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Abstract: A high-order shock-capturing finite-difference scheme for scale-resolving numerical sim-
ulations of hypersonic high-enthalpy flows, involving thermal non-equilibrium effects, is presented.
The suitability of the numerical strategy for such challenging configurations is assessed in terms
of accuracy and robustness, with special focus on shock-capturing capabilities. The approach is
demonstrated for a variety of thermochemical non-equilibrium configurations.
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1 Introduction
High-enthalpy flows are encountered in many fields related to the aerospace industry. These flows are
characterized by the presence of thermodynamic processes having a major influence on the performance
of vehicles flying at hypersonic speeds, such as gas dissociation, vibrational relaxation, surface ablation
or ionization [1]. The rate at which these different processes evolve are highly dependent on the local
thermodynamic conditions and can be of the same order of the natural timescales of the flow, resulting in
a nonequilibrium state. The overall picture is even further complicated when turbulence comes into play,
because of the wide range of spatial and temporal scales involved. Carrying out numerical simulations
of high-enthalpy turbulent flows is an extremely challenging task requiring the use of suitable numerical
methods, which must be properly designed in order to meet the concurrent needs of ensuring a sufficient
numerical robustness and an accurate representation of the flow scales to be resolved. Recently, Sciacovelli
et al. [2] presented a high-order centred finite-difference scheme for the computation of compressible flows
with shock waves, using tenth-order accurate approximations for the non linear fluxes supplemented with a
higher-order extension of Jameson’s adaptive artificial dissipation [3]. The overall order of accuracy of the
artificial viscosity term ensures a dissipative-dominant error, reducing the appearance and amplification of
spurious oscillations. The numerical scheme has been successfully applied to the simulation of turbulent high-
speed flows of dense gases [4] and to flows with finite-rate chemistry effects [2]. In this study, we present an
extension of such technique to flows with vibrational relaxation processes. This strategy, recently employed
by Passiatore et al. [5] to perform a Direct Numerical Simulation (DNS) of a boundary layer undergoing
laminar-to-turbulent transition in thermochemical nonequilibrium conditions, is here tested in high-gradient
flow configurations to verify its capabilities in handling strong flow discontinuities. The paper is organised as
follows. The governing equations and the thermochemical models are described in Section 2. The numerical
method and its extension for thermal nonequilibrium flows are shown in Section 3, whereas Section 4 presents
a selected list of test cases of increasing complexity. Conclusions are then drawn in Section 5.



2 Governing Equations
In this work, the fluid under investigation is air at high-temperature, thermally and chemically out-of-
equilibrium, modeled as a neutral five-species mixture of N2, O2, NO, O. Therefore, the governing equations
are the compressible Navier–Stokes equations for multicomponent chemically-reacting and thermally-relaxing
gases [6], which read:
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In the preceding formulation, ρ is the mixture density, t the time coordinate, xj the space coordinate in
the j-th direction of a Cartesian coordinate system, with uj the velocity vector component in the same
directions, p is the pressure and τij the viscous stress tensor, modeled as
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with µ the mixture dynamic viscosity and δij the Kronecker symbol. The conservation of total energy
E = e+ 1

2uiui is expressed by means of equation (3), where e is the mixture internal energy, qTR
j = −λTR

∂T
∂xj

and qV
j = −λV

∂TV
∂xj

are the roto-translational and vibrational contribution to the heat flux, λTR and λV

being the roto-translational and vibrational thermal conductivities, respectively. In such formulation, we are
considering two temperatures, T being the roto-translational one and TV the vibrational temperature. uD

nj

denotes the diffusion velocity and hn the specific enthalpy for the n-th species. In the species conservation
equations (4), ρn = ρYn represents the n-th species partial density (Yn being the mass fraction) and ω̇n

the rate of production of the n-th species. To ensure total mass conservation, the mixture density and
NS−1 species conservation equations are solved, while the density of the NS-th species is computed as
ρNS = ρ −∑NS−1

n=1 ρn. In the following, we set such species as molecular nitrogen, since it is the most
abundant one throughout the computational domain. As for equation (5), eV =

∑NM
m=1 YmeVm represents

the mixture vibrational energy, with eVm the vibrational energy of the m-th molecule and NM their total
number. Only one additional equation for the conservation of mixture vibrational energy is employed, relying
on the assumption that the vibrational energetic modes of the three molecular species in the mixture are
equilibrated with each other at the same TV . In the same equation, QTV =

∑NM
m=1 QTVm represents the

energy exchange between vibrational and translational modes due to molecular collisions and
∑NM

m=1 ω̇meVm

the vibrational energy lost or gained due to molecular depletion or production. Each species is assumed to
behave as a thermally-perfect gas; Dalton’s pressure mixing law leads then to the thermal equation of state:
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ρnRn, (7)

Rn and Mn being the gas constant and molecular weight of the n-th species, respectively, and R = 8.314
J/mol K the universal gas constant. The thermodynamic properties of high-temperature air species are



computed considering the contributions of translational, rotational and vibrational (TRV) modes:
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Here, h0
f,n is the n-th species enthalpy of formation at the reference temperature (Tref = 298.15K), hTR

n is
the roto-translational specific enthalpy and eV n the vibrational energy of species n. These terms read:
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with θn the characteristic vibrational temperature of each molecule (3393K, 2273K and 2739K for N2, O2

and NO, respectively). After the numerical integration of the conservation equations, the roto-translational
temperature T is computed from the specific internal energy (devoid of the vibrational contribution) directly,
whereas an iterative Newton–Raphson method is used to compute TV from eV =

∑NM
m=1 YmeVm.

To close the system, we use Park’s two-temperatures (2T) model [7] to take into account the contextual
presence of thermal and chemical non-equilibrium for the computation of ω̇n and QTV. Specifically, the five
species interact with each other through a reaction mechanism consisting of five reversible chemical steps
[8]:

R1 : N2 + M ⇐⇒ 2N + M
R2 : O2 + M ⇐⇒ 2O + M
R3 : NO + M ⇐⇒ N + O + M (11)
R4 : N2 + O ⇐⇒ NO + N
R5 : NO + O ⇐⇒ N + O2

M being the third body (any of the five species considered). Dissociation and recombination processes are
described by reactions R1, R2 and R3, whereas the shuffle reactions R4 and R5 represent rearrangement
processes. The mass rate of production of the n-th species is governed by the law of mass action:
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where ν′nr and ν′′nr are the stoichiometric coefficients for reactants and products in the r-th reaction for
the n-th species, respectively, and NR is the total number of reactions. Furthermore, kf,r and kb,r denote
the forward and backward rates of reaction r, modeled by means of Arrhenius’ law. The coupling between
chemical and thermal nonequilibrium is taken into account by means of a modification of the temperature
values used for computing the reaction rates. Indeed, a geometric-averaged temperature is considered for
the dissociation reactions R1, R2 and R3 in (11), computed as Tavg = T qT 1−q

V with q = 0.7 [7].
Lastly, the vibrational-translational energy exchange is computed as:
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where τm is the corresponding relaxation time evaluated by means of the expression [9]:
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Here, τmn is the relaxation time of the m-th molecule with respect to the n-th species, computed as the sum
of two contributions

τmn = τMW
mn + τ cmn. (15)

The first term writes:
τMW
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p

patm
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[
amn(T

− 1
3 − bmn)− 18.42

]
, (16)

where patm = 101325Pa and amn and bmn are coefficients reported in [10]. Since this expression tends
to underestimate the experimental data at temperatures above 5000K, a high-temperature correction was
proposed by Park [11]:
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, (17)

where ϕmn = MmMn

Mm+Mn
and σ =

√
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Tπ

7.5×10−12NA
T , NA being Avogadro’s number.

As for the computation of the transport properties, pure species’ viscosity and thermal conductivities are
computed using curve-fits by Blottner [12] and Eucken’s relations [13], respectively. The corresponding
mixture properties are evaluated by means of Wilke’s mixing rules [14]. Mass diffusion is modeled by means
of Fick’s law:
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where the first term on the r.h.s. represents the effective diffusion velocity and the second one is a mass
corrector term that should be taken into account in order to satisfy the continuity equation when dealing with
non-constant species diffusion coefficients [15]. Specifically, Dn is an equivalent diffusion coefficient of species
n into the mixture, computed following Hirschfelder’s approximation [13], starting from the binary diffusion
coefficients which are curve-fitted in [16]. Further details about the selected models and the underling
hypotheses can be found in Passiatore et al. [5].

3 Numerical method
The governing equations presented in the previous section are integrated numerically by using the numerical
scheme presented in Sciacovelli et al. [2]. In the following, we briefly recall the numerical strategy and
we detail its extension to thermally out-of-equilibrium flows. Let us consider a 1D system of hyperbolic
conservation laws:

∂w

∂t
+

∂f(w)

∂x
= 0 (19)

where w denotes the vector of conservative variables and f(w) the flux function. A conservative semi-discrete
approximation of the spatial derivatives writes(
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where F denotes the numerical flux and δ is the classical difference operator over one cell
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The flux derivatives are approximated by means of a purely centered tenth-order operator, supplemented
with a nonlinear adaptive artificial term. The resulting numerical flux at cell interface j+ 1
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with Hj+ 1
2

the consistent (central) part and Dj+ 1
2

the dissipative part. For a scheme of order 2P + 3 with
a stencil of 2(P + 2) + 1 points, the centered term reads:
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where µ denotes the cell-average operator, namely:

(µ•)j+ 1
2
:=

1

2
[(•)j+1 + (•)j ] . (24)

The coefficients ap have alternate negative and positive signs as P increases. For the sake of clarity, we give
hereafter the expressions of the schemes of order 4 to 10 of the preceding family:
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The dissipative term, with the double role of damping grid-to-grid oscillations in smooth regions and con-
trolling the appearence of spurious oscillations in the vicinity of flow discontinuities, is a nonlinear blending
of a high-order dissipation and a low order shock capturing term, of the form:
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where ρ(A) is the spectral radius of the flux Jacobian matrix A, whereas k2 and k2(P+2) are adjustable
dissipation coefficients and kε is a constant equal to a0/aP , determining the threshold below which the
higher-order dissipation is switched off. For schemes of order 3 to 9, this gives the following expressions:
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The activation of the lower-order dissipation component is governed by the shock sensor φj , whose general
formulation writes

φj =
(∇ · u)2

(∇ · u)2 + |∇ × u|2 + ϵ
×
∣∣∣∣pj+1 − 2pj + pj−1

pj+1 + 2pj + pj−1

∣∣∣∣ (35)

The two terms in equation (35) denote the classical Ducros’ [17] and Jameson’s pressure-based [3] shock
sensors, respectively, ϵ being a small positive value to avoid division by zero. Note that, differently from the
strategy of Sciacovelli et al. [2], the Ducros’ sensor modification of Bhagatwala & Lele [18] is not considered
here, since its addition would require larger k2 values in order to ensure a proper amount of numerical dissi-
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pation close to flow discontinuities for the configurations under investigation. With the above definitions, the
resulting numerical approximation of the inviscid terms is (2P + 1)th-order accurate in smooth flow region
and becomes 1st-order accurate close to flow discontinuities.

A modification to the shock sensor is introduced in order to deal with thermochemical non-equilibrium.
For such flows the pressure-based shock sensor, is not suitable to detect regions with steep vibrational
energy gradients since p and TV are not directly linked through the equation of state. A specific control is
then introduced for the vibrational energy equation (5), where the pressure-based sensor is replaced by an
analogous term based on the vibrational temperature; additionally, the Ducros sensor is removed to ensure
robustness:

φjV =

∣∣∣∣TV,j+1 − 2TV,j + TV,j−1

TV,j+1 + 2TV,j + TV,j−1

∣∣∣∣ . (36)

For Navier–Stokes simulations, the discretization is completed by a standard fourth-order approximation
of the viscous terms. Lastly, time advancement is carried out by means of an explicit third-order TVD
Runge–Kutta scheme [19].

4 Results
In this section we validate the thermochemical modeling as well as the numerical strategy by means of
selected test cases, ranging from 0D to 2D configurations.

4.1 Zero-dimensional heath baths
The implementation of the 2T model of Park [11] is validated by comparing the results of zero-dimensional
(0D) heath baths with reference data. In such a test case, non-equilibrium thermodynamic conditions
are initially imposed for the gas mixture; the system then relaxes towards an equilibrium state through
dissociation and vibrational relaxation effects. We begin by considering translational-vibrational relaxation
with frozen chemistry, in order to assess the behavior of the vibrational source term QTV uniquely. Figure 1
shows the timewise temperature distributions in a case of vibrational heating (left panel) and vibrational
cooling (right panel) for N2. The initial pressure is equal to 1 atm for both cases. In the vibrational
heating, the initial temperatures are T 0 = 10000K and T 0

V = 1000K and the system reaches an equilibrium
temperature of roughly 7625K; in the cooling configuration, instead, we set T 0 = 3000K and T 0

V = 10000K,
and the equilibrium temperature reached is ≈ 4972K. The profiles, in excellent agreement with reference
results of Casseau et al. [20], underline that return to equilibrium is achieved in physical times between
10−5 and 10−4 seconds. The second set of test cases corresponds to the one investigated by Williams
et al. [21] and takes into account also dissociation processes. The first heath bath still consists in pure
nitrogen with T 0 = 20000K, T 0

V = 300K, p0 = 27.25 atm and YN2
= 1 as initial conditions. Figure 2(a)

shows the relaxation of the two temperatures up to a physical time of 10−6 s. The results are compared
with reference solutions obtained by the softwares SU2-NEMO [22], LeMANS [23] and HTR [24], using
different thermochemical formulations and equipped with both preferential and non-preferential dissociation
models [25] (only the non-preferential models are shown in figure 2). Both the translational and vibrational
temperature profiles are in agreement with the reference solution and relax towards the equilibrium state in
approximately the same time. An air mixture is then selected, the initial conditions being T 0 = 15000K,
T 0

V = 300K, p0 = 20.42 atm, Y 0
N2

= 0.767 and Y 0
O2

= 0.233. The results shown in figure 2(b) exhibit similar
discrepancies, with a major scatter on TV. It is noteworthy to mention that these results are extremely
sensitive to the thermochemical models used, as also observed by Williams et al.. In our formulation, the
use of the averaged temperature with q = 0.7 may be the principal reason for the discrepancy in time
evolution, whereas the final equilibrium state is perfectly predicted. Moreover, Williams et al. [21] takes
into account the contribution of the electronic energy as well, which is neglected in our work. Nevertheless,
when thermochemical models are coupled with the fluid dynamic problem, each model provides a faithful
representation, at least for (relatively) low-to-medium temperatures values.
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Figure 1: Translational-vibrational relaxation for vibrational heating (a) and vibrational cooling (b) of a N2

heath bath; symbols from Casseau et al. [20].
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Figure 2: Dissociation/translational-vibrational relaxation heath bath for pure nitrogen (a) and air (b);
symbols from Williams et al. [21].

4.2 Shock tubes
We now focus our attention on the assessment of the numerical strategy and, in particular, the capability
of the shock-capturing method to deal with flow discontinuities. A classical benchmark for such validations
is the inviscid one-dimensional shock tube problem. In Sciacovelli et al. [2], the numerical strategy was
found to correctly reproduce the exact solutions of two perfect-gas shock tube problems and the results of
the multi-species high-enthalpy shock tube of Grossman & Cinnella [26]. Even if the latter configuration
considers an air mixture under thermochemical non-equilibrium conditions, the flow field was shown not to
be affected by thermal nonequilibrium [2], with profiles of pressure, density and velocity essentially unaltered.
We have therefore selected a different set of thermodynamic conditions, corresponding to those investigated
by Williams et al. [21], in which thermal non-equilibrium plays an important role. The left (L) and right
(R) initial conditions are the following:

PL = 2MPa, uL = 0m/s, TL = 12000K TV,L = 12000K (37)
PR = 100 kPa, uR = 0m/s, TR = 1000K TV,R = 1000K (38)

whereas the mixture is initially composed of pure molecular nitrogen. The domain has a length of L=1 and
it is discretized with 1000 grid points. The system is integrated up to 156µs of physical time, with a Courant
number equal to 0.1. In such a configuration, the shock-capturing approach presented in section 3 with k2=2
and k2,V =0.5 is able to ensure numerical robustness. The evolution of the dimensional values of density,
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Figure 3: Profiles of density (a), pressure (b), temperatures (c) and molar fractions (d) for the thermochem-
ically out-of-equilibrium shock tube of Williams et al. [21], at 156µs; symbols from [21].

pressure, temperatures and species molar fractions are displayed in figure 3, where the solution of Williams
et al. [21] is also reported for reference. The high temperatures in the left side of the tube trigger chemical
dissociation; the latter, draining energy from the flow, leads to a decrease of the two temperatures, which
equilibrate at ≈ 7000K. A distinct jump of the temperature value is shown at the shock location (x ≈ 0.74),
whereas the vibrational temperature remains frozen and smoothly relaxes after the contact discontinuity.
Notwithstanding the presence of small oscillations in the post-shock region, a perfect agreement is observed
for all the thermodynamic quantities throughout the computational domain, proving that the numerical
strategy is able to handle the computation while correctly capturing shocks and contact discontinuities. For
the sake of completeness, we performed another simulation by considering an air mixture with YN2

= 0.767
and YO2 = 0.233, while keeping the other initial conditions unaltered. The results are compared with the pure
molecular nitrogen case in figure 4. Significant differences are encountered in all the variables. Dissociation
of molecular oxygen is significantly higher, draining internal energy and reducing the temperatures on the
left side of the tube below 6000K. Consequently, the pressure is also reduced, whereas the differences in
the density profiles are dictated by the different molar fraction composition of the species in the mixture.
Thermal nonequilibrium is strongly reduced in the air case, the two temperatures reaching similar values
after only 10µs; as a result, the density profile exhibits a plateau between the contact discontinuity and the
shock. Such a distinct behavior is originated by the different molar fraction composition of the two mixtures
and the relaxation times of the diatomic molecules. At the final time, indeed, τN2

is two orders of magnitude
higher than τO2

and five orders with respect to τNO, confirming that the presence of the other two molecules
promotes a faster recover of thermal equilibrium conditions (as already observed in the work of Passiatore
et al. [5]).

The last shock tube configuration considered is the two-dimensional viscous case of Daru & Tenaud
[27]. An extension of this configuration to a chemically reacting mixture has previously been considered in
Sciacovelli et al. [2]. The case is then adapted to a thermochemical out-of-equilibrium mixture in the current
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Figure 4: Profiles of density (a), pressure (b), temperatures (c) and molar fractions (d) for the thermochemi-
cally out-of-equilibrium shock tube proposed by Williams et al. [21], using an air mixture initially composed
by YN2

= 0.767 and YO2
= 0.233. Comparison is made against the pure nitrogen simulation.

work. This configuration consists in a rectangular box enclosed within non-catalytic adiabatic walls, with
Lx = 1m and Ly = 0.25m as domain lengths. At t = 0 s, the flow is divided by a diaphragm at x = 0.5m
with the following thermodynamic conditions:

PL = 12 kPa, uL = 0m/s, TL = 2000K TV,L = 2000K (39)
PR = 0.12 kPa, uR = 0m/s, TR = 2000K TV,R = 2000K, (40)

and YN2 = 0.767, YO2 = 0.233 everywhere. It is worth noting that we have conserved the same initialization
of the chemically-reacting configuration (i.e., air mixture in thermal equilibrium), with T = TV = Tref, to
highlight the influence on the solution when vibrational excitation is taken into account. Uniform computa-
tional grids with the same density of those used in Sciacovelli et al. [2] are considered (namely, 4000× 1000,
6000×1500 and 8000×2000 grid points), with a Courant number set equal to 0.04. In the top panel of figure 5,
an instantaneous visualization of the temperatures difference is shown, at t = 1ms. On the left side of the
lambda-shock, the flow is vibrationally under-excited and the vibrational temperature is approximately 500K
higher with respect to the translational one. The dynamics of the shock reflected on the right wall generates
extremely complex structures that efficiently redistribute the gas and generate an alternation of vibrationally
under- and over-excited regions. The bottom panel of figure 5 displays the isocontours of the shock sensor
of equation (36) used for the conservative variable ρeV . The sensor, which is active only on the right part
of the shock tube, is able to properly capture TV gradients, while preserving the fine-scale flow structures
and the unsteady dynamics. Globally, the values of φjV do not exceed 0.2. Figure 6(a) depicts the density
profile at the bottom wall of the thermochemical non-equilibrium simulation (TCNE) ad t = 1ms for the
three computational grids, showing that a good grid convergence is obtained with 6000×1500. In figure 6(b)
instead, a comparison of the wall roto-translational temperature with respect to the thermally equilibrated



x

T − TV [K]

y

log10φjV

y

x

Figure 5: Instantaneous visualization of temperatures difference (top) and logarithm of φjV (bottom), at
t = 1ms, for the viscous shock tube in thermochemical non-equilibrium.

simulation (CNE) is provided, along with the preferential average T 0.7T 0.3
V used for the computation of the

chemical source terms in the TCNE case. The temperatures difference observed in figure 5(a), due again
to the large relaxation times of the N2 molecule, entails a different distribution with respect to the CNE
case especially in the region of Kelvin-Helmotz instabilities. Larger temperature variations are registered
for TCNE, with the TCNE preferential averaged temperature sporadically exceeding the CNE temperature
(see figure 6(b)) and resulting in peaks of chemical activity and more abundant concentration of chemical
products in the TCNE case with respect to the CNE one of Sciacovelli et al. [2] (see figure 6(c)-(d)).

4.3 Shock wave boundary layer interaction
The last configuration analyzed consists in a shock wave that impinges on a thermally and chemically
out-of-equilibrium, two-dimensional laminar boundary layer. This setup represents a first step towards
the simulation of a shock-induced, laminar-to-turbulent flow transition for a three-dimensional domain,
motivating the interest for the study of such a configuration. In the following, the deflection angle will be
called θ, whereas the shock angle will be denoted with β. The Rankine-Hugoniot conditions will be imposed
at the left boundary (inflow) at a specific distance from the leading edge, where appropriate inlet profiles are
prescribed. For calorically imperfect gas mixtures, the Rankine-Hugoniot relations have been generalized to
an arbitrary equation of state and are iteratively solved to obtain post-shock conditions. Unless otherwise
stated, pw represents the wall pressure normalized with respect to the freestream value, whereas the skin
friction coefficient and the Stanton number are expressed by

Cf =
τw

1
2ρ∞u2

∞
and St =

λ∂T/∂y

ρ∞u∞cp(Tr − Tw)
(41)

where Tr = T∞
(
1 + Pr0.5 γ−1

2 M2
∞
)
. Before assessing the influence of high-enthalpy effects on the shock

wave/boundary layer interaction (SWBLI), we aim at testing the numerical strategy by reproducing two
different SWBLI configurations available in the literature. First, we consider the configuration analyzed by
Sandham et al. [28] of a shock-wave interacting with a flat-plate boundary layer at Mach 6. The freestream
conditions are T∞ = 65K, p∞ = 335.24Pa, M∞ = 6; the wall temperature is fixed equal to Tw = 292.5K.
In order to minimize the differences with respect to the reference case, Sutherland’s law is used to compute
the dynamic viscosity with Tref = 65K and µref = 4.335× 10−6 Pa s, along with a constant Prandtl number
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Figure 6: Thermochemical non-equilibrium viscous shock tube. Normalized wall density for the three com-
putational grids (a), normalized wall roto-translational temperature (b), nitric oxide mass fraction (c) and
atomic oxygen mass fraction (d), compared with the chemically-reacting simulation of [2]. All the profiles
are shown at the wall at t = 1ms.

equal to 0.72 and a specific heat ratio γ = 1.4. For the considered freestream conditions, a deflection angle
of θ = 4◦ generates a shock angle of β ≈ 12◦. The shock impinges on the boundary layer at a distance
from the leading edge equal to 0.344m. The profiles of the similarity theory are imposed as inflow boundary
condition at a Reynolds number Rexin = 31.36 × 104, corresponding to Reδ∗in = 6830. The dimensions
of the computational domain are Lx × Ly = 300δ∗in × 35δ∗in, discretized with 2400 and 300 grid points in
the streamwise and wall-normal directions, respectively. A constant grid stretching is applied in the wall-
normal direction. Figure 7(a)-(b)-(c) depict the evolutions of the normalized wall pressure, skin friction
coefficient and Stanton number, respectively. The results are in excellent agreement with the reference data
and faithfully reconstruct the pressure jump, the separation region and the reattachment zone. As a second
validation, we consider the SWBLI configuration with finite-rate chemistry simulated by Volpiani [29]. It
should be noted that the authors use different thermochemical models and the discrepancies observed in
the results are attributed to this. In this case, the freestream thermodynamic conditions are T∞ = 2275K,
p∞ = 14692Pa and M∞ = 5.6; the values of the mass fractions are YN2,∞ = 0.77 and YO2,∞ = 0.23 while
the wall temperature is set equal to 3042K. The deflection angle of 6◦ corresponds to a shock angle equal to
≈ 14◦ and the shock impinges on the boundary layer at a distance from the leading edge equal to 0.1m. The
flow is initiated downstream of the leading edge at a distance to x = 0.001m, corresponding to δ99,in = 1mm.
At this station, the same inflow profiles of Volpiani [29] are prescribed; that is, a fourth-order polynomial
approximation for the velocity and the Crocco-Buseman relation for the temperature with a γ = 1.29;
pressure and species mass fractions are constant and the density is computed from the equation of state.
The computational domain is Lx×Ly = 200δ∗99,in×30δ∗99,in, discretized with 2000 and 350 grid points in the
streamwise and wall-normal directions, respectively. Note that we use a slightly finer grid with respect to the
reference case to avoid any numerical inaccuracy in addition to the thermochemical formulation. Figure 7(d)
shows the trend of the normalized wall pressure; despite some discrepancies in the second pressure rise, our
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Figure 7: Verification test cases for the SWBLI configuration. Evolution of normalized wall pressure (a),
skin friction coefficient (b) and Stanton number (c), compared with the reference solution of Sandham et
al. [28]. Evolution of normalized wall pressure (d), compared with the reference solution of Volpiani [29].

results are able to match the global pressure jump and are in an acceptable agreement with the reference.
After the validation of the reference results, we focus on the high-enthalpy configuration. The selected

setup considers the post-shock condition of a scramjet, approximated by a six degrees planar wedge, flying
at Mach 12 at an altitude of 36 km. The corresponding freestream conditions are then T∞ = 405K, p∞ =
2258.6Pa and M∞ = 9. The wall temperature was fixed equal to 2500K for both the translational and
vibrational temperature and a non-catalytic condition is imposed for the species mass fractions. The solution
of the jump equations with the selected freestream Mach number and β = 10◦, gives θ ≈ 5◦ and the post-
shock (PS) variables TPS = 554K, pPS = 6235Pa and uPS = 3620m/s. These conditions are imposed at left
boundary of the rectangular domain as a jump on the inlet profiles. Specifically, these profiles are obtained
by solving the locally self-similar equations reported in Sciacovelli et al. [2], extended to thermochemical non-
equilibrium. For the sake of reproducibility, we show their trend in figure 8, at a distance of x0 = 0.04m from
the leading edge, corresponding to the beginning of the computational domain for the SWBLI simulation.
Figures 8(a)-(b)-(c) displays the evolutions of the two temperatures, velocity and density, normalized with
respect to freestream values. A comparison against the solution of the chemically-reacting formulation is
also provided and highlights the importance of taking into account vibrational relaxation effects. At these
thermodynamic conditions and Reynolds numbers, a significant thermal non-equilibrium is present, with
a monotonic profile for the vibrational temperature. The locally self-similar solution is validated against
a baseflow simulation (that is, a laminar boundary layer without shock impingement) by comparing the
resulting skin friction coefficient in figure 8(d). The extent of the computational domain is Lx × Ly =
1200δ∗in × 90δ∗in, with δ∗in = 1.77 × 10−3 m. As for the discretization, three computational grids have been
considered, namely Nx×Ny = 3000×256 for the coarse grid, Nx×Ny = 5120×360 for the medium grid and
Nx ×Ny = 8280× 512 for the finest one. A constant grid stretching is applied in the wall-normal direction,
with the first wall cell being equal to 3.5× 10−5 m, 3× 10−5 m and 2× 10−5 m for the three computational
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Figure 8: Evolution of normalized temperatures (a), normalized velocity (b), normalized density (c), com-
puted from the locally self-similar theory at x = 0.04 m. Comparison between simulation results and
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Figure 9: Instantaneous visualization of the pressure field for the proposed SWBLI simulation in thermo-
chemical non-equilibrium. In the figure, we display three streamlines which mark the separation bubble, the
flow surrounding the recirculation zone and the dynamics of the far field, respectively.

grids, respectively. The impingement station is set equal to 0.7m. The pressure isocontour shown in figure 9
gives an idea of the configuration under analysis. The incident shock creates a recirculation bubble (marked
in the figure) in which the flow separates. Upstream of the separation bubble, a series of compression waves
occur, which then coalesce into the separation shock. The latter interacts with the incident shock that
penetrates the separated flow and is reflected as an expansion fan. Downstream of the separation bubble,
a new shock (usually referred-to as reattachment shock) occurs, which readjusts the previously deflected
flow. For a better understanding of the dynamics, three streamlines are also marked, one surrounding the
recirculation bubble and the other two at larger wall-normal locations.

The evolutions of the skin friction coefficient and of the normalized wall pressure are reported in figure 10.
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Figure 11: Wall-normal evolution of temperatures (a-b-c) and major products in the mixture (d-e-f) for
three stations extracted before the impingement at Rex ≈ 6.3 × 105 (a-d), in the separation bubble at
Rex ≈ 1.8× 106 (b-e) and after the reflected shock Rex ≈ 4× 106 (c-f).

The comparison between the three computational grids shows that grid-converged results are obtained al-
ready with the medium refinement. By analyzing the evolution of the wall quantities, it is possible to note
that the interaction begins at Rex ≈ 8 × 105, where the wall pressure distribution suddenly rises while Cf

decreases. Thereafter, the separation bubble extends from this point up to Rex ≈ 2× 106. The subsequent
increase of Cf and pw indicates the reattachment zone, before relaxing towards the new undisturbed condi-
tions. The characteristic features of SWBLI configuration are not altered by high-enthalpy effects and the
present numerical method is shown to be able to handle the strong pressure gradients using k2 = 1.5 and
k2,V = 0.5. More interesting is instead the effect of this complex dynamics on thermal and chemical activities.
Figure 11 depicts the evolution of the two temperatures and of the major products in the mixture before the
impingement at Rex ≈ 6.3×105, in the separation bubble at Rex ≈ 1.8×106 and after the reflected shock at
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equilibrium (top) and the corresponding simulation without shock impingement (bottom).

Rex ≈ 4×106. Coherently with the inlet temperature profiles, the amount of thermal non-equilibrium before
the bubble is extremely high while chemical activity is essentially negligible. The rise of the temperatures
and pressure in the separation zone promotes a more significant chemical dissociation but, at the same time,
the gap between the two temperatures becomes smaller, moving towards a situation of quasi thermal equilib-
rium right after the recirculation bubble. Of note, the two temperatures keep distinct values at the edge of
the boundary layer and in the undisturbed flow. A comparison with the same boundary layer without shock
impingement has revealed that, for such thermodynamic conditions and Reynolds numbers, the flow would
remain in a state of thermal non-equilibrium and quasi frozen chemical activity inside the entire boundary
layer. The effect of pressure rise has then reduced the amount of thermal non-equilibrium and promoted the
chemical activity with respect to the case without incident shock. Figure 12 shows the isocontours of the
temperatures difference for the current configuration (top) and for the corresponding base flow, in order to
better appreciate the different thermochemical features promoted by the shock wave impingement.

5 Conclusions
In this study, a simple and robust numerical strategy for carrying out high-fidelity simulations of high-
enthalpy flows has been presented and validated. The present approach builds upon the numerical scheme
described in Sciacovelli et al. [2], initially proposed for chemical nonequilibrium configurations, and extends
it to take into account vibrational relaxation processes. For such configurations, the original shock sen-
sor, based on a combination of Ducros’ and Jameson’s pressure-based sensors, is unsuitable to control the
shock-capturing term in the vibrational energy equation because of the loose coupling between vibrational
temperature and pressure. As a consequence, a modified sensor based on the vibrational temperature is
proposed, and its performances are assessed against a selected test cases of increasing complexity.
The thermochemical models implemented in the in-house CFD solver are first validated by means of several
zero-dimensional heat baths. The vibrational heating and cooling of a N2 molecule with frozen chemistry
is validated against the data of Casseau et al. [20]; then, the coupled vibrational and finite-rate chemistry
models are tested in the heat baths of pure nitrogen and air described by Williams et al. [21]. The results,
highly sensitive to the particular model used, show a fair agreement with the reference ones. Afterwards,
a 1D shock tube configuration exhibiting thermal nonequilibrium is investigated. The profiles of density,
pressure, temperatures and mass fractions at the final time are in excellent agreement with those obtained
by Williams et al. [21], confirming the capabilities of the numerical scheme to correctly handle strong shocks
and contact discontinuities. The simulation is repeated by using an air-mixture instead of pure molecular
nitrogen, showing that thermal nonequilibrium is drastically reduced because of the rapid dissociation of O2

and the much faster relaxation times of O2 and NO with respect to N2. The last shock tube setup considered



concerns the thermochemical extension of the 2D viscous case described in Sciacovelli et al. [2]. The com-
parison between thermal nonequilibrium and thermally equilibrated conditions highlights the importance of
taking into account vibrational relaxation processes, the difference between the two temperatures reaching
values larger than 500K.
The last test case considered deals with a 2D shock-wave/boundary layer interaction (SWBLI). The numer-
ical setup is first validated against the results of Sandham et al. [28], for the low-enthalpy configuration,
and of Volpiani [29], taking into account finite-rate chemistry effects. Then, we focus on a high-enthalpy
case representing the post-shock conditions of a scramjet flying at Mach 12 at an altitude of 36 km, with
a wall temperature of 2500K. The locally self-similar profiles imposed at the inflow reveal strong thermal
non-equilibrium and a mild chemical activity. The increase in temperature and pressure in the separation
region tends to reverse the inlet trends, albeit a difference in the two temperatures persists at the edge of the
boundary layer. A comparison with an unperturbed 2D boundary layer confirms that the presence of the
incident shock leads to a reduced thermal non-equilibrium and promote chemical processes. Future work will
address a 3D SWBLI configuration undergoing laminar-to-turbulent transition, with focus on interactions
between thermochemical effects and turbulence in a shocked configuration, and the application of the present
methodology to more complex multi-temperature models.
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