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Acoustic Emission
Characterization of Natural Fiber
Reinforced Plastic Composite
Machining Using a Random
Forest Machine Learning Model
Natural fiber reinforced plastic (NFRP) composites are eliciting an increased interest
across industrial sectors, as they combine a high degree of biodegradability and recyclabil-
ity with unique structural properties. These materials are machined to create components
that meet the dimensional and surface finish tolerance specifications for various industrial
applications. The heterogeneous structure of these materials—resulting from different fiber
orientations and their complex multiscale structure—introduces a distinct set of material
removal mechanisms that inherently vary over time. This structure has an adverse effect
on the surface integrity of machined NFRPs. Therefore, a real-time monitoring approach
is desirable for timely intervention for quality assurance. Acoustic emission (AE) sensors
that capture the elastic waves generated from the plastic deformation and fracture mecha-
nisms have potential to characterize these abrupt variations in the material removal mech-
anisms. However, the relationship connecting AE waveform patterns with these NFRP
material removal mechanisms is not currently understood. This paper reports an experi-
mental investigation into how the time–frequency patterns of AE signals connote the
various cutting mechanisms under different cutting speeds and fiber orientations. Extensive
orthogonal cutting experiments on unidirectional flax fiber NFRP samples with various
fiber orientations were conducted. The experimental setup was instrumented with a multi-
sensor data acquisition system for synchronous collection of AE and vibration signals
during NFRP cutting. A random forest machine learning approach was employed to quan-
titatively relate the AE energy over specific frequency bands to machining conditions and
hence the process microdynamics, specifically, the phenomena of fiber fracture and debond-
ing that are peculiar to NFRP machining. Results from this experimental study suggest that
the AE energy over these frequency bands can correctly predict the cutting conditions to
∼95% accuracies, as well as the underlying material removal regimes.
[DOI: 10.1115/1.4045945]
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1 Introduction
Natural fiber reinforced plastic (NFRP) composites have recently

received considerable interest in the industry [1–4]. Their high
degree of biodegradability and recyclability offers tremendous eco-
nomic and ecological advantages for sustainable manufacturing.
Machining of NFRPs is an essential operation for finishing indus-
trial products from such composite materials. In fact, the viability
of fiber-reinforced plastics for various industrial applications is
largely determined by the machined surface quality [5]. The
texture and the finish of the machined surfaces of fiber-reinforced
composites have a fundamental bearing on the mechanical proper-
ties (strength and hardness) and the geometric tolerance [6,7].
While significant investigations of the mechanics of material

removal in fiber-reinforced composites have been reported,

relatively fewer attempts have been made to characterize the
machining of NFRP composites [8]. The machining process for
fiber-reinforced composites involves complicated material removal
mechanisms [9] that include a combination of shear deformation of
the matrix material, fractures across the natural fibers, fiber pull-out,
fiber–matrix detachment through tensile fracture, shearing and
sliding along the fiber orientation directions, and delamination of
fiber bundles [9–11]. Earlier investigations suggest that the
cutting mechanisms may highly depend on fiber orientation angle
(FOA) and matrix properties [12]. Machining of NFRP is further
complicated by the multiscale nature of the fibers themselves [2],
as well as the prevalence of significant thermal effects [1].
For example, Fig. 1 shows the machined surface of an NFRP

composite with a rough texture resulting from the presence of
fiber protrusions spread over the surface even when the machining
process was well controlled. These protrusions result whenever
natural fibers are cut and/or pulled out across and along their lay
direction. As most natural fibers are highly flexible and heteroge-
neous over multiple geometric scales (e.g., the material composition
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and mechanical properties vary greatly from macro- to micro- to
nano-scales [2]), the defects on machined surfaces affect the integ-
rity of the finished surface and consequently reduce mechanical
properties and geometric and dimensional tolerances, hence imped-
ing the emerging industrial applications of NFRP composites.
Currently, investigations into the machining of NFRP composites

rely heavily on offline approaches that employ mechanical property
testing and alternative imaging and microscopy instruments to char-
acterize the strength, thermomechanics, surface morphology, and
chip formation [13]. While these methods have shed significant
light on various modes of material removal and surface modification
[14,15], they cannot fully capture the effects of the enormous statis-
tical heterogeneity and variations in distributions of fibers over mul-
tiple scales of the matrix on the material removal mechanisms. In
addition, these offline characterization tools are often unwieldy for
real-timemonitoringof theNFRPmachiningprocesses, and a sensor-
based in-process monitoring approach is desirable to observe and
delineate the diverse material removal mechanisms prevalent
during NFRP cutting, to characterize the cutting process in real
time, and to provide real-time predictions of the machined surface
quality for timely intervention for quality assurance [12,16,17].
Conventional sensor technologies may have a limited

signal-to-noise ratio (SNR) and are often insensitive to the subtle
variations in cutting processes at high precision levels, where the
cutting dimensions are of the order of a few micrometers and
cutting force values are smaller than those in conventional machin-
ing processes [18]. Acoustic emission (AE), which emanates from
the deformation, fracture, and/or friction mechanisms at the
various tool, workpiece, and chip interfaces of machining, can be
sensitive to monitor and enable us to discern among the various
material removal mechanisms in NFRP machining. AE can also
provide information related to chip entanglement, crack formation
and propagation, and chip breakage in this process [19,20]. As
detailed in Section 2, very little, if any, work has been done to
study AE monitoring of the NFRP machining process.

2 Background
Earlier applications of AE for characterizing traditional glass and

carbon fiber-reinforced polymer composites employed approaches
developed in the nondestructive testing literature for measuring
and localizing the damage [21–23]. For machining applications,
however, environmental noise/inference needs to be maintained at
a level that ensures an adequate signal-to-noise (SNR) ratio.
Many of the underlying dynamics of machining processes are com-
plicated, and the signals are often contaminated with a high level of
environmental noise. Consequently, how to analyze the nature of
the nonstationary AE signals during NFRP machining remains a
major challenge.

Initial investigations of AE in machining have focused mostly on
relating various statistical quantifiers of the signal patterns to predict
machining conditions [24,25]. One of the earlier research thrusts
was based on applying advanced machine learning approaches to
estimate the machining process state using extracted frequency fea-
tures of AE signals. Kamarthi et al. [26] and Pittner et al. [27,28]
presented a neural network that extracted features using the
wavelet decomposition on a multisensor setup for detecting tool
wear. The microdynamics of the AE signal have also been investi-
gated by Bukkapatnam et al. [29], and a recurrent neural network
framework that uses the fractal properties of the attractor of the
underlying dynamic system along with other machining parameters
as the training inputs was developed to predict flank wear in
machining. Furthermore, Rao et al. [30] applied a recurrent predic-
tor neural network to capture the complex nonlinear and nonstation-
ary evolution of the process underlying the measured vibration and
AE signals and detect the incipient surface deterioration in ultrapre-
cision machining processes. Cheng et al. [31] applied the Gaussian
process with extracted statistical features as well as features based
on the nonlinear recurrent analysis for online prediction of the
surface morphology. Some statistical analysis approaches [25,32]
have been presented to analyze the AE for monitoring of
the cutting tool condition and to relate the AE signal features to
the metal cutting process parameters. Lee et al. [18] discussed the
unique requirements for monitoring precision manufacturing pro-
cesses and the suitability of AE as a monitoring technique at the pre-
cision scale. A statistical modeling approach from our earlier effort
[33] was aimed at handling transient behaviors during ultraprecision
machining processes. However, most of these approaches may rely
heavily on data-driven modeling and consequently lack explana-
tions for the physical principles connecting the acoustic emission
signal to the process microdynamics. Chang and Bukkapatnam
[34,35] addressed the connection between AE sensor signal wave-
forms and the microdynamics for machining ductile metals. The
model that represents the propagation of AE waveform signals
from the plastic deformation in the shear zone suggests that AE
energy is highly related to the shear strain and the shear strain rate.
Investigations into the characteristics of AE waveforms from

NFRP composite machining, especially those attempting to under-
stand the relationships connecting the measured AE signals and the
NRFP machining microdynamics, have received very little atten-
tion. This lack of attention is mostly due to the difficulties of char-
acterizing the complicated material removal mechanisms that
govern NFRP composite machining. Some research efforts have
also investigated the spectral characteristics AE during the machin-
ing processes of polymer matrix composite materials [36,37]. These
investigations suggest that AE frequency components are highly
related to flank wear and workpiece surface modifications.
The present work investigates the AE characteristics related to

the machining processes of NFRP composites using a data-driven

Fig. 1 (a) Surface obtained from polishing a flax fiber-reinforced plastic material showing a clear contour of flax fibers and basin
PP matrix (with a magnified SEM image for showing the elementary fiber and the fiber bundle) and (b) surface finished using
orthogonal cutting processes in which the torn/broken-off fibers are randomly oriented on the surface finish (with the SEM
image showing detailed torn fibers on the finished surface)



analytic approach that not only allows real-time sensing and detec-
tion of the variations in the microstructure of NFRPs during machin-
ing processes but also provides analytic insights toward explaining
the deformation mechanism during machining of such NFRP mate-
rials. An experimental study is presented to relate AE signals from
NFRPmachining to the process conditions and the underlying mate-
rial removal mechanisms. The experiments were conducted on an
orthogonal cutting testbed equipped with a multisensor data acquisi-
tion system. To connect the AE signal patterns to the machining
mechanisms of NFRP cutting, we employ a random forest machine
learningmodel. This model aims to capture the underlying nonlinear
relationship between predictors from AE signals and the estimate of
the process condition without sustaining significant overfitting
issues. The model was also employed subsequently to enable us to
the spectral components of AE signals that are highly sensitive to
various material removal mechanisms during the cutting of
NFRPs. The remainder of this paper is organized as follows: the
experimental setup and the framework of the present approach is pre-
sented in Sec. 3; Sec. 4 presents the results of the random forest mod-
eling study and provides insights into the physical origins of the
signal components; and Sec. 5 concludes the paper.

3 Experimental and Analysis Approach
3.1 Experimental Setup and Procedure. The experiments

were conducted on an orthogonal cutting testbed as shown in the
schematic diagram in Fig. 2. The setup consists of two linear
sliders and a workpiece holder/clamping vice. The cutting tool
setupwas attached to one linear actuator (L70,MoogAnimatics,Mil-
pitas, CA) through a customized tool holder. A high-torque servomo-
tor drives the linear actuator to ensure a consistent cutting speed.
Mainly two types of sensors were mounted on the machine setup:
two accelerometers (Kistler Type 8728A500) were mounted on the
tool holder and the workpiece holder separately for gathering vibra-
tion signals, while an acoustic emission sensor (Physical Acoustics
S9225) was mounted on the cutting tool holder for collecting acous-
tic emission signals during the orthogonal cutting processes. This
sensor monitoring system was equipped with a data acquisition
system (National Instrument compactDAQ with DAQ module

NI-9223) that allows real-time data collection at a 1 MHz sampling
rate for each sensor signal. Unidirectional flax fiber-reinforced poly-
propylene composites (UDF/PP)mounted on the clamp-on vicewere
used as workpiece samples to investigate the effect of the fiber orien-
tation angle on the cutting process. The UDF/PP samples shown in
Fig. 2(c) are manufactured by the material supplierComposites Evo-
lution—UK. Each UDF/PP workpiece is a rectangular slab with
dimensions of 20 × 15 × 4 mm3. The fiber volume fraction is 40%,
and the fiber unidirectionality is maintained by polyester weft fiber
with low-volume fraction (around 5%). The orthogonal cutting
experiments were conducted with the depth of cut around 100 µm
in different cutting conditions with varying cutting speeds (v= 2,
4, 6, 8, 10, and 12 m/min) and different FOAs (FOA= 0 deg,
45 deg, and 90 deg) relative to the cutting direction (shown in
Fig. 2(d )). Polycrystalline diamond (PCD) cutting tool inserts
(SandvikCoromant-Model TCMW16T304FLP-CD10)with a tung-
sten carbide substrate (as shown in Fig. 2(c)) were employed for the
experiments.
As noted earlier, the purpose of this study is to assess the ability

of AE signals to discern various process conditions including
changes in the cutting speed and orientation in real time. The
ability to discern changes in the process parameters is essential
(but not sufficient) for a sensor to be qualified for real-time monitor-
ing applications. This ability is also important in NFRP machining
because of the high levels of variation expected in the fiber orienta-
tion related to the cutting direction as well as in the speeds during
the machining of complex geometries and profiles. Consistent
with this notion, the present approach aims to estimate process con-
ditions based on analyzing the spectral characteristics of AE signals
gathered from orthogonal cutting experiments using a random forest
model, as summarized in Fig. 3. We employed a total of 18 different
experimental settings, each formed by a combination of six cutting
speeds, v= 2, 4, 6, 8, 10, 12 m/min, and three FOAs, 0 deg, 45 deg,
and 90 deg. Experiments were replicated three times at each combi-
nation. At the beginning of each experiment, the surface of each
NFRPs sample was polished using sand paper with a grit size of
∼15 µm to ensure a consistent initial condition (i.e., smooth
surface with minimal deformed protrusions). As the surface was
machined, the data acquisition system recorded signals from three
channels, viz., two from the vibration sensors and one from an

Fig. 2 Experimental setup for the orthogonal cutting process: (a) schematic diagram showing the
mounting locations of AE and vibration sensors, (b) the orthogonal cutting machine setup with the
installed high-speed camera and illumination system, (c) a PCD inserted cutting tool is held against
the unidirectional flax fiber/PP matrix sample before the cutting begins, and (d ) a schematic diagram
showing the disposition of the cutting direction relative to the fiber orientation angle



AE sensor, at a sampling rate of 1 MHz. A moving windowed time–
frequency analysis was performed to extract frequency features over
the specified 125-µs long time windows. To investigate the relation-
ship between the frequency responses of the AE signal and the fun-
damental cutting mechanisms during the cutting of the NFRPs, we
treated the generated time–frequency features as inputs to a random
forest model for characterizing the cutting processes with different
fiber microstructures. Given the spectral features extracted from the
online data during the machining, the trained random forest model
was expected to predict the machining conditions, specifically the
cutting speed and the FOA in real time. The details of this approach
are presented in Secs. 3.2 and 3.3.

3.2 Time–Frequency Analysis and Feature Extraction.
Figure 4 shows the representative sensor signals collected synchro-
nously from the AE sensor and the two accelerometers mounted on
the tool holder and the workpiece holder, respectively, during one
cutting phase. The tool-approaching and the cutting phases are
appropriately marked. As the cutting begins, we observe a sudden
increase in the amplitude of Accelerometer 2 (attached to the work-
piece holder). This increase allows us to isolate the dynamics of the
cutting and the noncutting stages, such as tool-approaching and
various cutting phases, by distinct changes in the variance of the
vibration signal at the onset of cutting.
The AE signal captures the transients, i.e., time-varying frequency

patterns associated with the material deformation and/or fractures
that occur at irregular intervals during machining [38]. Hence, a
time–frequency analysis is needed to generate the spectral features
of the transient AE signal. Such temporal–spectral features are

visually represented using a spectrogram as shown in Fig. 5(a),
where the x-axis represents the time index and the y-axis is the fre-
quency range. The energy of various frequency bands is represented
using a colormap. Such a spectrogram records the frequency compo-
nents of the signal and their variations over time. The procedures for
generating the temporal–spectral features can be summarized as
follows:

(1) A sliding window with window width L= 125 is applied
to collect a set of AE signals at time index t, i.e., {xt−L+1,
xt−L+2, …, xt}.

(2) Then, the fast Fourier transformation (FFT) is applied to
compute the frequency component:

X(t)
k =

∑t

n=t−L+1
xne

−i2πkn
L , k = 0, 1, . . . , L − 1 (1)

where {xn} (for n= t− L+ 1, t− L+ 2,…, t) is the time series
of the AE signal within sliding window L, and the fast
Fourier transformation generates the frequency components
X(t) = [X(t)

1 , X(t)
2 , . . . , X(t)

L ]T. After sequentially generating
the frequency component vectors, X (t)’s (for t= L, L+ 1, L
+ 2, …, T), the matrix of the spectrogram can be represented
as MTF = [X(L), X(L+ϑ), X(L+2ϑ), . . . , X(T)], where ϑ denotes
the step of the sliding window. Essentially, the spectral
energy over the high-frequency components of AE wave-
forms is related to the underlying microdynamics of the
machining processes. The statistical analysis based on a
Gini index [39], as presented in the sequel, suggests that
these energy values can serve as important features to
discern between various pairs of cutting conditions.

Apart from the spectral energy distribution via the time–fre-
quency analysis, we had considered a few advanced signal analysis
approaches, such as wavelet decomposition [40], Hilbert–Huang
transformation (HHT)/empirical mode decomposition (EMD), and
intrinsic time-scale decomposition (ITD). However, these
methods have specific drawbacks in terms of being able to
capture the energies across various bands. For example, as for
wavelet decomposition, it has low resolution on high-frequency
components, especially those that capture variations in the
process microdynamics. A wavelet packet representation could
provide fine resolution within specific frequency ranges [41].
However, most of the wavelet packet bases (especially, if the
orthogonality condition is imposed) have an infinite support at
time and/or frequency domain (i.e., every coefficient is estimated
by taking all the samples of the AE signals). This complicates the
extraction of the energies over various bands. For the HHT/EMD
and ITD [42], it is not straightforward to extract frequency compo-
nents from the intrinsic mode functions (IMFs). These representa-
tions introduce severe edge effects when decomposing the AE
signals over multiple levels of IMFs, which amounts to losing the
data points in the time domain.
Figures 6(a)–6(c) show the spectrograms of the AE and the two

vibration signals, respectively, capturing the temporal–spectral fea-
tures of the tool-approaching and the cutting phases. The spectro-
grams shown in Fig. 5 were generated by the FFT with a sliding
window of 0.125 ms and a 50% time step (i.e., ϑ = 0.5 L), which

Fig. 4 Time portraits showing the synchronously gathered AE
signal along with vibration signals from the tool holder (Acceler-
ometer 1) and the workpiece holder (Accelerometer 2) during an
orthogonal cutting process experiment (v=8 m/min, FOA as
45 deg)

Fig. 3 A schematic diagram of the present research approach



translates to a temporal resolution of 0.125 ms (x-axis), and we
select 200 Hz as the spectral resolution (y-axis). Our choice of the
window length and the overlap is based on the following rationale.
AE sensor signals are composed of multiple AE pulses released
from various events, such as fracture and dislocation avalanche
that occur at frequency ranges of over 200 kHz (i.e., these events
last just for a fraction of a microsecond up to a few microseconds
(see Fig. 10)). We selected a 0.125-ms long time window, which
is of sufficient length to achieve the frequency resolution to
discern changes in the spectral shape and at the same time, not
too long to ignore time variations of AE events (i.e., the transients).
Similarly, a 50% was chosen to extract sufficient number of features
and at the same time avoiding significant correlation (more spe-
cifically, multiple collinearity) among the features to train the
random forest model. Taken together, the window length and the
overlap allow us to effectively extract the salient time and frequency
characteristics of the measured AE signals. The edge effect due to

the sliding window may be ignored as the window size (0.125 ms
duration) is smaller than durations of the overall recordings
(which normally last for seconds) by 4–5 orders of magnitude.
The dimensions of temporal–spectral features are illustrated in
Fig. 5. The energy of each element in the spectrogram matrix is
represented in a color map, ranging from −70 dB (blue colored)
to 0 dB (red colored). The sensitivity of the AE sensor can be
validated by the high-frequency response of the AE signal
(Fig. 6(a)) compared with the vibration signals shown in Figs.
6(b) and 6(c). In fact, only the spectrogram of the AE signals
showed remarkable/noticeable differences in the high-frequency
ranges (>100 kHz).
Note that the multisensor setup allows a partition of the time–

frequency features into cutting versus noncutting. Let τ1 and τ2
be the start and the end time stamps, respectively, of the
segment for the cutting phase (e.g., the start and the end points
of the red frame shown in Fig. 6(a)). Here, we denote the

Fig. 5 A schematic diagram showing the temporal–spectral feature extraction with time
stamp resolution of 0.125 ms, a 0.6725 ms overlap, and the frequency resolution as
200 Hz. The process responses Y(t) = [δ(t)cut, FOA(t), v(t)]T, where FOA=0 deg and v=
4 m/min. Note that the matrix MTF records the magnitudes of the Fourier components (as
Volts) and their logarithmic amplitudes (in decibels) are depicted in the spectrogram to
visually signify the frequency components’ variations.

Fig. 6 The representative time–frequency domain spectrograms (in dB) gathered during an orthogonal cutting exper-
iment (v=8 m/min, FOA as 45 deg): (a) the AE sensor, (b) the Accelerometer-1, and (c) the Accelerometer-2. Here, the
rectangular (red) frame at the right side of every plot indicates the temporal–spectral information during the cutting
phase.



cutting phase partition using a series of indicators
{δ(t)cut} = {δ(L)cut , δ

(L+ϑ)
cut , δ(L+2ϑ)cut , . . . , δ(T)cut}, where δ(t)cut = 1 for t∈ [τ1,

τ2] and δ(t)cut = 0 otherwise. The response vector Y combines the
cutting indicator with other control parameters for the experiments,
i.e., Y(t) = [δ(t)cut , FOA

(t), v(t)]T for t = L, L + ϑ, L + 2ϑ . . . , T ,
where T is the total length of the acquired data,
FOA ∈ {0 deg , 45 deg , 90 deg}, and cutting speed v∈ {2, 4, 6,
8, 10, 12} (units in m/min). Given the time duration T0 (in
seconds) of the recording, here T= T0 ×Fs, where Fs is the sam-
pling rate (Fs= 1 MHz for all experiment recordings). Then, the
extracted features, X’s, as well as the process responses, Y’s, for a
single recording Ω can be represented in the following equation:

Ω = [X(t)T, Y(t)T]T = X(L) X(L+ϑ) X(L+2ϑ) . . . X(T)

Y(L) Y(L+2ϑ) Y(L+2ϑ) . . . Y(T)

[ ]
(2)

3.3 Random Forest Classifier for Process Condition
Monitoring. The random forest approach [43] is applied to
capture empirical relationships between the AE spectral features
{X (t)} and {y(t)}, where y(t) is a subset of response {Y (t)} (e.g.,
y(t) = δ(t)cut for characterizing cutting versus noncutting phases and
y(t)= FOA(t) for classifying the fiber orientation). During the train-
ing phase, the random forest approach (in Fig. 7) employs samples
obtained, with replacement, from the training set {X (t)} and {y(t)} to
build multiple tree learning models. The decision rule for each tree
learning model was based on the randomly selected features {X (t)}
[44,45]. Unlike conventional regression approaches [46], a random
sampling and selection scheme allows a classification model to
capture underlying nonlinear relationships without imposing
biased structures or overfitting issues. The detailed procedures on
training the random forest models are stated as follows [47].
Given a training dataset Ω′ = {(X(L)T, y(L)T),(X(L+ϑ)T, y(L+ϑ)T),

. . . , (X(T)T, y(T)T)} (y(t)= FOA(t) for fiber orientation classification
and y(t) = δ(t)cut for the cutting versus noncutting phase), the
random forest first generates B new training datasets Ωi (for i= 1,
…, B), which have the same sample size as the original Ω′, with
some samples replaced in the dataset (also called bootstrap sam-
pling). Consequently, some observations may be repeated in the
new dataset Ωi.
For each bootstrapped sample, the decision tree is constructed by

the following procedures: at each node of the tree model, m features
are randomly sampled and the best split among these randomly
selected predictors is chosen (also called a feature bagging
scheme). The splitting criterion at the node is chosen to minimize
the sum of the squares, which allows the partition of m predictors
into M regions R1, R2, …, RM. Assume that the splitting variable
Xj is split at point xj to segment the half plane as R1 and R2,
where R1( j, xj)= {X|Xj≤ xj} and R2( j, xj)= {X|Xj > xj}. The splitting
variable Xj and the split point xj should be the optimal solution to the

following objective [47]:

min
j,xj

min
c1

∑
Xk∈R1( j,xj)

(yk − c1)
2 +min

c2

∑
Xk∈R2( j,xj)

(yk − c2)
2

⎡
⎣

⎤
⎦ (3)

where the constants c1 and c2 are the responses in region R1 and
R2. Note that the overall expected output/response in each region
can be formulated as f (X) =

∑M
s=1 csI(X ∈ Rs). The optimal cons-

tant value, ĉS, is the average of response y(t) in region Rs, i.e.,
ĉS = average (y(t)|X(t)). Hence, the constants can be solved by ĉ1 =
average (y(t)|X(t) ∈ R1( j, xj)) and ĉ2 = average (y(t)|X(t) ∈ R2( j, xj)).
The splitting algorithm is stopped once a fully binary tree model
of a certain number of levels (in the default setup, 8 levels) is built.
For our case study, the inputs of the feature space are from the

extracted spectrogram {X (t)}, and the training outputs {y(t)} are
selected from the responses {Y (t)}. For the parameter selection,
we chose the number of trees as B= 100 and 25 variables to ran-
domly sample candidates at each decision split for all the cases
tested, which results in a minimal out-of-bag error.
The random forest generally performs an implicit feature selec-

tion by using a small subset of all variables {Xj} for the classifica-
tion problem. Such subsets are regarded as “strong variables” for
superior performance in handling high-dimensional data/features.
The associated Gini importance values are the measures that visual-
ize the results from the implicit feature selection of the random
forest model and are commonly used as the indicator(s) of the
feature relevance to the classification results.
Let pκ =Nκ/N be the fraction of the Nκ samples from the class

FOA = {0 deg , 45 deg , 90 deg} or δcut= {0, 1} (κ∈ FOA or δcut)
of the total ℕ samples at node ξ. The Gini impurity Gini(ξ) is cal-
culated as follows:

Gini(ξ) = 1 −
∑
κ

p2κ (4)

The decrement ΔGini is caused by the splitting and sending of
the samples to two subnodes ξϖ and ξς (with fractions with
respect to two subnodes pϖ =Nϖ/N and pς =Nς/N). Threshold
xj on variable Xj is defined as follows:

ΔGini(ξ) = Gini(ξ) − pϖGini(ξϖ) − pςGini(ξς) (5)

A search over all variables at node ξ and over all possible seg-
mentation threshold obtains a pair {Xj, xj} that allows a maximal
ΔGini value. The decrease in Gini impurity is recorded for all
node {ξ}’s for all trees B and accumulated for all variable Xj’s as:

IGini(Xj) =
∑
B

∑
ξ

ΔGini{Xj}(ξ, B) (6)

Intuitively, this Gini importance value IGini indicates how often a
particular feature X(t)

k was selected for a split and how large its
overall discriminative value was for the classification problem [39].

Fig. 7 The schematic diagram of the random forest machine learning approach



4 Acoustic Emission–Based Monitoring of the NFRP
Machining Process
4.1 A Random Forest Model to Detect the Start and End of

the Cutting Process Using Acoustic Emission Signals. Given the
extracted AE time–frequency features {X (t)} and the response
{y(t)} = {δ(t)cut}, a random forest model was trained to discern
between the cutting and the noncutting phases. Specifically, for
both training and testing data sets, 20% of the data were gathered
during the cutting operation and the other 80% data during the non-
cutting operation. The overall data set was split into five subgroups,
and each subgroup was tested with the random forest classification.
Each data set selected around 1400 samples for training and about
600 samples for testing. We compared the present approach with
Fisher’s linear discriminant analysis (LDA). At the outset, conven-
tional LDA approaches are effective only when the signal features
gathered from every pair of process conditions (e.g., cutting versus
noncutting, and FOA) can be separated (in the feature space) using a
linear boundary (as in a hyperplane). The LDA models also assume
that feature values from different conditions can be grouped into
distinct Gaussian clusters with equal variance and that they are
well separated from each other. In contrast, a random forest can
separate out the signal features from various conditions using
complex nonlinear boundaries and does not make any assumptions
on the clustering of the feature values. Table 1 summarizes the clas-
sification results (in terms of overall accuracy, true positive rate
(TPR), and true negative rate (TNR)) from the presented approach
versus LDA for the present case study. Here, the TPR measures the
proportion of actual samples that are correctly identified as from the
cutting condition, and TNR represents the percentage of the samples
correctly classified as from the noncutting condition. It is evident

that the average accuracy of the random forest model is ∼94%,
which is 20% higher than that of LDA. In addition, TPR increases
from 0.45 with LDA to 0.84 with the random forest model.
The resulting Gini importance values from the classification

problem of the cutting versus noncutting phases are shown in
Fig. 8(a). Note that each y-axis label refers to the frequency
(kHz) in the temporal–spectral matrix (e.g., the first Gini index
relates to the frequency response in 358.4 kHz). A higher Gini
importance value of a frequency range indicates a greater contribu-
tion of the spectral feature to improve the accuracy. Interestingly,
the most significant frequency features determining the accuracy
of the random forest based on Gini importance are in the frequency
ranges of 350 kHz to 440 kHz. The spectrogram in Fig. 8(b) sug-
gests that more energy is contained in such a frequency range (high-
lighted in the pink frame) during the cutting compared with the
noncutting phase. However, conventional vibration sensors are
not suited for monitoring processes at such high frequencies, as
they do not have an adequate dynamic response in this range.
This high-frequency response highlights the significance of using
an AE sensor instead of the more commonly used vibration
sensor for fast, high-frequency (>100 kHz) detection of subtle
changes during machining at microscales.

4.2 Supervisory Monitoring for the Fiber Orientation
Effect. In the next case study, we investigated the effect of fiber
orientation on machining microdynamics and the corresponding
AE characteristics. Given the extracted time–frequency features
{X (t)} and the response {y(t)}= {FOA(t)}, a random forest model
was trained to predict the fiber orientation based on the spectral fea-
tures of AE. Here, spectral values above 100 kHz in every column
of the AE spectrogram (Fig. 9) were used as the features because the
high-frequency spectral components have the time resolution
needed to detect changes in their incipient states. As shown in
Fig. 9, the AE time portraits as well as the temporal–spectral fea-
tures show significant differences between the fiber orientation
with 90 deg and the others under the same cutting speed (4 m/
min). In contrast, the signal variance between fiber orientations
with 0 and 45 deg are less noticeable in the time domain compared
with the difference between their temporal–spectral features plotted
in the spectrograms in Fig. 9.
The results of classification accuracy are listed in Table 2 (results

are generated based on five computations on the combined data from
different cutting speeds). Here, in the confusion matrix, each row

Table 1 Cross-validation comparisons of random forest versus
LDA based for the study case of cutting versus noncutting

Accuracy
True positive

rate
True negative

rate

Random
forest

Mean 0.9427 0.8390 0.9819
Std 0.0124 0.0455 0.0079

Fisher’s LDA Mean 0.7674 0.4443 0.8189
Std 0.0264 0.0566 0.0340

Fig. 8 Results for classifying cutting versus noncutting: (a) the Gini importance plot with the significant features
labeled (y-axis) by the frequency band (kHz) (e.g., the highest Gini value corresponds to the frequency response
at 358.4 kHz) and (b) a spectrogram representation of the noncutting phase versus the cutting phase (white line
segmented) with corresponding significant frequency bands highlighted in the pink frame



represents the actual class and the columns are the predicted results
for three classes. The value inside each element [κi, κj] of the confu-
sion matrix represents the portion of samples from actual class κi that
are identified as class κj(κi, κj ∈ FOA = {0 deg , 45 deg , 90 deg}).
The results suggest a statistically significant difference between
study cases with 0 deg of orientation and all others. This difference
may be due to the cutting mechanisms of different fiber orientations.
In the 0 deg study case, the fibers aremostly aligned along the cutting
direction. Therefore, for such an orientation, the cutting process is
predominantly with the PP matrix removal and with very few
fibers sliding/shearing along interfacial areas during material
removal. In contrast, the cutting mechanism in the 45- and 90-deg
orientations involves more cutting and pulling of fibers. Even
though the signal in the 90-deg orientation has significantly different
time portraits, which exhibit strong transient behaviors, the random
forest could recognize its difference compared with other groups
with around 60% accuracy. This result may indicate that other
factors affecting the cutting mechanism and/or the material
removal (e.g., varying cutting speeds) are not considered in the
random forest model.
Results from previous investigations [6,48–50] into the machin-

ability of fiber-reinforced composites suggest that as the cutting
speed increases, the surface integrity drops. This may be due to
the viscoelastic property of the composite materials. Also, higher
cutting speeds may increase the shear stress on the chip tool inter-
face, which in turn increases the strain/elongation of the fibers non-
linearly. For all these reasons, more fiber failures may occur (fiber
breakages, pull-out, and some inefficient shearing causing microfi-
ber failures of the cellulose structure), along with more plastic
deformation of the matrix per unit time for higher speed cutting con-
ditions, resulting in more energy released. The evidence can be
found in the time portraits of AE signals (see Fig. 10), which
were recorded during two experiments with the same FOA but
different cutting speeds. Here, the blue lines refer to the AE
signal gathered under machining parameters v= 12 m/min and
FOA = 90 deg, and the yellow-lined AE signal is from the experi-
ment with v= 2 m/min and FOA = 90 deg. It may be noticed that
even under the same fiber orientation angle, a higher cutting
speed (12 m/min) may result in a larger AE envelope. That is,
when analyzing the cutting mechanisms with respect to different
fiber orientations, the cutting speed also needs to be considered.

Clearly, the increase in the AE amplitude due to an increase in
the cutting speed may be attributed to the increase in the material
shear rates, and hence, sources of AE increase with an increase in
the cutting speed.
The performance of the random forest model (in terms of classi-

fication accuracy) for identifying the correct FOA using AE signals
collected at six different cutting speeds was compared with that of
LDA (see Table 3). Three cases of different FOAs (0 deg versus
90 deg, 0 deg versus 45 deg, and 45 deg versus 90 deg) were inves-
tigated under each cutting speed. Compared with LDA, the random
forest’s accuracy for discerning fiber orientations increased by
∼30% (from 65% to 94.8%). As noted earlier, such an improve-
ment is a consequence of the random forest relaxing the strong
assumption LDA makes on how features are clustered and distrib-
uted. Pertinently, the random forest employs an ensemble of
decision trees, such that each tree is trained using a different,

Fig. 9 The combined AE signals recorded during orthogonal cutting with different FOAs at the same cutting speed (4 m/min) and
three spectrograms, one for each FOA

Table 2 Cross-validation results for various fiber orientations
using the random forest

Confusion matrix

Predicted

0 deg 45 deg 90 deg

Actual 0 deg 0.8531 0.1259 0.0210
45 deg 0.1354 0.7446 0.1200
90 deg 0.2047 0.1913 0.6040

Fig. 10 Comparison of the waveforms of the AE signals
between two cutting speeds: 2 m/min (yellow) versus 12 m/min
(blue) for FOA= 90 deg

Table 3 Accuracy of FOA classification for various fiber
orientations under each cutting speed (m/min) (in comparisons
with LDA)

v= 2 v= 4 v= 6 v= 8 v= 10 v= 12

Random forest
0 versus 45 0.9719 0.9583 0.9313 0.9396 1.0000 0.9031
0 versus 90 0.9594 0.9656 0.9563 0.9492 0.9281 0.8750
45 versus 90 0.9938 0.9792 0.9478 0.9271 0.9667 0.9031
LDA
0 versus 45 0.7188 0.7125 0.6281 0.5688 0.7625 0.6219
0 versus 90 0.6469 0.7031 0.7656 0.6680 0.5688 0.5844
45 versus 90 0.6813 0.6901 0.5344 0.5625 0.6563 0.6875



random subset of the features at each split of the tree model (see
Supplementary data on the ASME Digital Collection that includes
detailed tree structure for constructing this random forest model).
This avoids the correlation between selected features. Also, the
random forest provides metrics that help with feature selection as
well as interpretation of the classification results. Specifically, it
generates the quantifiers, such as Gini Index, to statistically indi-
cate the extent to which every feature contributes to the classifica-
tion accuracy.
The Gini index values for three cases are listed in

Figs. 11(a)–11(c); Figs. 11(d )–11( f ) depict comparisons of the spec-
trograms corresponding to these three cases (0 deg versus 45 deg,
0 deg versus 90 deg, and 45 deg versus 90 deg), where the vertical
red line in each figure segments two orientation conditions. Note that
here the pink blocks highlight the most significant frequency fea-
tures (with highest Gini index values) suggested by the results
from the random forest classification. Early work [51,52] suggests
that AE signals with a frequency response above 350 kHz during
failure tests of fiber-reinforced composites are more related to
fiber breakage. Our case clearly shows that the most significant
spectral features that distinguish 0 deg from 45 deg and 90 deg
are above 350 kHz. As in the power spectrums of both Figs.
11(d ) and 11(e), more energy in high frequencies (above
350 kHz) is observed for FOAs = 45 deg and 90 deg compared to
FOA = 0 deg. When we compare the cutting processes for 45 deg
versus 90 deg, the differences in the frequency components are
less discernible, but the random forest model is able to select signif-
icant frequency features (frequency bands 260 kHz–280 Hz and
220–240 kHz, as highlighted in Fig. 11( f )) to recognize different
fiber orientations (45 deg versus 90 deg) for cutting NFRPs. Such
different features in certain high-frequency bands suggest that

different responses of the AE sensor may be related to different
types of failure modes/cutting mechanisms.

4.3 Acoustic Emission Signatures and the Fracture Energy
During NFRP Machining. Unlike the brittle failure mechanisms
that occur when cutting synthetic fiber (e.g., carbon and glass
fiber) reinforced composites with the thermoset polymer matrix,
the NFRP sample with the thermoplastic polymer matrix possesses
high flexibility and follows ductile deformation behavior when
undergoing transverse shear stress during orthogonal cutting [9].
For FOA= 0 deg, the cutting process is dominated by the matrix
deformation under the shearing zone with some amount of debond-
ing of the fibers along the cutting direction (matrix-fiber shearing)
with a few episodes of fiber pull-out and microfiber failures (see
Fig. 12). At FOA= 45 deg and 90 deg, however, micro-failures
across the fiber axis are prevalent due to the shearing and tensile
forces. Also, for the process under FOA = 45 deg, the interfacial
shearing along the fiber orientation causes debonding between the
fiber and the PP matrix. Moreover, intermittent fracture is one
mechanism under FOA = 90 deg that results in fiber tensile
failure and/or pull-out toward the cutting direction with a sudden
increase in the cutting force.
Figure 13 shows the schematic diagrams of the chip formation of

NFRPs under different FOAs. It may be noticed that because of the
different orientation of fibers, the microstructure (elementary/
bundle fibers and matrix-fiber bounds) may undergo anisotropic
stress/strain, resulting in distinct failure modes of NFRP compo-
nents during the material removal process. Consequently, the inter-
nal failures of the composites may manifest as different modes (e.g.,
fiber breakage and fiber–matrix debonding). The fracture energy

Fig. 11 GINI indices of the significant frequency components for three FOA classifiers: (a) 0 deg versus 45 deg, (b) 0 deg versus
90 deg, and (c) 45 deg versus 90 deg. The spectrograms of the juxtaposed AE signals show the differences in the frequency con-
tents among these three cases: (d ) 0 deg versus 45 deg, (e) 0 deg versus 90 deg, and (f ) 45 deg versus 90 deg. The most signifi-
cant frequency features are highlighted by pink frames.

https://doi.org/10.1115/1.4045945


released from such different failure modes may contribute to the
generated AE waveform. The following fracture energy analysis
of the cutting processes for NFRPs provides a theoretical explana-
tion of the differences in the released fracture energy due to differ-
ent microstructure variations and cutting speeds under each fiber
orientation condition.
As for the orthogonal cutting processes only for thermoplastic

composites such as the PP matrix in the tested NFRP samples,
the power released during the shear stress can be formulated as
follows:

ES =
FS · VS

b · tu · V =
FS

b · tu ·
cos α

cos(ϕ − α)
(7)

where VS is the shearing speed, V is the cutting speed, b is the chip
width, tu is the uncut chip thickness (100 µm), and α is the rake
angle. The shear angle ϕ is a function of the rake angle α and the
friction angle β, i.e., ϕ = π/4 − 1

2(β − α). Then, the shear force FS

around the shearing zone can be formulated as [48] follows:

Fs = As · τ = tub

sin(ϕ)
· τ (8)

Here, τ refers to the shear strength of the matrix. Overall, the
energy from the deformation of the thermoplastic composite is
ES = cos α

cos(ϕ−α)·sinϕ · τ.
For different FOAs, the cutting mechanism may vary and in turn

the total energy for each FOA may differ. In addition to the energy
released from the plastic deformation of the PP matrix due to the
combined shear and tensile forces, the following components may
contribute to the fracture energy under different FOAs.
For the cutting condition when FOA = 0 deg, the cutting mech-

anism is related mainly to matrix deforming and very little fiber–
matrix debonding and/or interfacial shearing of fibers. The matrix
shear debonding energy is denoted by WS, with the propagating
failure at distance L, given by [59]:

WS = 2πr0τ0L/γ (9)

Here, r0 is the fiber radius, τ0 is the maximum boundary
shear stress at the fracture, and the stress concentration coefficient

γ= (2G/E)1/2/r0 · ln(r1/r0), where r`1− r0 is the matrix thickness, G
is the matrix shear modulus, and E is the elastic modulus of the
fiber.
Based on a square packing geometry assumption, the fracture

energy per unit area A of such a condition can be rewritten as
[59] follows:

W (0)

A
=
W (0)

S

A
= τ0

E

2G

( )1
2

Lbf1(V)f2(V) (10)

In contrast, for FOA = 90 deg (shown in Fig. 13(b)), the flax
fibers in the workpiece undergo stresses along the fiber–matrix
boundaries in the primary shear zone. Hence, the energy released
during orthogonal cutting consists of (1) the matrix material defor-
mation in the shear zone, (2) fiber failure (breakage and pull-out
from the matrix), (3) interfacial friction between fiber–matrix
bonds, (4) chip motion and material entanglement on the rake
face, and (5) the interaction between clearance face of the tool
and the machined surface. Here we only consider the AE energy
released from the sources 1–3. This is because these are considered
as primary sources of AE during NFRP machining, and they can be
physically related to the underlying microdynamics, especially the
material removal mechanisms prevailing under different fiber
orientations.
The summation of the friction energy [59] between the fiber and

the matrix boundary with a constant friction force, τf= ( f/πd)dx,
between the fibers and the boundary of the matrix in the effective
region/length of l is as follows:

Pf = πdτf l (11)

When a debonded fiber separates off over length l= Lf inside the
matrix, the friction work Wf between the fiber and the matrix can
be formulated as follows:

Wf = −
∫l=0
l=Lf

2πr0τf dl = πr0τf L
2
f (12)

Fig. 12 A schematic diagram showing the cuttingmechanisms under different fiber orien-
tation angles [53]

Fig. 13 The schematic diagrams showing the cutting modes and chip formation for different fiber orientation angles:
(a) 0 deg and (b) 90 deg



The fracture energy for the fiber breakage/ pull-out is represented
[59] as follows:

WD =
πr2o
2E

∫l=LD
l=0

σ −
2τf l
r

( )2

dl (13)

By substituting L= r0σ/2τf, we have

WD =
πr2oσ

2L

6E
(14)

Considering the cutting speed and the square packing geometry
assumption, in addition to the energy released from the matrix
deformation, the fracture energy under FOA = 90 deg contains
the following: (1) the energy released from fiber tensile failure
per unit area A, WD/A = (σ20/12E) Lbf2(V) and (2) the energy
released from friction per unit area A, Wf/A= (τfLf/2r0)f2(V ). Here,
the maximum debonding length Lb= r0 and the volume fraction
functions are f1(V )= ln(r1/r0)= {ln[(π/V )1/2− 1 ]}1/2, f2(V )=V,
and f3(V )= (V/π)1/2 [60]. The maximum debonding length is Lb=
(r0/τf)[(σb/2)− τ0(E/2G)1/2f1(V )], and we assume that Lf≈ Lb.
Note that Table 4 lists the values of all physical properties related
to energy released under different types of failure modes. Hence,
as the cutting speed v increases and more area A is machined per
unit time (A= b · v, where b is the width of the chip and is approx-
imately equivalent to the width of the sample for all experiments).
Consequently, more fracture energy is released at higher cutting
speeds, resulting in significantly different AE envelopes under dif-
ferent cutting speeds as suggested in Fig. 10.
Relative to connecting the AE responses to various failure modes,

earlier efforts [23,51,61] included extensive mechanical tests on the
composite materials and applied frequency analysis to the resulting
acoustic emission signals for different types of failures. A
summary of the frequency responses of AE signals to different
failure mechanisms of fiber-reinforced composites is listed in
Table 5. Matching significant frequency features (results
from random forest classifications with the highest Gini coefficients)
with the AE characteristics (frequency responses) for different fail-
ures modes allows us to identify different failure modes related to
the prevalent cutting mechanisms under distinct fiber orientations.
As shown in Figs. 11(a), 11(b), and 11(d ), the AE frequency

responses ranging from 350 kHz to 440 kHz distinguish FOA =
0 deg from other angles. That is, compared with the fiber debonding

(which has an AE frequency response in the range from 240 kHz to
310 kHz), which is prevalent under orthogonal cutting with 0 deg
FOA, the frequency responses related to fiber breakage (350 kHz
to 440 kHz) are more significant for both FOA = 45 deg and
90 deg. When we compare the results of FOA = 45 deg versus
90 deg, even though differences in frequency components are less
noticeable as shown in Fig. 11( f ), the random forest approach is
capable of picking up most significant frequency features (within
frequency ranges of 260 kHz–280 Hz and 220–240 kHz) to
achieve a classification accuracy around 95.3%. Table 5 suggests
that these frequency features determining the classification accuracy
for FOA = 45 deg versus 90 deg are related to fiber–matrix
debonding and fiber pull-out [23], which are fundamental cutting
mechanisms that distinguish the machining processes between
FOA = 45 deg and 90 deg [53]. As for the 45-deg orientation posi-
tion, the cutting mechanism consists of compression induced inter-
facial shearing along the fiber orientation direction that causes
fiber–matrix debonding; for FOA = 90 deg, the fractures that con-
tribute predominantly to fiber pull-out emerge intermittently (this
may be one reason that the AE waveform under 90 deg shows a sig-
nificant transient pattern compared with the others). Moreover, fiber
breakage is prevalent for both FOA = 45 deg and 90 deg cases.
This prevalence may be one reason that the AE frequency responses
(350 kHz–440 kHz) to the fiber breakage are less significant in dis-
cerning the changes between cutting mechanisms under FOA =
45 deg and 90 deg conditions.

5 Conclusions
This paper presented the framework of an in-process monitoring

scheme for machining processes of NFRP materials. By using a
random forest model, we showed that AE signals contain relevant
information pertaining to the process. The main contributions of
this paper are as follows:

• An in-process monitoring scheme with a multiple-sensor setup
for gathering vibrations as well as the acoustic emission infor-
mation during orthogonal cutting of the NFRP has been dis-
cussed. Different machining conditions and material removal
routes were analyzed using the AE signals, namely, (a)
cutting versus no cutting and (b) cutting with different fiber
orientations.

• A random forest algorithm was applied for supervised moni-
toring of the processes with accuracy around 95% to distin-
guish various fiber orientations toward the cutting direction
that are related to distinct cutting mechanisms. Results from
the random forest approach indicate that the high-frequency
information from the captured acoustic emission signals
reflects fundamental cutting mechanism changes.

• Further analysis shows that the most significant frequency
responses determining the accuracy of the random forest
model are highly related to the distinct failure modes under
various fiber orientation conditions. Hence, the presented

Table 4 Physical properties of the NFRPs materials

List of physical properties

Fiber radius r0 ∼10 µm
Fiber tensile strength σ0 ∼500 MPa [54,55]
PP matrix tensile strength ∼29.5 MPa [55,56]
Maximal shear stress debonding ∼2 MPa [57]
Fiber Young modulus E ∼50 GPa [55]
PP matrix Young modulus E ∼1 GPa
Constant frictional stress τf 7–40 MPa
Possible range of shearing stress 30 MPa [58]
Fiber volume fracture V 0.4
Fiber packing Square (4 nearest neighborhoods)
Volume fraction functions f1(V) ≈ 0.7676, f2(V )= 0.4, and f3(V )= 0.3568

Table 5 Dominant range of frequency response (kHz) to fracture
energy [61–63]

Failure mode Frequency response (kHz)

Matrix failure 90–180
Fiber–matrix debonding 240–310
Fiber breakage >350



approach connects the AE characteristics to the micrody-
namics of machining NFRPs.

We note that AE features considered in the present work aggre-
gates multiple mechanisms prevalent during the machining of
NFRP composites. Process conditions, especially the cutting
speed, determine the material deformation rate. Since AE is
released from the various material deformation and fracture mech-
anisms during NFRP machining, the time and frequency charac-
teristics of the AE waveform varies with the cutting speed. The
cutting speed also affects the dynamics of fiber deformation and
fracture, matrix failure, as well as the actions at the primary and
the secondary and tertiary deformation zones. Particularly, this
variation in the AE waveform characteristics in the 50–100 kHz
band (as noted by the Gini index) can be used to identify the
process condition, including the cutting speed and FOA. The
AE waveform, as gathered, is a composition of elementary AE
pulses released from various different sources. Toward using the
results of these predictions for process control, it would be desir-
able to isolate contributions of individual source in the measured
AE signal. Also, for future work, other factors, such as the effect
of fiber (bundle) distributions and chip formations, need to be con-
sidered for further AE analysis. Further advances in the analytical
approach is needed for identifying how various transient compo-
nents from specific sources are composed in the measured AE
signals to diagnose incipient anomalies during the machining of
NFRPs. We also note that the present approach can be applied
for predicting process conditions during machining of different
types of composite materials. Further experimental studies
within machining of alternative composites materials (e.g., syn-
thetic fiber-reinforced plastics or biocomposites) are needed to
identify the chief material removal and surface modification mech-
anism, characterize the resulting AE waveforms, as well as to
develop practical methods to monitor in machining process perfor-
mance and surface quality in real time.
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