequent mechanical analysis. In that sense, the tempera-
ture can be regarded as a controllable quantity, as considered in the
remainder of this paper.

2.5. Numerical implementation

It is important to remind that a FE solver, like ABAQUS/Standard,
employs a backward Euler (or time-implicit) integration scheme. Ac-
cordingly, a constitutive law is implemented through an integrator,
e.g., a UMAT (User MATerial subroutine) in ABAQUS/Standard, that
computes:

(i) The stress as well as history-dependent quantities (internal state
variables) over a time increment [𝑡(𝑛); 𝑡(𝑛+1)] of length 𝛥𝑡 = 𝑡(𝑛+1)−
𝑡(𝑛), while all variables known at 𝑡(𝑛).

(ii) The tangent operators d𝝈
d𝜺 and d𝝈

d𝑇 that are necessary for the FE
solver to compute the global predictor at the whole FE system’s
level.

This is usually done through a return mapping algorithm (Simo and
Hughes, 1998; Praud et al., 2017a,b; Praud, 2018; Chatzigeorgiou et al.,
2018), which is detailed in Appendix for the proposed model.

3. Parameters identification for AISI 316L austenitic stainless steel

3.1. Flow stress

The proposed model is identified for the AISI 316L austenitic stain-
less steel following a specific identification procedure. This is done
from monotonic tensile tests taken from literature (Depradeux, 2004;
Hendili, 2016). These experiments have been performed at six temper-
atures ranging from 293 K to 1273 K, and for two strain rates, namely:
2.5 × 10−4 s−1 and 2.5 × 10−3 s−1. For each test, the axial plastic strain
𝜀𝑝 is extracted from the experimentally recorded axial stress 𝜎 and total
strain 𝜀:

𝜀𝑝 = 𝜀 − 𝜎
𝐸(𝑇 )

, where 𝐸(𝑇 ) = 𝑔𝑒(𝑇 )𝐸0, (27)

while the plastic strain rate is assumed to be constant and equal to the
strain rate of the test, such that �̇�𝑝 ≈ �̇�. Furthermore, under monotonic
uni-axial tension, the plastic strain 𝜀𝑝 equals the multiplier 𝑝.

The identification procedure then relies on the evaluation of the
flow stress 𝜎 as a function of 𝜀𝑝, where �̇�𝑝 and 𝑇 can be regarded as
parameters. Based on Eqs. (11) and (15), it yields under monotonic

uni-axial conditions, the following relationship between 𝜎, 𝑋 and �̇�𝑝:

𝜎(𝑋; �̇�𝑝, 𝑇 ) =
3
2
𝑋 + 𝜎𝑦(𝑇 )

[

1 + (𝜂 �̇�𝑝)1∕𝑁
]

, (28)

whereas the axial back stress 𝑋 is expressed through Eqs. (7), (13) and
(18) and is accordingly governed by the following differential equation:

�̇� +

[

𝛾�̇�𝑝 + 𝑐(𝑇 ) 𝑔𝑟(𝑇 )𝐴𝑋 −
𝑔′𝑝
𝑔𝑝
�̇�

]

𝑋 = 𝑐(𝑇 ) �̇�𝑝, (29)

which can be solved under monotonic conditions at constant tempera-
ture (�̇� = 0). This leads to the following analytical expression:

𝑋(𝜀𝑝; �̇�𝑝, 𝑇 ) =

𝑐(𝑇 ) �̇�𝑝
𝛾�̇�𝑝 + 𝑐(𝑇 ) 𝑔𝑟(𝑇 )𝐴𝑋

[

1 − exp
(

−𝛾𝜀𝑝 − 𝑐(𝑇 ) 𝑔𝑟(𝑇 )𝐴𝑋
𝜀𝑝
�̇�𝑝

)

]

. (30)

Therefore, by inserting (30) into (28), it yields the following expression
for the flow stress:

𝜎(𝜀𝑝; �̇�𝑝, 𝑇 ) =

3
2

𝑐(𝑇 ) �̇�𝑝
𝛾�̇�𝑝 + 𝑐(𝑇 ) 𝑔𝑟(𝑇 )𝐴𝑋

[

1 − exp
(

−𝛾𝜀𝑝 − 𝑐(𝑇 ) 𝑔𝑟(𝑇 )𝐴𝑋
𝜀𝑝
�̇�𝑝

)

]

+ 𝜎𝑦(𝑇 )
[

1 + (𝜂 �̇�𝑝)1∕𝑁
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜎∗𝑦 (𝑇 ,�̇�𝑝)

, (31)

where it is recalled that 𝑐(𝑇 ) = 𝑔𝑝(𝑇 )𝑐0 and 𝜎𝑦(𝑇 ) = 𝑔𝑝(𝑇 )𝜎𝑦0 . In (31), it
is important to point out that the last term, namely:

𝜎∗𝑦 (𝑇 , �̇�𝑝) = 𝜎𝑦(𝑇 )
[

1 + (𝜂 �̇�𝑝)1∕𝑁
]

= 𝑔𝑝(𝑇 )𝜎𝑦0
[

1 + (𝜂 �̇�𝑝)1∕𝑁
]

,
(32)

can be interpreted as an apparent yield stress, which can be conve-
niently read on a tensile curve for a given temperature 𝑇 and plastic
strain rate �̇�𝑝. It is furthermore worth noticing that if the hardening
recovery mechanism is not active, which is likely to occur at low
temperature, then Eq. (31) is reduced to:

𝜎(𝜀𝑝; �̇�𝑝, 𝑇 ) = 𝑔𝑝(𝑇 )

[

3
2
𝑐0
𝛾

[

1 − exp
(

−𝛾𝜀𝑝
)

]

+ 𝜎𝑦0
[

1 + (𝜂�̇�𝑝)1∕𝑁
]

]

. (33)

In this condition, one can remark that the 𝑔𝑝(𝑇 ) acts as a unique shift
function to the whole apparent hardening at the reference temperature.

With or without hardening recovery, the assessment of the flow
stress conveniently enables to identify the parameters of the model.
The identification procedure is then performed according to the three
following steps:

(i) Identification of the shift functions 𝑔𝑒(𝑇 ) and 𝑔𝑝(𝑇 ) associated
with the temperature-dependency of the elastic and viscoplastic
properties,

(ii) Identification of the viscoplastic parameters,
(iii) Identification of the hardening recovery parameters,

which are detailed in the next subsections.

3.2. Identification of the shift functions

Prior to identifying the model from the flow stress, it is important to
calibrate the shift function 𝑔𝑒(𝑇 ) and 𝑔𝑝(𝑇 ) associated with the elastic
and viscoplastic properties, respectively, through Eqs. (2), (3) and (12).
Although temperature dependencies are commonly formulated using
Arrhenius-like law (Lemaitre and Chaboche, 1990), no specific forms
have been defined at this stage for these two functions.

In this work, given the experimental data
(Depradeux, 2004; Hendili, 2016), a form based on the Langevin-like
formulation, as proposed by Kittel et al. (1996), has been considered for



Fig. 4. Shift function 𝑔𝑒(𝑇 ) and 𝑔𝑝(𝑇 ) associated with the temperature dependencies
of the elastic and viscoplastic properties, respectively. These two functions 𝑔𝑒(𝑇 ) are
calibrated from experimental data taken from Depradeux (2004) and Hendili (2016).

𝑔𝑒(𝑇 ). This function employs a multiplicative decomposition of a second
order polynomial and exponential function. Accordingly, it reads:

𝑔𝑒(𝑇 ) =
(

𝑎𝑒1 + 𝑎
𝑒
2 𝑇 + 𝑎𝑒3 𝑇

2
)

× exp
(

−
(

𝑇
𝑇𝑒

)𝑛𝑒)

, (34)

where the parameters 𝑎𝑒1, 𝑎
𝑒
2, 𝑎

𝑒
3, 𝑛𝑒, 𝑇𝑒 are calibrated from the experi-

mental data by calculating for each test the ratio between the Young’s
modulus 𝐸(𝑇 ) and the one at the reference temperature 𝐸0. Fig. 4(a)
shows the obtained curve for 𝑔𝑒(𝑇 ) with the identified parameters as
well as the experimental data from Depradeux (2004) and Hendili
(2016).

Similarly to the elastic properties, the viscoplastic properties are
very sensitive to the temperature. For 𝑔𝑝(𝑇 ), a formulation similar
to 𝑔𝑒(𝑇 ) has been considered to capture the temperature-dependency
of the viscoplastic properties. This function introduces another set of
material parameters 𝑎𝑝1, 𝑎

𝑝
2, 𝑎

𝑝
3, 𝑛𝑝, 𝑇𝑝, such that:

𝑔𝑝(𝑇 ) =
(

𝑎𝑝1 + 𝑎
𝑝
2 𝑇 + 𝑎𝑝3 𝑇

2
)

× exp
(

−
(

𝑇
𝑇𝑝

)𝑛𝑝)

, (35)

where the calibration is done by calculating for each test the ratio
between the apparent yield stress 𝜎∗𝑦 (𝑇 , �̇�𝑝) and the one at room temper-
ature considering the same strain rate, 𝜎∗𝑦 (𝑇0, �̇�𝑝), according to Eq. (32).
The identified function 𝑔𝑝(𝑇 ) agrees well with the experimental data
from Depradeux (2004) and Hendili (2016) as shown in Fig. 4(b).

Table 2
Identified parameters for AISI 316L austenitic stainless steel.

Feature Parameter Value Unit

Thermo-elasticity 𝐸0 195 600 MPa
𝜈0 0.3 –
𝛼 17.1 × 10−6 K−1

𝑎𝑒1 1.00 –
𝑎𝑒2 6.98 × 10−5 K−1

𝑎𝑒3 −3.57 × 10−7 K−2

𝑛𝑒 22.4 –
𝑇𝑒 1629 K

Thermo-visco-plasticity 𝑐0 4.0 × 104 MPa
𝛾 358 –
𝑁 10 –
𝜂 1.45 × 104 s
𝜎𝑦0 100 MPa
𝑎𝑝1 1.61 –
𝑎𝑝2 −2.52 × 10−3 K−1

𝑎𝑝3 1.54 × 10−6 K−2

𝑛𝑝 6.83 –
𝑇𝑝 1234 K

Hardening recovery 𝐴𝑋 9.76 × 10−4 MPa−1 s−1

𝑛𝑟 11.9 –
𝑇𝑟 1234 K

As expected, the apparent yield stress is much more sensitive at low
temperatures than the Young’s modulus. It can be noticed that 𝑔𝑝(𝑇 )
exhibits three regimes. At low temperatures (below 673 K), the apparent
yield stress decreases about 40 % compared to the reference tempera-
ture. Then, at intermediate temperatures between 673 K and 1073 K, the
apparent yield stress is halved compared to the reference temperature
but it decreases less quickly than for the first regime. Finally, for
temperatures above 1073 K, the apparent yield stress drastically drops
and nearly vanishes reaching a value close to 0 for temperatures above
1473 K. Although the experimental data are few for the apparent yield
stress, it is important to point out that the identified temperature
dependency is well consistent with known tendencies for other metallic
materials of the same type (Gardner and Baddoo, 2006; Gardner et al.,
2010).

3.3. Identification of the viscoplastic parameters

At low temperatures, typically below 873 K, the recovery mechanism
can be considered as inactive (Kerrouault, 2001; Depradeux, 2004).
Under this condition, as explained in Section 3.1, the expression of
the flow stress (33) only involves the shift function 𝑔𝑝(𝑇 ) and the
parameters related to viscoplasticity, namely: 𝜎𝑦0 𝑐0, 𝛾, 𝜂 and 𝑁 .
Since 𝑔𝑝(𝑇 ) is known at this stage, one can identify these parameters
by minimizing the least squares between the experimentally recorded
stresses at 𝑇 < 873 K and the ones calculated using Eq. (33).

3.4. Identification of the hardening recovery parameters

At high temperatures, typically above 873 K, the hardening recovery
mechanism can be considered as active (Kerrouault, 2001; Depradeux,
2004). In this condition, the expression of the flow stress (31) now
involves the parameters related to viscoplasticity as well as the one re-
lated to the hardening recovery, namely: 𝐴𝑋 , 𝑛𝑟 and 𝑇𝑟. However, since
the shift function 𝑔𝑝(𝑇 ) and the viscoplasticity parameters are known at
this stage, one can identify the hardening recovery parameters by min-
imizing the least squares between the experimentally recorded stresses
at 𝑇 > 873 K and the ones calculated using Eq. (31). The obtained
parameters are listed in Table 2 while Figs. 5(a) and 5(b) show good
agreements between the stress–strain responses computed with these
parameters and the experimental data over the whole temperature
range and for the two considered strain-rates.



Fig. 5. Comparison between the stress–strain computed responses and the experimental
data over the whole temperature range and for the two considered strain-rates, namely:
�̇� = 2.5 × 10−4 s−1 and �̇� = 2.5 × 10−3 s−1. The experimental data, taken from Depradeux
(2004) and Hendili (2016), are represented by dot markers whereas the computed
responses are depicted by solid lines.

Fig. 6(a) displays the identified activation function 𝑔𝑟(𝑇 ), which
is part of the evolution laws of the hardening recovery mechanism
through the parameters 𝑇𝑟 and 𝑛𝑟 (see Sub- Section 2.2.2). It shows
that the activation of the recovery mechanism is about 973 K, which is
well in line with previous works dealing with this material (Depradeux,
2004; Hendili, 2016; Mouelle et al., 2020).

Fig. 6(b) also shows for reference the characteristic time 𝜏𝑟(𝑇 ) de-
fined in Eq. (20) as a function of the temperature. Below the activation
temperature of the recovery mechanism, about 973 K, it appears that 𝜏𝑟
is greater than 106 s, which represents about 11 days. Such amount of
time is way beyond the time-scale on which thermomechanical loads
are usually applied so that the recovery mechanism can be considered
as quasi-inactive. The characteristic time 𝜏𝑟 then decreases for higher
levels of temperature. Around 1123 K, one can notice that 𝜏𝑟 goes below
a second. Such a drastic variation in the recovery kinetics has already
been reported for other type of austenitic stainless steels (Taylor and
Hodgson, 2011).

Note that, the proposed identification procedure only requires
monotonic tension tests, which is sufficient as long as the sole presence
of kinematic hardening is assumed. However, it is worth mentioning
that, if a combined isotropic-kinematic hardening was considered, a
much more complex procedure based on alternate tension–compression
tests would certainly be necessary for a proper identification.

Fig. 6. Identified function 𝑔𝑟(𝑇 ) and its associated characteristic time 𝜏𝑟(𝑇 ).

4. Validation examples

In this section, three examples of uni-axial simulations are presented
to validate the model while providing a better understanding regarding
its behaviour. In these examples, the material undergoes hardening
recovery under complex thermomechanical loading paths which are of
particular interest towards potential applications. The simulations were
carried out with the parameters identified in Section 3 for AISI 316L
austenitic stainless steel.

4.1. Double hit tension tests

In this example, the so-called double hit tension test is applied to
the material. Fig. 7 shows that a stress of 300 MPa is first applied
in 100 s before being released to zero in the next 100 s, during this
first loading stage, the material is kept at room temperature (reference
temperature). In a second stage, the material is kept free of stress for
a certain period of time during which the temperature is raised up to
temperature 𝑇max at the heating rate of 10 K s−1. Once reached this
temperature is held constant for a time 𝑡hold after which the material
is cooled down to room temperature at a cooling rate of −10 K s−1.
Now comes the third and last stage in which a stress of 350 MPa is now
applied in 100 s and next released during the following 100 s, while the
material remains at room temperature.

The double hit tension test was first proposed by Mouelle et al.
(2020) to dissociate the hardening recovery from viscoplasticity as
these mechanisms are separately activated during such a test. Indeed,



Fig. 7. Thermomechanical loading path for the double hit tension tests.

during the first stage, the material yields without any recovery as
the temperature is too low. During the second stage, the material is
kept at zero stress so that no more plastic strain and hardening can
be generated. However, hardening recovery occurs as the temperature
increases beyond the activation temperature. During this stage, the
amount of recovered hardening depends on the reached temperature
𝑇max as well as the time of temperature exposure 𝑡hold. The effect of
the hardening recovery can then be observed during the third stage,
from the level of stress from which the material starts yielding again. If
yielding occurs from the stress reached at the first stage, then there is no
hardening recovery during the second stage. Contrariwise, if yielding
occurs at a lower stress level, then there is hardening recovery, knowing
that the initial yielding point can be restored in case of full recovery.

It is recalled that the characteristic time 𝜏𝑟(𝑇 ), given in Eq. (20) and
displayed in Fig. 6(b) for the identified set of parameters, is directly
related to time that is necessary to fully recover the hardening, i.e., 95
% of the hardening is recovered in 3 × 𝜏𝑟.

Fig. 8 illustrates a case of a partial recovery. In this simulation, the
material is heated slightly above the activation temperature, at 𝑇max =
1023 K, which is held for 𝑡hold = 100 s. Fig. 8(b) shows that, during
the second stage, the hardening was barely recovered as 𝜉𝑟 slightly
increased towards 𝜉𝑝. Indeed, in this case, the thermal exposure was too
short and too low to achieve full recovery. From an external standpoint,
this can be observed at the third stage as the material starts yielding at
a stress level nearly equal to the one reached during the first stage, as
shown in Fig. 8(a). One can notice that since 𝜏𝑟(𝑇max = 1023 K) = 583
s is much greater than 𝑡hold = 100 s. This is well consistent since the
hardening was barely recovered for this simulation.

Fig. 9 now illustrates a case of full recovery by increasing the time
of temperature exposure to 𝑡hold = 3600 s. Fig. 9(b) shows that, in
this simulation, the hardening is fully recovered as 𝜉𝑟 had the time to
asymptotically reach 𝜉𝑝 during the second stage. Therefore during the
third stage, the material starts yielding from its initial yielding point,
as shown in Fig. 9(a). In this simulation, since 𝜏𝑟(𝑇max = 1023 K) = 583
s is now much shorter than 𝑡hold = 3600 s, a full recovery was well
expected.

Fig. 10 illustrates another case of full recovery. In this simulation,
the material is heated at a higher temperature, namely: 𝑇max = 1073 K
for 𝑡hold = 100 s. In spite of such a short time of exposure, Fig. 10(b) Fig. 8. Double hit tension test for 𝑇max = 1023 K and 𝑡hold = 100 s.



Fig. 9. Double hit tension test for 𝑇max = 1023 K and 𝑡hold = 3600 s.

shows that the higher temperature level results in a much faster recov-
ery, which enables the material to get through to a full recovery and an
entire restoration of its yielding point, as depicted in Fig. 10(a). In this
simulation, since 𝜏𝑟(𝑇max = 1073 K) = 11 s is now much shorter than
𝑡hold = 100 s, a full recovery was well expected too.

4.2. Stress relaxation tests

In this example, it is proposed to reproduce with the model the stress
relaxation tests carried out by Depradeux (2004) on AISI 316L austenitic
stainless steel. As depicted in Fig. 11, in these experiments, the material
is first heated from room temperature up to certain temperature 𝑇max
under zero stress conditions so that it is free to expand. This tempera-
ture is then held constant over the whole remainder of the test. Once
at temperature, a strain 𝜀𝑎 is applied at the rate of 2.5×10−3 s−1 before
being held constant for a time 𝑡hold. Once this time has elapsed, another
𝜀𝑎 is applied to the material at the same rate.

According the data of Depradeux (2004), two test configurations are
considered. In the first one, the material is heated up to 𝑇max = 473 K,
while an applied strain of 𝜀𝑎 = 0.01 is considered, for an holding time
𝑡hold = 500 s. In the second configuration, the material is heated up to
𝑇max = 1073 K with an applied strain of 𝜀𝑎 = 0.015, for an holding time
𝑡hold = 1000 s.

To further emphasize the role played by the hardening recovery,
both configurations are simulated with the proposed model with and

Fig. 10. Double hit tension test for 𝑇max = 1073 K and 𝑡hold = 100 s.

Fig. 11. Thermomechanical loading path for the stress relaxation tests.

without hardening recovery. In this latter case, the hardening recovery
is turned off by virtually setting the parameter 𝐴𝑋 to zero.

Fig. 12 shows the results for the first configuration, for which
the temperature remains far below the activation temperature of the
hardening recovery mechanism, about 973 K. Therefore, when the



Fig. 12. Stress relaxation test for 𝑇max = 473 K, 𝜀𝑎 = 0.01 and 𝑡hold = 500 s. Note that, in
this case, the applied temperature, i.e., 473 K, is far below the activation temperature
of the hardening recovery that is about 973 K.

strain is held constant, the material exhibits stress relaxation under the
sole effect of viscoplasticity. Fig. 12(b) then shows that the recovery
variable does not evolve in both simulations with and without recovery,
resulting in identical stress–strain responses in Fig. 12(a), which are in
relative good agreement with the experimental data.

Fig. 13 now shows the results of the second configuration for which
the temperature goes beyond the activation temperature. Thus, the ma-
terial exhibits stress relaxation resulting from the combined effects of
viscoplasticity and the hardening recovery, promoting the development
of plastic strain and therefore increasing the amount of relaxed stress.
Fig. 13(b) shows that, during the relaxation, the recovery variable 𝜉𝑟
runs towards the back strain 𝜉𝑝 while assisting its development. This
proceeds up to a point where both variables eventually take the same
value. Comparatively with the response without recovery, it can be
noticed in Fig. 13(a) that the response with recovery is in much better
agreement with the experimental data.

4.3. Satoh test

For this last example, the Satoh test carried out by Depradeux
(2004), Depradeux and Coquard (2018) on AISI 316L austenitic stain-
less steel is reproduced with the model. The Satoh test is an ex-
periment that is typically representative of the multi-pass welding
conditions (Satoh et al., 1966; Satoh and Ohnishi, 1972; Mouelle,
2020). It consists in applying thermal cycles to the material while its

Fig. 13. Stress relaxation test for 𝑇max = 1073 K, 𝜀𝑎 = 0.015 and 𝑡hold = 1000 s. Note
that, in this case, the applied temperature, i.e., 1073 K, is greater than the activation
temperature of the hardening recovery that is about 973 K.

Fig. 14. Thermomechanical loading path for the Satoh test.

axial strain is continuously constrained to zero. In the present case,
Fig. 14 shows that four successive cycles are considered. The material
is heated at the rate of 90 K s−1 from room temperature (𝑇0 = 293 K) up
to 1348 K, 1128 K, 908 K and 685 K, for cycle 1, 2, 3 and 4, respectively,
and subsequently cooled down to room temperature (𝑇0 = 293 K) at the
rate of 0.3 K s−1.



Fig. 15. Satoh test without hardening recovery.

As for the Stress relaxation test, the Satoh test is simulated with the
proposed model with and without hardening recovery. It is recalled
that, in this latter case, the hardening recovery is turned off by virtually
setting the parameter 𝐴𝑋 to zero.

Fig. 15(a) shows the comparison between the experimental data for
the Satoh test and the simulated stress–temperature response without
hardening recovery. During each thermal cycle, as it is prevented
to expand, the material undergoes alternate compression and tension
states with yielding over the course of the heating and cooling stages,
respectively. According to the model, Fig. 15(b) shows that the back
strain variable 𝜉𝑝 makes the yield function shift in compression and
in tension during the heating and cooling stages, respectively. Note
that the back strain recovery does not evolve here since the hardening
recovery is turned off in this simulation. In spite of that, it can be
noticed that the model predicts a similar tendency compared to the
experiment. During the heating stage of the first thermal cycle (from
293 K to 1348 K), the stress is overestimated of about 50 MPa. Then,
during the next cooling stage, (from 1348 K to 293 K), the stress is quite
close from the experimental one. For the next cycles, the heating stages
are well predicted. However, during the cooling stages, the yielding
point occurs sooner than what is experimentally observed.

Fig. 16(a) now shows the comparison between the experimental
data and the simulated stress–temperature response with hardening
recovery. In this case, the contribution of the hardening recovery allows
to improve the prediction at the end of the first heating stage, while the
yielding point is slightly shifted at the beginning of the next cooling

Fig. 16. Satoh test with hardening recovery.

stage. This greatly improves the prediction during the second cycle
whereas the following cycles keep nearly unchanged compared to the
simulation without hardening recovery. As depicted in Fig. 16(b), the
recovery variable 𝜉𝑟 evolves towards 𝜉𝑝 only during the two first cycles
for which the temperature exceeds the activation temperature, i.e.,
about 973 K. During this time, the recovery mechanism tends to bring
the yield function back to its state without hardening, counteracting
the effect of the latter as it progresses.

5. Conclusions and perspectives

In this work, a new phenomenological model has been proposed
to describe the thermally-activated hardening recovery mechanisms in
metallic materials. Such a feature constitutes an original modelling ap-
proach to capture the effects caused by different phenomena occurring
at the microstructure level, such as dislocation annihilations, recrys-
tallization and grain growth. Comparatively to previous works, where
the hardening recovery was only considered in a classical plasticity
formalism with isotropic hardening (Mouelle et al., 2020), the proposed
model rather extends this concept in a viscoplastic formulation with
kinematic hardening. Besides, the model also introduces temperature-
dependent shift functions to better represent the thermomechanical
response of the material over a wide temperature range whether the
hardening recovery is active or not. The model’s parameters have been
successfully identified for AISI 316L austenitic stainless steel through a
stepwise identification procedure based on the evaluation of the flow
stress, while validation is further achieved on other representative tests,



namely double hit tension tests, stress relaxation tests and Satoh tests
for which the material undergoes hardening recovery under complex
thermomechanical loading paths.

As future prospects, it is intended to extend the present formula-
tion to combined isotropic-kinematic hardening. Although this might
require additional thermomechanical experiments (Thiercelin et al.,
2022b) as well as a revised identification procedure, a combined hard-
ening might be helpful to better capture the material’s response upon
alternate tension–compression like it is the case for the Satoh test.
Extensions to strain gradient plasticity (Voyiadjis and Song, 2019;
Martínez-Pañeda et al., 2019; Jebahi and Forest, 2021) and/or non-
local damage (Kiefer et al., 2018; Praud et al., 2021; Satouri et al.,
2022) are also under consideration to account for strain localiza-
tion and other size effects. Finally, establishing correlations between
microstructural changes and the evolution of the internal state vari-
ables (Thiercelin et al., 2020, 2022a) describing the material behaviour
at the upper scale would be a valuable information towards enriching
the proposed constitutive model.
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Appendix. Return mapping algorithm

The numerical implementation of the proposed model is based on
the convex cutting plane form of the return mapping algorithm, which is
detailed in this appendix. The reader can refer to several references
among them (Simo and Hughes, 1998; Praud et al., 2017a,b; Praud,
2018; Chatzigeorgiou et al., 2018).

A.1. Residuals and linearization of the constitutive equations

The evolution laws of the viscoplastic multiplier 𝑝 and the recovery
variable 𝝃𝑟, given in (15) and (18), respectively, are written under the
form of residuals that must both satisfy a nullity condition. Accordingly,
this gives:

𝑅𝑝(�̇�,𝝈,𝑿, 𝑇 ) = �̇� − 1
𝜂

[⟨

𝑓 (𝝈,𝑿, 𝑇 )
⟩

+
𝜎𝑦(𝑇 )

]𝑁

, (A.1a)

𝑹𝝃𝑟 (�̇�𝑟,𝑿, 𝑇 ) = �̇�𝑟 − 𝑔𝑟(𝑇 )𝐴𝑋𝑿. (A.1b)

Taken in their linearized forms, it yields:

𝛿𝑅𝑝 =
𝜕𝑅𝑝
𝜕�̇�

𝜕�̇�
𝜕𝑝
𝛿𝑝 +

𝜕𝑅𝑝
𝜕𝝈

∶ 𝛿𝝈 +
𝜕𝑅𝑝
𝜕𝑿

∶ 𝛿𝑿 +
𝜕𝑅𝑝
𝜕𝑇

𝛿𝑇

= 𝐴𝑝𝑝𝛿𝑝 +𝑨𝑝𝝈 ∶ 𝛿𝝈 +𝑨𝑝𝑿 ∶ 𝛿𝑿 + 𝐴𝑝𝑇 𝛿𝑇 ,
(A.2a)

𝛿𝑹𝝃𝑟 =
𝜕𝑹𝝃𝑟

𝜕�̇�𝑟
∶
𝜕�̇�𝑟
𝜕𝝃𝑟

∶ 𝛿𝝃𝑟 +
𝜕𝑹𝝃𝑟
𝜕𝑿

∶ 𝛿𝑿 +
𝜕𝑹𝝃𝑟
𝜕𝑇

∶ 𝛿𝑇

= A𝝃𝑟𝝃𝑟 ∶ 𝛿𝝃𝑟 + A𝝃𝑟𝑿 ∶ 𝛿𝑿 +𝑨𝝃𝑟𝑇 𝛿𝑇 .
(A.2b)

Let us recall that the convex cutting plane method (Simo and Hughes,
1998; Praud et al., 2017a,b; Praud, 2018; Chatzigeorgiou et al., 2018)
considers simplified linearized forms of the flow Eqs. (13), which
become:

𝛿𝜺𝑝 = 𝜦(𝝈,𝑿)𝛿𝑝, 𝛿𝝃𝑝 = 𝜴(𝝈,𝑿, 𝑇 )𝛿𝑝, (A.3)

so that the linearized stress and back stress, according to Eqs. (6) and
(7), are given by:

𝛿𝝈 = 𝜕𝝈
𝜕𝜺

∶ 𝛿𝜺 + 𝜕𝝈
𝜕𝑇

𝛿𝑇 + 𝜕𝝈
𝜕𝜺𝑝

∶ 𝛿𝜺𝑝

= 𝜕𝝈
𝜕𝜺

∶ 𝛿𝜺 + 𝜕𝝈
𝜕𝑇

𝛿𝑇 + 𝜕𝝈
𝜕𝜺𝑝

∶ 𝜦(𝝈,𝑿)𝛿𝑝

= B𝝈𝜺 ∶ 𝛿𝜺 + 𝑩𝝈𝑇 𝛿𝑇 + 𝑩𝝈𝑝𝛿𝑝,

(A.4)

𝛿𝑿 = 𝜕𝑿
𝜕𝑇

𝛿𝑇 + 𝜕𝑿
𝜕𝝃𝑝

∶ 𝛿𝝃𝑝 +
𝜕𝑿
𝜕𝝃𝑟

∶ 𝛿𝝃𝑟

= 𝜕𝑿
𝜕𝑇

𝛿𝑇 + 𝜕𝑿
𝜕𝝃𝑝

∶ 𝜴(𝝈,𝑿, 𝑇 )𝛿𝑝 + 𝜕𝑿
𝜕𝝃𝑟

∶ 𝛿𝝃𝑟

= 𝑩𝑿𝑇 𝛿𝑇 + 𝑩𝑿𝑝𝛿𝑝 + B𝑿𝝃𝑟 ∶ 𝛿𝝃𝑟.

(A.5)

Thus, inserting (A.4) and (A.5) into (A.2a) and (A.2b) eventually leads
to the full linearization of the residuals:

𝛿𝑅𝑝 = 𝐾𝑝𝑝𝛿𝑝 +𝑲𝑝𝝃𝑟 ∶ 𝛿𝝃𝑟 +𝑲𝑝𝜺 ∶ 𝛿𝜺 +𝐾𝑝𝑇 𝛿𝑇 , (A.6a)

𝛿𝑹𝝃𝑟 = 𝑲𝝃𝑟𝑝𝛿𝑝 +K𝝃𝑟𝝃𝑟 ∶ 𝛿𝝃𝑟 +K𝝃𝑟𝜺 ∶ 𝛿𝜺 +𝑲𝝃𝑟𝑇 𝛿𝑇 , (A.6b)

or, equivalently:
{

𝛿𝑅𝑝
𝛿𝑹𝝃𝑟

}

=
(

𝐾𝑝𝑝 𝑲𝑝𝝃𝑟
𝑲𝝃𝑟𝑝 K𝝃𝑟𝝃𝑟

)

×
{

𝛿𝑝
𝛿𝝃𝑟

}

+
(

𝑲𝑝𝜺 𝐾𝑝𝑇
K𝝃𝑟𝜺 𝑲𝝃𝑟𝑇

)

×
{

𝛿𝜺
𝛿𝑇

}

, (A.7)

where

𝐾𝑝𝑝 = 𝐴𝑝𝑝 +𝑨𝑝𝝈 ∶ 𝑩𝝈𝑝 +𝑨𝑝𝑿 ∶ 𝑩𝑿𝑝, (A.8a)

𝑲𝑝𝝃𝑟 = 𝑨𝑝𝑿 ∶ B𝑿𝝃𝑟 , (A.8b)

𝑲𝑝𝜺 = 𝑨𝑝𝝈 ∶ B𝝈𝜺, (A.8c)

𝐾𝑝𝑇 = 𝑨𝑝𝝈 ∶ 𝑩𝝈𝑇 +𝑨𝑝𝑿 ∶ 𝑩𝑿𝑇 + 𝐴𝑝𝑇 , (A.8d)

𝑲𝝃𝑟𝑝 = A𝝃𝑟𝑿 ∶ 𝑩𝑿𝑝, (A.8e)

K𝝃𝑟𝝃𝑟 = A𝝃𝑟𝝃𝑟 + A𝝃𝑟𝑿 ∶ B𝑿𝝃𝑟 , (A.8f)

K𝝃𝑟𝜺 = 0, (A.8g)

𝑲𝝃𝑟𝑇 = A𝝃𝑟𝑿 ∶ 𝑩𝑿𝑇 +𝑨𝝃𝑟𝑇 , (A.8h)

with

𝐴𝑝𝑝 =
𝜕𝑅𝑝
𝜕�̇�

𝜕�̇�
𝜕𝑝

= 1
𝛥𝑡
, (A.9a)

𝑨𝑝𝝈 =
𝜕𝑅𝑝
𝜕𝝈

= − 𝑁
𝜂 𝜎𝑦(𝑇 )

[⟨

𝑓 (𝝈,𝑿, 𝑇 )
⟩

+
𝜎𝑦(𝑇 )

]𝑁−1

𝜦(𝝈,𝑿), (A.9b)

𝑨𝑝𝑿 =
𝜕𝑅𝑝
𝜕𝑿

= 𝑁
𝜂 𝜎𝑦(𝑇 )

[⟨

𝑓 (𝝈,𝑿, 𝑇 )
⟩

+
𝜎𝑦(𝑇 )

]𝑁−1

𝜦(𝝈,𝑿), (A.9c)

𝐴𝑝𝑇 =
𝜕𝑅𝑝
𝜕𝑇

= 𝑁
𝜂

[⟨

𝑓 (𝝈,𝑿, 𝑇 )
⟩

+
𝜎𝑦(𝑇 )

]𝑁−1 𝜎′𝑦(𝑇 )
[

𝜎𝑦(𝑇 ) + 𝑓 (𝝈,𝑿, 𝑇 )
]

𝜎𝑦(𝑇 )2
,

(A.9d)

A𝝃𝑟𝝃𝑟 =
𝜕𝑹𝝃𝑟

𝜕�̇�𝑟
∶
𝜕�̇�𝑟
𝜕𝝃𝑟

= I
𝛥𝑡
, (A.9e)



A𝝃𝑟𝑿 =
𝜕𝑹𝝃𝑟
𝜕𝑿

= −𝑔𝑟(𝑇 )𝐴𝑋I, (A.9f)

𝑨𝝃𝑟𝑇 =
𝜕𝑹𝝃𝑟
𝜕𝑇

= −𝑔′𝑟(𝑇 )𝐴𝑋𝑿, (A.9g)

B𝝈𝜺 =
𝜕𝝈
𝜕𝜺

= 𝑔𝑒(𝑇 ) C0, (A.9h)

𝑩𝝈𝑇 = 𝜕𝝈
𝜕𝑇

= 𝑔′𝑒(𝑇 ) C0 ∶
(

𝜺 − 𝜺𝑝 − 𝜺𝑡ℎ(𝑇 )
)

− 𝑔𝑒(𝑇 ) C0 ∶ 𝛼𝑰 , (A.9i)

𝑩𝝈𝑝 =
𝜕𝝈
𝜕𝜺𝑝

∶ 𝜦(𝝈,𝑿) = −𝑔𝑒(𝑇 ) C0 ∶ 𝜦(𝝈,𝑿), (A.9j)

𝑩𝑿𝑇 = 𝜕𝑿
𝜕𝑇

= 𝑔′𝑝(𝑇 ) 𝑐0 (𝝃𝑝 − 𝝃𝑟), (A.9k)

𝑩𝑿𝑝 =
𝜕𝑿
𝜕𝝃𝑝

∶ 𝜴(𝝈,𝑿, 𝑇 ) = 𝑔𝑝(𝑇 ) 𝑐0 𝜴(𝝈,𝑿, 𝑇 ), (A.9l)

B𝑿𝝃𝑟 =
𝜕𝑿
𝜕𝝃𝑟

= −𝑔𝑝(𝑇 ) 𝑐0 I. (A.9m)

A.2. Computation of the stress

A.2.1. Elastic prediction with hardening recovery correction
To assess if the material is actively yielding or not, an elastic

prediction is necessary. During this step, the internal state variables,
𝜺𝑝, and 𝝃𝑝 as well as the viscoplastic multiplier 𝑝 are kept constant
such that: 𝜺(𝑛+1)𝑝 = 𝜺(𝑛)𝑝 , 𝝃(𝑛+1)𝑝 = 𝝃(𝑛)𝑝 and 𝑝(𝑛+1) = 𝑝(𝑛). However,
since the recovery variable 𝝃𝑟 defines the yielding point while having
no influence on the elastic behaviour, it is important to let it evolve
during the elastic prediction. Accordingly, after an initialization step
in which 𝝃(𝑛+1)(𝑘=0)𝑟 = 𝝃(𝑛)𝑟 , the recovery variable is computed by means
of iterative corrections such that:

𝝃(𝑛+1)(𝑘+1)𝑟 = 𝝃(𝑛+1)(𝑘)𝑟 + 𝛿𝝃(𝑛+1)(𝑘)𝑟 , (A.10)

where 𝑘 refers to the correction loop. Then, 𝛿𝝃𝑟 is obtained from the
nullity condition of the residual 𝑹𝝃𝑟 in its linearized form (A.6b), while
considering 𝛿𝑝 = 0, 𝛿𝜺𝑝 = 𝟎 and 𝛿𝝃𝑝 = 𝟎, along with 𝛿𝜺 = 𝟎 and 𝛿𝑇 = 0
(all the quantities are taken at (𝑛+1)(𝑘)):

𝑹𝝃𝑟 + 𝛿𝑹𝝃𝑟 = 𝟎 ⇔ 𝛿𝝃𝑟 = −K−1
𝝃𝑟𝝃𝑟

∶ 𝑹𝝃𝑟 . (A.11)

Therefore, the correction loop is repeated until reaching convergence,
namely, when the residual 𝑹𝝃𝑟 is sufficiently close to zero. Once
converged, the yield function 𝑓 can be checked to assess whether the
material is actively yielding or not:

• If 𝑓 < 0, then the material is not yielding and no more corrections
are needed.

• if 𝑓 > 0, then the material is actively yielding and another
corrective step is necessary to account for the viscoplasticity in
addition to the hardening recovery.

A.2.2. Viscoplastic and hardening recovery correction
If the material is actively yielding, i.e., 𝑓 > 0, then all the internal

state variables, 𝜺𝑝, 𝝃𝑝 and 𝝃𝑟 as well as the viscoplastic multiplier 𝑝
evolve. Accordingly, after an initialization step in which 𝑝(𝑛+1)(𝑘=0) =
𝑝(𝑛), 𝜺(𝑛+1)(𝑘=0)𝑝 = 𝜺(𝑛)𝑝 , 𝝃(𝑛+1)(𝑘=0)𝑝 = 𝝃(𝑛)𝑝 and 𝝃(𝑛+1)(𝑘=0)𝑟 = 𝝃(𝑛)𝑟 and, all these
variables are iteratively computed by:

𝑝(𝑛+1)(𝑘+1) = 𝑝(𝑛+1)(𝑘) + 𝛿𝑝(𝑛+1)(𝑘), (A.12a)

𝜺(𝑛+1)(𝑘+1)𝑝 = 𝜺(𝑛+1)(𝑘)𝑝 + 𝛿𝜺(𝑛+1)(𝑘)𝑝 , (A.12b)

𝝃(𝑛+1)(𝑘+1)𝑝 = 𝝃(𝑛+1)(𝑘)𝑝 + 𝛿𝝃(𝑛+1)(𝑘)𝑝 , (A.12c)

𝝃(𝑛+1)(𝑘+1)𝑟 = 𝝃(𝑛+1)(𝑘)𝑟 + 𝛿𝝃(𝑛+1)(𝑘)𝑟 . (A.12d)

Then 𝛿𝑝 and 𝛿𝝃𝑟 are obtained from the nullity condition of the two
residuals 𝑅𝑝 and 𝑹𝝃𝑟 in their linearized form (A.7), while considering
𝛿𝜺 = 𝟎 and 𝛿𝑇 = 0 (all the quantities are taken at (𝑛+1)(𝑘)):
{

𝑅𝑝 + 𝛿𝑅𝑝 = 0
𝑹𝝃𝑟 + 𝛿𝑹𝝃𝑟 = 𝟎 ⇔

{

𝛿𝑝
𝛿𝝃𝒓

}

= −
(

𝐿𝑝𝑝 𝑳𝑝𝝃𝑟
𝑳𝝃𝑟𝑝 L𝝃𝑟𝝃𝑟

)

×
{

𝑅𝑝
𝑹𝝃𝑟

}

,

(A.13)

where
(

𝐿𝑝𝑝 𝑳𝑝𝝃𝑟
𝑳𝝃𝑟𝑝 L𝝃𝑟𝝃𝑟

)

=
(

𝐾𝑝𝑝 𝑲𝑝𝝃𝑟
𝑲𝝃𝑟𝑝 K𝝃𝑟𝝃𝑟

)−1

, (A.14)

while, according to the convex cutting plane method, 𝛿𝜺𝑝 and 𝛿𝝃𝑝 are
calculated using Eqs. (A.3). This correction loop is therefore repeated
until reaching convergence, namely, when both residuals 𝑅𝑝 and 𝑹𝝃𝑟
are sufficiently close to zero.

A.3. Tangent operators

The tangent operators d𝝈
d𝜺 and d𝝈

d𝑇 are also required for the FE
solver to compute the global predictor at the whole FE system’s level.
Since, the proposed implementation is based on the convex cutting plane
form of the return mapping algorithm (Simo and Hughes, 1998; Praud
et al., 2017a,b; Praud, 2018; Chatzigeorgiou et al., 2018), it utilizes
continuous tangent operators. To compute them, one needs to take back
the linearized stress:

d𝝈 = B𝝈𝜺 ∶ d𝜺 + 𝑩𝝈𝑇 d𝑇 + 𝑩𝝈𝑝d𝑝. (A.15)

If the material is not actively yielding, i.e., the computation of the
stress stopped at the elastic prediction with hardening recovery correction,
then d𝑝 = 0 and the tangent operators are simply given by: d𝝈

d𝜺 = B𝝈𝜺
and d𝝈

d𝑇 = 𝑩𝝈𝑇 . However, if the material is actively yielding, i.e., the
computation of the stress went through the viscoplastic and hardening
recovery correction, then, one must consider the nullity condition of
the two residuals 𝑅𝑝 and 𝑹𝝃𝑟 in their linearized forms (A.7), which
eventually leads to:
{

d𝑅𝑝 = 0
d𝑹𝝃𝑟 = 𝟎 ⇔

{

d𝑝
d𝝃𝑟

}

= −
(

𝐿𝑝𝑝 𝑳𝑝𝝃𝑟
𝑳𝝃𝑟𝑝 L𝝃𝑟𝝃𝑟

)

×
(

𝑲𝑝𝜺 𝐾𝑝𝑇
K𝝃𝑟𝜺 𝑲𝝃𝑟𝑇

)

×
{

d𝜺
d𝑇

}

(A.16)

or, equivalently:

d𝑝 = 𝑿𝑝𝜺 ∶ d𝜺 +𝑋𝑝𝑇 d𝑇 , (A.17a)

d𝝃𝑟 = X𝝃𝑟𝜺 ∶ d𝜺 +𝑿𝝃𝑟𝑇 d𝑇 , (A.17b)

where

𝑿𝑝𝜺 = −𝐿𝑝𝑝𝑲𝑝𝜺 −𝑳𝑝𝝃𝑟 ∶ K𝝃𝑟𝜺, (A.18a)

𝑋𝑝𝑇 = −𝐿𝑝𝑝𝐾𝑝𝑇 −𝑳𝑝𝝃𝑟 ∶ 𝑲𝝃𝑟𝑇 , (A.18b)

X𝝃𝑟𝜺 = −𝑳𝝃𝑟𝑝 ⊗𝑲𝑝𝜺 − L𝝃𝑟𝝃𝑟 ∶ K𝝃𝑟𝜺, (A.18c)

𝑿𝝃𝑟𝑇 = −𝑳𝝃𝑟𝑝𝐾𝑝𝑇 − L𝝃𝑟𝝃𝑟 ∶ 𝑲𝝃𝑟𝑇 . (A.18d)

Thus, by inserting (A.17a) into (A.15), one can identify the tangent
operators that are finally given by:

d𝝈
d𝜺

= B𝝈𝜺 + 𝑩𝝈𝑝 ⊗𝑿𝑝𝜺, (A.19a)

d𝝈
d𝑇

= 𝑩𝝈𝑇 + 𝑩𝝈𝑝𝑋𝑝𝑇 . (A.19b)
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