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ABSTRACT

This work aims at demonstrating the ability of an acoustic linear code to model the propagation of a shock wave created by a laser impact
over a metallic surface. In this process, a high pressure surface level is reached using a ns laser pulse that heats the surface of the material
and generates a dense plasma expansion. The pressure reaches few GPa so shock waves are generated and propagate into the bulk of the
material. Currently, shock wave propagation is modeled using continuity equations and an ad hoc equation of state for the illuminated mate-
rial, very limiting because it is numerically intensive. Here, we propose to model the shock wave bulk propagation using a linear acoustic
code. A nonlinear surface pressure term, resulting from the laser–matter interaction, is used as a boundary condition. The applied numerical
scheme is based on the Virieux scheme, including a fourth order finite difference discretization of the linearized elastomechanical equations.
The role of longitudinal and transverse waves and their origins are highlighted. The importance of considering 3D geometries is pointed
out. Simulations are finally confronted with experimental results obtained with the Hephaistos Laserlab facility (energy up to 14 J at 532 nm
wavelength laser; pulse duration: 7 ns). Illuminations up to the optical breakdown in water are easily achieved with laser focal spots of 5 mm
width. Excellent agreement between experiments and simulations is observed for several sets of experimental parameters for titanium, a
material of high elastic limit, while limitations are founded for aluminum. The code is available in the MetaData.

I. INTRODUCTION

Sound generation by an electromagnetic wave is well known
since G. Bell first experimented in 1880 using a rapidly interrupted
beam of sunlight.1 At first, this discovery lead to no applications, but
following the laser discovery by T. Maiman in 1960, acoustic genera-
tion could be obtained using laser pulses.2 The critical parameters of
sound generation are the laser pulse duration and its energy.

When laser energy is under the ablation threshold, sound gen-
eration is in the thermoelastic regime. In that case, the most

common way of sound generation results from the sudden thermal
expansion due to the heating of a small volume near the surface of
the illuminated material, controlled by the laser diameter and the
optical penetration. The frequency content of the generated ultra-
sound is determined on the first order by the laser pulse duration.
Frequencies up to THz can be generated using picoseconds or
shorter laser pulses. Such a field of laser ultrasonics, named pico-
second ultrasonics, found application at the nanometer scale from
fundamental physics3,4 to material characterization5 or biological
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evaluation.6 In picosecond ultrasonics, acoustic wavelength is com-
parable to the optical penetration of the illuminated material. Thus,
the acoustic source must be considered over a volume under the
surface. This phenomena induces, in the case of the thermoelastic
regime, the generation of only longitudinal waves. Using nanosec-
ond laser pulses allows us to generate acoustic frequencies in the
MHz range, hence wavelengths of a few tens of micrometers. Laser
ultrasound lead to a variety of applications in non-destructive
testing (NDT) from surface7 to bulk8 or bounding9 evaluation. In
this configuration, the acoustic generation (in opaque materials
with respect to the laser wavelength) can be simply considered as
surface generation. Resulting generated acoustic waves are both lon-
gitudinal and transverse of comparable magnitudes but the later
predominates at the epicenter. The direction of propagation of the
generated waves shows a significant angle, of few tens of degrees,
with respect to the normal of the surface.10

As the laser energy is increased and exceeds the ablation thresh-
old of the illuminated material,11 a high pressure plasma (in the
range of GPa) is created. In this case, the acoustic generation results
from the resulting plasma expansion away from the illuminated
surface. For metals, such ablation threshold is classically of a few
MW=cm2 but laser intensities up to several GW=cm2 can be used
for shock wave emission.12 Transition from thermoelastic to ablative
regimes does not significantly affect the acoustic spectrum with a
first order dependence with laser pulse duration. However, nature
and directivity of radiated waves are significantly changed. Indeed,
while both longitudinal and transverse waves are observed in oblique
directions in the thermoelastic regime(for ns laser pulses), mostly a
longitudinal wave in the direction normal to the surface is radiated
in the ablative regime.10 The wave amplitude is directly correlated to
the laser intensity from a few MPa for intensities just above the abla-
tion threshold to more than 150 GPa for laser intensities up to
103 GW=cm2.13 The induced acoustic wave goes from a smooth
linear elastic wave to a nonlinear elastic wave to a nonlinear elasto-
plastic one, possibly inducing material phase-changes.

The correct modeling of the induced transient phenomena
obviously depends on the wave amplitude. It ranges from analytical
expressions for the lowest amplitudes14 to ab initio calculation for
the more intense ones.15 Between these extrema, GPa laser-generated
shock waves are classically described using a hydrodynamic numeri-
cal solver, including adapted equations of states relating energy and
stress into the shock.16 However, such simulations are very demand-
ing in terms of numerical resources and present several restrictions.
Thus, despite promising applications of laser-generated shock waves
for some engineering applications,17–19 simulations in 2D or 3D
dimensions remain a major lock, particularly for applications on
thick and/or complex structures such as aeronautical composite
materials. Moreover, the equations of state related to the laser shock
process are not well established since they depend, for instance, on
the properties of the material, the induced pressure, and the duration
of the loading. This regime of shock wave, up to a few GPa, is diffi-
cult to simulate, and experimental verifications are systematically
required. However, such shock waves remain weak and correspond
to an acoustical Mach number M of around 10�2 only. Thus,
neglecting the surface residual stress induced by the laser pulse,
linear acoustical modeling should be efficient to simulate the propa-
gation of the wave in the bulk of the material while the acoustic wave

generation at the illuminated material surface has to be considered as
a fundamentally nonlinear process. This hybrid approach, separating
wave nonlinear generation and linear propagation, is the purpose of
the present work.

This work discusses the validity of using linear elastodynamic
simulations in the case of shock wave propagation with laser inten-
sities up to the air breakdown threshold, i.e., for simulating simple
table-top experiments without requirements to vacuum condition.
Water12 or transparent solid materials20 can be used to increase the
amplitude of the shock wave with respect to air condition. Stresses
up to several GPa are reached without significant modification of
the directivity diagram of the wave generation: a longitudinal shock
wave which propagates through the normal direction of the surface
toward the bulk of the material. However, a diffractive optical com-
ponent is used in experiments to obtain a laser top-hat profile on
the material surface. We will demonstrate that this discontinuity at
the edges of the laser illumination creates, by diffraction, shear waves
of significant amplitude. We will show such a diffraction process can
be described correctly only using a 3D approach. We will also dem-
onstrate the validity of our proposed hybrid simulation approach to
simulate laser-generated shock waves (of magnitude up to a few
GPa) in both aluminum and titanium materials from systematic
comparison to experiments for several laser diameters, sample thick-
nesses, and laser energies. Excellent agreement will be systematically
obtained. Such work will pave the way toward simple and efficient
simulations of laser-generated shock wave applications for NDT
applications such as evaluation of mechanical strength of structural
bonding17 or delamination generation in composite materials.18

Section II introduces laser-generated shock wave principles
and the laser facility used for the experimental verification.
Section III is devoted to numerical simulations. First, we use the 1D
hydrodynamic code named Esther to quantify (in amplitude and in
time profile) the generated surface pressure from laser illumination.
This will play the role of an acoustic source in the hybrid approach.
Such pressure is then propagated into an isotropic sample using a
3D model of linear elastodynamics, assuming asymmetry for the
sake of simplicity. Virieux numerical scheme21 is chosen, and its
numerical parameters (grid size 0.005mm, compared to the wave-
length 0.1 mm for a 15 ns period, Courant–Friedrichs–Lewy condi-
tion,22 CFL ¼ 0:2) are determined to minimize numerical
dispersion and error. In sec. IV, a detailed discussion of the induced
waves from a top-hat laser illumination is proposed, outlining the
importance of diffraction to explain all observed arrivals on the
opposite face. An extensive comparison between simulations and
experiments is finally performed for several experimental parameters
(laser intensity, laser diameter, material, and sample thickness), dem-
onstrating the validity of the present hybrid approach to simulate
wave phenomena associated with laser-generated shock waves in a
such regime. The analysis is completed by a discussion about the
possible nonlinear mechanisms that could limit the model validity.

II. GENERAL PRINCIPLES AND EXPERIMENTAL SETUP

A. Principle of shock wave laser generation

Figure 1 presents a general view of experimental configuration.
An intense laser is focused over the surface of the target material.
It ablates its surface, over a thickness typically of 1.7–3 μm,23
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changing superficially the material into a dense plasma (Fig. 1).
A transparent dielectric material, such as water or polymer, is
generally used to confine the expansion and, therefore, increase
the surface pressure level induced by the plasma expansion com-
pared to the direct regime.12,20 As a result of the recoil moment of
the ablated momentum, a pulsed shock wave is generated in the
bulk of the target. It propagates through the target and emerges at
its rear free surface. Using diagnostic like VISAR (Velocity
Interferometer System for Any Reflector) (see Subsection II C),
measured velocity provides a signature of laser shock travel inside
the material (typical rear free surface velocity temporal profiles
will be shown later).

B. Hephaïstos laser facility

The Laser Hephaïstos Facility (PIMM Laboratory for
Processes and Engineering in Materials and Mechanics, ENSAM
ParisTech and CNRS) is used to generate laser shots.20 Two Gaïa
HP lasers from THALES (Elancourt, France) emit two Nd:YAG
synchronized or delayed lasers pulses, both at 532 nm, with a repe-
tition frequency of 2 Hz. Through a Gaussian temporal shape of
7 ns of duration [Fig. 2(a)], it is able to deliver an energy up to 14 J
when both laser pulses are superposed. Each laser beam can be
focused through an optical lens (Fig. 1) controlling the focal diameter
as desired, here between 3 and 5mm, as is represented in Fig. 2(b).
This image has been recorded using a CCD (Charge-Coupled Device)
camera located at the focus of the laser. Pixel resolution is 5.5 μm.
A Diffractive Optical Element (DOE), placed after the focusing lens,
was used to obtain the top-hat spatial profile. The shape of the
focused laser appears almost perfectly circular with a homogeneous
intensity profile measured with a standard deviation of only 0.023.

C. Rear free surface velocity measurement

The velocity of the plate opposite free surface is measured by
a non-contact optical diagnostic tool, so called VISAR.24 This
Michelson-type interferometer allows us to measure the Doppler
shift in the wavelength of a probe laser of 532 nm wavelength and
5W power (Coherent Company, Santa Clara, CA, USA) reflected

on the target free surface moving due to the shock wave. Such a
device has already been used for the laser shock wave detection,
both in direct25 and water-confined12 regimes. This kind of detec-
tion yields a time resolution of the opposite surface velocity of 1 ns.

III. NUMERICAL SIMULATION

A. Shock wave generation

To get plasma pressure profile, a 1D Lagrangian code describ-
ing both laser–matter interaction and shock propagation is used

FIG. 2. (a) Left: Esther simulation of the time evolution of the pressure gener-
ated by a laser shock of 26.7 J=cm2 exposition in aluminum with water as con-
finement. Inset right in red shows the first instants of the pressure wave. Inset
left in blue shows temporal profile of the laser intensity. (b) Right: Over the
black background, CCD image of the 3 mm laser spot. In blue, the measured
spatial intensity profile in arbitrary units, and in red, the profile used for the
simulations.

FIG. 1. Scheme of experimental setup for laser shock generation and rear free
surface velocity measurements. The focused laser, confined by water, illumi-
nates the upper face of the target plate. In the opposite face, an optical detec-
tion, VISAR, records the free surface velocity.
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(so called Esther26). It simulates the deposition of laser energy and
the evolution of target material state from solid to plasma.
The code also includes radiative transfer and heat conduction.
Mechanical models reproduce elastoplasticity of material27 up to
damaging and fracturation.28 In this work, Esther allows us to sim-
ulate the pressure at the surface, also called ablation pressure,
resulting from a laser illumination of a defined duration and inten-
sity. One example of temporal profile is shown in Fig. 2(a) for an
intensity of 26.7 J=cm2 in comparison with laser beam time profile.
From that simulation, it is possible to evaluate the rise time and the
Full Width at Half Maximum (FWHM) of the surface pressure,
here observed at 8 and 15 ns, respectively. Beyond the peak, the
pressure decreases slowly, leading to a pulse duration, Tpulse, of typ-
ically 0.1 μs and, therefore, a frequency spectrum up to 10MHz.

Esther ablation pressure time profiles for the laser intensity
ranging from 6.7 J=cm2 to 40 J=cm2 in aluminum are shown in
Fig. 3(a) with an inset in the right showing the shock rise and peak
during the first 40 ns. The waveform, normalized by its peak
value, little varies with the laser intensity, except a small widening:
the shock arrives slightly sooner, and the pressure decays a little
bit slower for higher intensities. Peak overpressure, displayed in
Fig. 3(b), follows a square root dependency with the intensity in
agreement with the analytical model29 and30

P ¼ 0:10
α

2α þ 3

� �1=2

Z1=2I1=20 , (1)

where P is the peak pressure given in kbar and α is a physical
parameter, here chosen equal to 0.6, calibrated by experiments.
Impedance Z is given by 2=Z ¼ 1=Z1 þ 1=Z2, where Z1 and Z2 are
the impedances in g=cm2 s of water and metal. The laser surface
intensity is I0 in GW=cm2. This analytical model is well known
and confirmed by other works such as Ref. 31.

From such data, we are able to generate a shock wave source
term. Spatially, we impose a uniform normal stress over the
laser spot surface, exponentially matched to zero to non-ablated
area, according to the spatial intensity profile shown in Fig. 2.
The temporal waveform is determined by the Esther simulation.
This source term is applied as a boundary condition. It, obviously,
induces severe gradients of stress, both temporally, in the form of a
sharp shock wave and, spatially, with a sharp pressure decrease
at the edges of the laser focal spot. Longitudinal (compression) and
transverse (shear) waves will, thus, be generated, respectively, from
the central and the outer part of the illuminated zone. The longitu-
dinal release wave created just behind the compression wave
has been deeply studied and understood by the literature.12,20,32

However, focus is generally on first longitudinal arrival, occurring
much before the shear wave arrival which has drawn little atten-
tion. Thermoelastic regime, related to low laser energies, induces
shear waves of same magnitude as the longitudinal waves. For the
ablation regime considered here, the shear waves due to the abla-
tion process are frequently assumed almost negligible, at least for
the few existing analytical solutions.33 However, a realistic source of
finite size has not been considered yet to our knowledge. With this
in view, contribution of such shear waves is integrated here over 2π

radians revolution, in order to properly describe laser shock
Hephaïstos experiments.

B. Numerical model

To model the shock propagation, we rely on the Virieux Finite
Difference Time-Domain (FDTD) method.21 Such numerical
scheme has been purposely designed to discretize the elastodynam-
ics equations by finite differences on a grid staggered both in time
and space (see Appendix B). The advantages of this approach are:
(1) stability whatever Poisson’s ratio, (2) small numerical dispersion
and anisotropy, and (3) easiness to implement sources and boundary

FIG. 3. (a) Normalized Esther simulation of the time evolution of the pressure
generated by a laser shock for different laser energy densities in aluminum.
Zoom in the first 40 ns. (b) Ablation pressure in aluminum as a function of the
laser energy density for Esther simulations (red crosses) compared to an analyt-
ical model30 (blue line).
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conditions. Staggered grid in time, between velocities on one side and
stresses on the other side, induces a globally second order precision.34

Fourth order spatial finite differences, following,35 are here chosen to
minimize numerical dispersion. Both two and three dimensional ver-
sions of the algorithm, the 3D one with axial symmetry, are imple-
mented (see Appendix A).

For modeling semi-infinite plates, the chosen boundary condi-
tions are (1) imposed normal stress according to Fig. 2(a) for time
waveform and Fig. 2(b) for spatial distribution on the illuminated
side, (2) stress-free condition on the opposite face, and (3) PML
(Perfectly Matched Layer) conditions for the two lateral faces.36–38

The temporal and spatial steps must be chosen small enough
regarding the impulsive behavior of the input shock wave. In our
case, the shock duration at half amplitude is 15 ns which corre-
sponds to a longitudinal wavelength of about 0.1 mm for both alu-
minum and titanium. Therefore, spatial mesh, Δx, has to be a
fraction of this value. We explore the range one fifth (0.02 mm),35

one tenth (0.01 mm),21 one twentieth (0.005 mm), and one fortieth
(0.0025 mm) to check numerical convergence illustrated by
Fig. 4(b) and zooms in Figs. 4(c) and 4(d). Time step, Δt, has to
satisfy the CFL stability condition, given by35

Δt � 0:606
Δx
cL

: (2)

Both maximum value and half of CFL constant have been
tested on Fig. 4(a).

The materials investigated in this article are aluminum and
titanium. Both materials are anisotropic at the grain scale thanks to
their crystal structure, Face-Centered Cubic (FCC) in the case of
aluminum and Hexagonal Closed Packed (HCP) in the case of
the titanium. However, thanks to the random orientation and
shape of grains, they can nevertheless be treated at a large scale, as
a quasi-isotropic materials.39 In a first approach, using a purely
elastic code, we have to check that the laser excitation does not
reach the elastic limit, recalled in Table I, along with the elastic
properties of the two metals.40

Figure 4 (a) presents influence of CFL for Δx ¼ 0:005 mm,
and Figs. 4(b)–4(d) show the convergence with mesh refinement
for CFL ¼ 0:303. In all cases, titanium has been illuminated by a
26.7 J=cm2 laser pulse with a focal spot diameter of 3 mm. The dis-
played quantity is the normal rear free surface velocity at the oppo-
site face (2 mm thickness) at the center of the focal spot in the 3D
axisymmetric case. The observed signals are successively the first
longitudinal shock (about t ¼ 0:33 μs), followed by the first release
wave (t ¼ 0:4 μs). This pattern is repeated every 0.66 μs for
each echo. In between, a smooth shear wave appears with first
arrival at about t ¼ 0:78 μs in agreement with shear wave velocity
(cT ¼ 3100 m/s). At t ¼ 1:3 μs, we observe an arrival linked to lon-
gitudinal to shear conversion at the free surfaces. Large values of
CFL (equal to maximum value 0.606 for stability, or three fourth of
it) lead to dispersion mostly before the shock. Lower values (0.303
or 0.152) induce dispersion after the shock, all the more intense as
CFL is small. Hence, the value CFL ¼ 0:303 appears a good com-
promise with no visible dispersion of the shock and small disper-
sion after it. It is chosen for the following simulations.

Strong dispersion is visible after the shocks for the two largest
grid meshes (Δx ¼ 0:02 and 0.01 mm ) and increases as expected
with time. Smaller grids lead to a moderate dispersion. To compro-
mise with the increasing computational time (see Table II),
Δx ¼ 0:005 is finally selected. Note on the various zooms that both
the release and the shear arrivals are of lower frequency content
than the longitudinal shock and are, therefore, much less affected
by numerical dispersion.

In Fig. 5, a 2D simulation is superposed to a VISAR measure-
ment in the same conditions as previously described, expect the
laser energy, now 6.7 J=cm2. The data show the same succession of

FIG. 4. Computed velocity at the center of the opposite face for a 2 mm thick
titanium plate illuminated by a 26.7 J=cm2 laser pulse with a focal spot diameter
of 3 mm. (a) Comparison between four CFL conditions. (b) Comparison
between four grid size with zoom on the first longitudinal arrival in (c) and on
the second one and first shear arrival in (d).

TABLE I. Mechanical properties of the materials used in the laser experience (see Appendix A for further explanation).

Density (kg/m3) Young’s modulus (GPa) Poisson’s ratio Hugoniot elastic limit (HEL) (GPa) cL(m/s) cT(m/s)

Aluminum 2810 71.7 0.33 0.65 6140 3100
Titanium 4430 113 0.34 2.8 6060 3120

TABLE II. Computation time vs grid size.

Grid size (mm) 0.02 0.01 0.005 0.0025
Simulation time 15 s 70 s 11 min 1 h 30 min
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arrivals (first shock, first release wave, first shear wave, second
shock, etc.). Compared to axisymmetric simulations of Fig. 5(b), it
is obvious that 2D simulations produce only tiny release and shear
waves (dotted ellipses). Indeed, these waves emanate from the cir-
cular edge of the focal spot and arrive in phase at the measurement
point so that they cumulate. This phenomenon cannot be described
using the 2D approach where only two points represent the edge of
the focal illumination. In the following, only 3D axisymmetric sim-
ulations will be considered.

IV. ACOUSTICAL DESCRIPTION OF THE GENERATED
WAVES

We now propose to describe the different waves generated
during a laser-driven plasma expansion. The optical VISAR detec-
tion placed on the back face of the sample at the epicenter of the
shock generation can only give access to the back surface velocity.
Such experimental detection is presented as a blue line in Fig. 6(b),
compared to simulations in red. Data are obtained illuminating a

5 mm thick titanium plate with a 3 mm diameter focal spot while
delivering an energy of 41 J=cm2. This “thick” configuration allows
a clear separation between the different waves. From such experi-
mental signal, three different acoustic contributions can be isolated
in a 3 μs time window. First, two longitudinal pressure shock
waves, around 0.8 μs and 2.5 μs, are easily identifiable. Second, just
after each longitudinal shock wave, a release wave (with negative
velocities) is observed. Finally, at 1:6 μs, a third arrival is observed,
to be later identified as a shear wave. The agreement of the arrival
times of the different waves in Fig. 6(b) is remarkable. The two
release waves are somewhat overestimated by the simulation, as is
also the second shock. It could be due to some underestimation of
the source or to absorption effects neglected in the simulation. The
slight delay of the simulated second shock may also arise from
neglected nonlinearities. The shear wave turns out to be well
described. Figure 6(a) presents in color levels the computed velocity
along the thickness of the plate at the center of it as a function of
time. Shock waves appear in blue straight lines as coming from the
center of the laser spot. Release and shear waves are due to diffrac-
tion at the edges of the spot, therefore, appear later on in time
(time necessary to propagate from the edge to the center), initially
as a curve in the time–space diagram. Shear wave is initially posi-
tive and then negative but after some propagation, the negative part
dominates. Mode conversions occurring at the reflection on the
two free surfaces are visible and labeled. For example, PS for a pres-
sure shock wave reflecting as a shear wave or SP for a shear wave
reflecting as a pressure shock wave. PSP is for both SP and PS
waves reflection on the illuminated surface.

The origin of such waves can be better understood thanks to
the time resolved simulations. Figure 7 presents the same case but
with 2D velocity maps at four successive times. The most recogniz-
able signal in Fig. 7 is the pressure wave (P) generated by the
plasma expansion, appearing as a quasi-plane waveform, with a
geometric extent equal to the spot diameter at the beginning of the
propagation, Fig. 7(a). Due to diffraction, a release longitudinal

FIG. 5. (a) Comparison between numerical simulation (red continuous line) with a
2D approach and the VISAR measurement of the opposite free surface velocity (blue
dashed line). Case of a 2 mm thick titanium plate illuminated by a 6.7 J=cm2 laser
pulse with a focal spot diameter of 3 mm. The dashed ovals indicate the release and
shear waves. (b) Same as Fig. 5(a) but with a 3D axisymmetric simulation.

FIG. 6. Case of a laser shock (41 J=cm2) of 3 mm focal spot diameter in a
5 mm titanium plate. P, R, and S note the pressure, release, and shear waves,
respectively. (a) Time–space representation of the computed velocity along the
thickness at the central position. The colorbar measures the velocity (m/s) but it
is saturated in order to present in the same image all the waves involved in the
phenomena. (b) Opposite face velocity: comparison between simulations (red
line) and the VISAR measurement (blue line).
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wave (R) is also generated all around the edge of the focal spot as a
result of the huge discontinuity of the laser illumination. This wave
advances from the edge of the focal spot with the same cL velocity
of the longitudinal pressure wave, thus creating a toroidal wave
front tangential to the edges of the P wave, Fig. 7(b). A shear wave
is also radiated from the discontinuity at the spot edge but propa-
gates slower. After some propagation time [Fig. 7(c)], the inner
part of the release wave reaches the center, converging into a nega-
tive velocity release wave. Figure 7(d) shows the similar but
retarded convergence of the shear wave, also creating a negative
velocity field.

The simulations also provide the stress value at each point and
instant as shown in Fig. 8(a) for the normal stress component σzz

along the axis. The overall shape of the figure is very similar to the
velocity field [Fig. 6(a)] except the change of sign of all waves after
each reflection on the free stress surfaces. The time evolution of the
same stress component at three different depths [Fig. 8(b)] illus-
trates this alternation of compressions and tractions. In particular,
the red position outlines a constructive interference between the
reflected shear shock, now a traction, and the direct shear wave,
also a traction. This induces an increase of the traction of about
20% compared to other positions.

V. PARAMETRIC COMPARISON BETWEEN
SIMULATIONS AND EXPERIMENTS

A. Sample analysis

Once the numerical model has been established and all
phenomena have been explained, it is now possible to perform an
extensive parametric survey by varying key parameters of the
process and systematically comparing simulation outputs with
Hephaïstos experimental VISAR data. To our knowledge, such a
large-scale parametric comparison and experimental validation has
never been carried out. In a first stage, we vary the sample parame-
ters, e.g., the structural material and the sample thickness.
We compare the same configuration (6.7 J=cm2 laser with 3 mm
focal diameter for samples 1 and 2mm thick) for both aluminum
and titanium in Fig. 9. It is remarkable that, as both materials have
very similar acoustic properties cL and cT , the measured velocity
profiles are very similar. Agreement between simulations and
experiments is remarkable with each arrival (labeled as in Sec. IV)
finely predicted. Over the considered time window of 1.7 μs, the
number of arrivals is much larger for “thin” (1 mm) than for
“thick” (2 mm) samples: arrivals up to 9P/9R are detected in the
first case, only arrivals 5P/5R in the second one. Only the direct
shear wave arrivals (S) is visible but three mode conversions are

FIG. 9. Comparison of experimental (blue dashed line) and numerical (red line)
results of a 3 mm of diameter, 6.7 J=cm2 laser shock for plates of different thick-
nesses and material. (a) 1 mm thickness, titanium, (b) 1 mm thickness, alumi-
num, (c) 2 mm thickness, titanium, and (d) 2 mm thickness, aluminum.

FIG. 7. Same case as Fig. 7. Velocity maps in color levels at times (a)
t ¼ 0:128 μs, (b) t ¼ 0:232 μs, (c) t ¼ 0:3456 μs, and (d) t ¼ 0:7338 μs. The
colorbar measures the velocity (m/s) but it is saturated in order to present in the
same image all the waves involved in the phenomena.

FIG. 8. (a) Same as Fig. 7(a) but for σzz stress component. (b) Stress compo-
nent σzz time waveform at three depths identified by their color in Fig. 8(a).
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detected (2PS, 4PS, and 6PS) in the thinner case, one in the
thicker case. Also, clearly visible for both thicknesses is the time
delay between the first compression shock P and the first release
wave R. This delay is due to the longer time needed for the release
wave to propagate from the edge of the focal spot, compared to
the direct propagation time of the shock P. As a counterpart of
this time separation, the release wave is less intense in the 1 mm
case. For other arrivals, the propagation time is dominated by the
number of crossed thicknesses, and the influence of the initially
longer path for the release wave gets negligible. Therefore, 3R or
5R wave arrives just after 3P or 5P waves. This effect is also visible
for the first arrivals in the case of thicker samples (see 5 mm case,
Fig. 6). Differences between simulations and measurement appear
only for the amplitudes. For titanium, the agreement remains
pretty good. The simulated shock amplitude is slightly underesti-
mated maybe due to some underestimation of the source term.
However, when propagating back and forth, the shock amplitude
does not change significantly. Absorption does not play a major
role may be due to the high elasticity limit of this material.
On the contrary, for aluminum, the shock amplitude visibly
decays, a phenomenon that cannot be captured by our simula-
tions. As arrival times are always very consistent, this is most
likely explained by absorption: nonlinearities would be accompa-
nied by a time delay (shock wave would arrive earlier and earlier)
that is not observed experimentally. Absorption also affects
release and shear waves as is observed, while nonlinearities would
affect mostly high amplitude P-shocks.

B. Effect of the pressure level and the diameter of the
laser source

Regarding the laser illumination, two parameters were
changed: the laser energy density and the diameter of the laser
spot. For the energy, three configurations are presented with 2 mm
thick titanium plates illuminated by a laser spot of 3 mm of diame-
ter. The laser energy density changes from 6.7 J=cm2 in Fig. 9(c) to
26.7 J=cm2 in Fig. 10(a) and to 41 J=cm2 in Fig. 10(b). It is remark-
able that for all these three configurations, the computed ampli-
tudes of the first arrival of the compression shock (P), the release
wave (R), and the shear wave (S) are all in excellent agreement with
measured ones. This clearly shows that the source computation by
Esther provides an excellent input, and that absorption and nonlin-
ear effects are not important over such a short propagation distance
(2 mm). The shape of the most intense simulated shock is,
however, slightly narrower than the recorded one. Second (3P) and
third (5P) arrivals having propagated, respectively, over 6 mm and
10mm, arrive at perfectly simulated times, but tend to be overesti-
mated, especially at 26.7 J=cm2. This indicates that absorption is
likely to play some role over such propagation distances, as con-
firmed by Fig. 6(b) in a 5 mm thick plate, where again the second
arrival has significantly decayed after 15 mm of propagation.
Nonlinear effects could also play some role, see Sec. VI for discus-
sion. This good agreement for titanium also confirms the adequacy
of the purely elastic scheme for the simulations. For aluminum (not
shown here), its lower elastic limit induces much larger deviations
from the simulations in the cases of high intensity experiences.
This again is discussed in Sec. VI. Another important parameter to

consider is the size of the laser spot. Knowing that the release and
shear waves emanate from diffraction at the edge of the laser spot,
the source size directly influences the arrival of these waves. For a
titanium plate of 2 mm thickness illuminated by a 6.7 J=cm2 laser,
one can compare three spot sizes : 3 mm [Fig. 9(c)], 4 mm
[Fig. 11(a)], and 5 mm [Fig. 11(b)]. Increasing the focal size
increases the propagation distance for the first release wave, which
is all the more delayed compared to the pressure shock. Similarly,
the first shear wave arrives later. For the largest spot (5 mm), it
arrives almost simultaneously with the next pressure shock/release
wave (3P/3R) which may explain the amplitude decrease of the
second shock.

VI. MODEL LIMITATIONS AND PLASTICITY

For the sake of simplicity, we considered here a linear approach
for modeling the propagation in an ideal elastic medium. This
seems contradictory with the shock generation process, which is
intrinsically a nonlinear one (as taken into account by the
Esther approach). Indeed, it is possible to identify three physical
mechanisms that may contradict our approach: nonlinear elasticity,

FIG. 10. Comparison of experimental and numerical results in a 2 mm thick-
ness titanium plate illuminated by a laser of 3 mm diameter and of different
energies per surface unit. (a) 26:7 J=cm2 and (b) 41 J=cm2.
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elastoplasticity, and absorption. For weak shock waves, nonlinear
elasticity assumes a reversible material behavior but with a nonlin-
ear relation between stress and strain. In an isotropic medium and
for compression waves (by far the most intense ones in all contem-
plated cases), nonlinear elasticity would appear at first order as an
additional quadratic term to the stress–strain relation, measured by
a nonlinear dimensionless parameter β. The resulting equation is of
inviscid Burgers’ type and can thus lead to shock generation or
modification. Nonlinear effects can be quantified through the dis-
tance L ¼ 1=(βκM) necessary for significant nonlinear phenomena,
with κ ¼ 1=(cLTpulse) is the wavenumber and M ¼ v=cL the Mach
number. For aluminum, β ranges between 3.54 and 8.41 depending
on the alloy, we take here 5.5.41 Taking the maximum value of the
VISAR measured free surface velocity (v ¼ 200 m/s), divided by 2
because of doubling due to reflection at the free surface, yields a
value L ¼ 6:7 mm for a longitudinal celerity cL ¼ 6100 m/s. This
indicates that for millimetric distances here considered, nonlinear
elasticity would not be fully negligible and is expected to be really
significant for multiple crossovers of the sample thickness. To

quantify this, we use a numerical solver of Burgers’ equation42 that
allows us to propagate compression waves in 1D in a fully nonlinear
way. The result (presented in supplementary material) shows that
velocity waveforms do not agree at all with the experience data:
nonlinear elasticity leads to a wave pulse that arrives much too early
and that widens a lot. Nonlinear elasticity is, therefore, not relevant
in the present case. We thus have to simply solve the usual elastody-
namics equations with linear Hooke’s law.

The second model limitation deals with assumption of elastic-
ity itself. Regarding the tensile yield strength Y0 of both materials
used in this work (503MPa for aluminum and 880MPa for
titanium) and the stress produced by the shock within the structure
(up to 4 GPa), it might be considered that the elastic assumption is
not satisfied at all. However, yield stress is established for quasi-
static tensile testing. In the case of shock wave propagation, the
Hugoniot Elastic Limit (HEL) should be considered. The HEL is
defined as the critical shock pressure at which a solid yields under
the uniaxial strain of a plane shock wave.43 Both limit values are
related to one another by HEL ¼ Y0(1� ν)=(1� 2ν) with ν
Poisson’s coefficient. The HEL of the used materials are, therefore,
much higher, 2.8 GPa for titanium44 and 0.65 GPa for aluminum.45

The pertinence of the HEL is verified in Figs. 12(a) (titanium) and
(b) (aluminum) showing the VISAR measured velocity of first
arrivals on the opposite face at different laser intensities. For alumi-
num, Fig. 12(b) shows a clear deviation from a sharp shock wave
beyond around 80 m/s (for laser intensities above 12.87 J=cm2),
outlining the beginning of plastic effects. To estimate the
corresponding stress σ, we just have again to divide the measured
velocity by a factor 2 (because of doubling due to free surface
reflection) and then recall that v ¼ σ=ρcL for a plane, compression
wave. In this case, the observed value of 80 m/s corresponds,

FIG. 11. Comparison of experimental and numerical results of both 2 mm thick-
ness titanium, 6.7 J/cm2 laser shock for different spot sizes. (a) 4 mm diameter
spot and (b) 5 mm diameter spot.

FIG. 12. VISAR measurements of the opposite free surface velocity for four dif-
ferent laser intensities (plate thickness: 2 mm and focal spot: 3 mm). (a)
Titanium—zoom on the first arrival, (b) aluminum—zoom on the first arrival, (c)
titanium—normalization by the peak of the first arrival, and (d) aluminum—nor-
malization by the peak of the first arrival.
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indeed, to a HEL of 0.65 GPa. In the case of titanium [Fig. 12(a)],
the appearance of plastic effects is visible around 230 m/s (only for
an intensity of 51.64 J/cm2), which, following the same steps, pro-
vides an HEL of 3.08 GPa. These considerations allow us to keep
the linear, elastic approach for low laser energy simulations in the
case of the aluminum but up to 3 GPa for the titanium.

The last physical mechanisms not considered in our simplified
model is absorption, which can be either linear (viscoelasticity) or
nonlinear (through shock formation in the case of nonlinear elas-
ticity or due to plastic deformations). To quantify it, we present in
Figs. 12(c) and 12(d), the VISAR measured velocities on the oppo-
site free surface of the three first arrivals, normalized by the peak of
the first P-arrival. In the case of aluminum [Fig. 12(d)], the loss of
amplitude increases with the source intensity. This clearly indicates
again an amplitude-dependant, nonlinear phenomenon, most likely
due to elastoplastic deformation arising quite soon. Moreover,
when comparing arrivals 3P and 5P, one can see that for lowest
intensities 6.65 and 12.87 J/cm2, the waveform keeps quite similar
with a sharp shock structure clearly maintained, while for higher
intensities, the waveform decays much more and progressively loses
its typical shock profile. This again is an indication of nonlinear
phenomena. The change in waveform and the visible delay in
arrival time with increasing amplitude is completely opposite to
what would be observed in the case of nonlinear elasticity, thus
confirming this mechanism does not play any role here. For tita-
nium [Fig. 12(c)], we observe some little absorption in the low
amplitude case, approximately doubled when comparing, respec-
tively, the ratios of 3P/P and 5P/P peak values. This is an indication
of mostly linear viscoelastic absorption. For higher laser intensities,
the decay between 3P and P peak arrivals is a bit more significant
but much less when comparing 5P to 3P peak values. The likely
explanation is that, during the first sample crossover (P–3P), some
tiny material places may undergo a stress beyond the HEL limit
and, therefore, plastic deformation and dissipation. During the
second crossover on the contrary (3P–5P), the stress does not reach
the HEL limit and attenuation keeps small and linear. Another indi-
cation of limited elastoplastic effects is that the waveform hardly
changes, and arrival times keep almost identical for all intensities.

VII. CONCLUSIONS

Laser shock generation and propagation in the ablation regime
is a quite complex process that involves multiphysics and is gov-
erned by numerous parameters. In order to better understand and
optimize this process, numerical simulations appear an efficient
approach. However, full 3D simulations including all multiphysics
with deposition of laser energy, solid to plasma phase change,
material elastoplasticity up to damaging and fracturation, radiative
transfer, heat conduction, wave and shock propagation, diffraction
by source edges, and material viscoelastic absorption are beyond
current numerical capacities. Therefore, we propose here a much
less demanding approach, combining a fully nonlinear, multiphysi-
cal approach at 1D to describe the source term, localized in the
tiny region of material plasma expansion, and a 3D (here with
geometrical axisymmetry) linear elastomechanical wave propaga-
tion over the bulk of the target material. The present article
demonstrates the validity of this simplified approach. Numerical

convergence tests allowed us to determine the optimal numerical
parameters in order to minimize the numerical dispersion during
the propagation phase. Diffraction by the edges of the laser focal
spot turns out essential in quantifying the release and shear waves.
A 2D approach strongly underestimates these ones, diffracted waves
only emanate from two points in the 2D simulation instead of a
full circle in the 3D one. This 3D approach, here simplified for axi-
symmetric geometries, has been extensively validated by systematic
comparison with data obtained with the Hephaïstos laser facility,
varying target material, sample thickness, diameter of the laser
spot, and energy density. In all cases, an excellent agreement is
obtained between experiments and simulations for the overall
shape of the recorded velocity at the opposite face and times of
arrivals of various waves. All of them are easily explained by linear
elastic wave propagation, with compression shocks emanating from
the laser plasma expansion, and release and shear waves due to
wave diffraction at the sharp edges of the spot. Mode conversions
from compression to shear waves (or vice versa) result from reflex-
ions at the stress-free surfaces. Internal stress evaluation indicates
possible constructive interferences, leading to increased traction
within the material. Good agreement for amplitudes of the first
arrivals also confirms that Esther simulations provide an excellent
source term for the propagation part of the code. Agreement is not
so good after multiple reflexions, indicating that material absorp-
tion cannot be neglected for thick samples or long travel paths with
multiple reflexions. The observed absorption is, at least in part, due
to an elastoplastic behavior when stress goes beyond the hugoniot
elastic limit. For titanium, plasticity does not perturb much the pre-
diction of waveforms and arrival times, at least for the considered
intensities. On the contrary, for aluminum, elastic domain is
limited to the lowest values of laser intensities. Nonlinear elasticity
seems to play no role at all, even though the laser source is highly
nonlinear and emits a sharp shock. Future works will include
absorption and elastoplastic mechanisms in the wave propagation
part of the algorithm, consider structural assemblies including
aeronautical composite materials, and optimize traction within the
bulk of the material for bonding inspection.

SUPPLEMENTARY MATERIAL

The reader can find in the two files of the supplementary
material: First, the 3D axisymmetric code used in this publication.
The code consist of a main code, where the user can introduce the
initial condition, the equations are developed and can see the result
of the simulation, and four accessory functions. Further informa-
tion is to be found in the zip file in order to run the code. Cite this
article in the case of use of it. Second, the nonlinear simulation
cited in Sec. VI and used to verify the model limitation.

APPENDIX A: EQUATIONS OF ELASTODYNAMICS

This appendix recalls the equations of linear elastodynamics
used in the present paper, in both the 2D (with parameter m ¼ 0)
and 3D axisymmetric (with parameter m ¼ 1) cases for an isotro-
pic material of density ρ. Variable t denotes time, while z is the
spatial variable in the plate thickness (z ¼ 0 is the illuminated
interface) and r measures distance from the laser optical axis. The
corresponding velocities are, respectively, uz and ur . The stress
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tensor components are noted for the sake of simplicity σz ¼ σzz,
σr ¼ σrr , and in the 3D case, σθ ¼ σθθ . Equations (A1) and (A2)
are the momentum equations relating the medium material velocity
to the stress divergence. Equations (A3)–(A6) are the time deriva-
tive of linear Hooke’s constitutive equations,

ρ
@ur
@t

¼ @σr

@r
þ @σrz

@z
þm

σr � σθ

r
; (A1)

ρ
@uz
@t

¼ @σrz
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þ @σz
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σrz

r
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� �
: (A6)

The components of the stiffness matrix C are related to the
Lamé parameters λ and μ by

c11 ¼ c33 ¼ λþ 2μ; (A7)

c13 ¼ λ; (A8)

c55 ¼ μ, (A9)

with Lamé parameters linked to Young’s modulus E and
Poisson coefficient ν by

λ ¼ Eν
(1þ ν)(1� 2ν)

; (A10)

μ ¼ E
2(1þ ν)

: (A11)

Compression cL and shear cT wave velocities are

cL ¼
ffiffiffiffiffiffiffiffiffiffiffi
c11=ρ

p
; (A12)

cT ¼
ffiffiffiffiffiffiffiffiffiffiffi
c55=ρ

p
: (A13)

APPENDIX B: VIRIEUX NUMERICAL SCHEME

We here use Virieux numerical scheme,21 generalized to
fourth order for spatial discretization,26 to solve the first order
hyperbolic system of equations of elastodynamics recalled in
Appendix A. Spatial partial derivative in the x direction is

approximated by

@M
@x

� �n

iþ1=2,j

¼ c1(Mn
iþ1,j �Mn

i,j)� c2(Mn
iþ2,j �Mn

i�1,j)

Δx

þ O(Δx4), (B1)

with coefficients c1 ¼ 9=8 and c2 ¼ 1=24. Similar expressions can
be established straightforwardly in the y direction. Here, index
n denotes discretized time tn ¼ nΔt, while i (respectively, j) is for
discretized spatial variable xi ¼ iΔx (respectively, y ¼ jΔy), and Δx,
Δy, and Δt denoting the grid steps for the space and time variables.
Note the spatial discretization at point iþ 1=2 is computed by a
centered finite difference through a staggered grid, involving points
iþ 1=2+ 1=2 and iþ 1=2+ 3=2. Thus, different variables are
computed on different nodes, staggered by half of a grid step,
according to the arrangement of Fig. 13(a) imposed by elastody-
namics equations: if horizontal velocities are allocated at the cell
vertices, then vertical velocities lie at the cell centers and stress
components are placed in the middle of the edges. Material param-
eters are also to be allocated accordingly, density at the same nodes
as velocity components, stiffness components c11, c13, and c33 at the
same nodes as σr , and c55 at the same nodes as σrz . Similarly, stag-
gering is also used for time dependency, using the leapfrog algo-
rithm with standard centered finite difference at second order,

@M
@t

� �nþ1=2

i,j

¼ (Mnþ1
i,j �Mn

i,j)

Δt
þ O(Δt2): (B2)

Here, velocities and stress components are computed at interleaved
time steps, as schematized by Fig. 13(b).

FIG. 13. (a) Spatial staggering of the Virieux scheme: relative positions of
nodes where velocity components, stress components, and material properties
are evaluated. (b) Staggering of leapfrog temporal scheme.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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