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Abstract

A novel Sparse Bayesian Learning (SBL) framework is introduced for generat-
ing parsimonious stochastic algebraic stress closures for the Reynolds-Averaged
Navier–Stokes (RANS) equations from high-fidelity data. The models are for-
mulated as physically-interpretable frame-invariant tensor polynomials and built
from a library of candidate functions. By their stochastic formulation, the learned
model coefficients are described by probability distributions and are therefore
equipped with an intrinsic measure of uncertainty. The SBL framework is used
to derive customized stochastic closure models for three separated flow configu-
rations, characterized by different geometries but similar Reynolds number. The
resulting SBL models are then propagated through a CFD solver for all three con-
figurations. The results show significantly improved predictions of velocity pro-
files and friction coefficient in the separation / reattachment region in comparison
with a baseline LEVM (namely, the k −ω SST model), for training as well as for
test cases. In all cases, the computed uncertainty intervals encompass reasonably
well the reference data. Furthermore, the stochastic outputs enable a global sen-
sitivity analysis with respect to the model terms selected by the algorithm, thus
providing insights in view of further improvements of EARSM-type corrections.
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1. Introduction

Despite the growth in computing power, high-fidelity turbulent flow simu-
lations such as Direct Numerical Simulation (DNS) or Large Eddy Simulation
(LES) remain too expensive for daily-use in industrial applications, and engineer-
ing design and optimization mostly rely on Reynolds Averaged Navier-Stokes
(RANS) equations supplemented by suitable closure models. The most widely
used turbulence models, often referred-to as LEVM (Linear Eddy-Viscosity Mod-
els), are based on the so-called Boussinesq assumption of alignment between the
Reynolds stress and the mean strain rate tensors. Such condition is however not
verified even for relatively simple flows (see [1, 2]). Besides, the eddy viscosity
coefficient is computed via auxiliary relations (often transport equations for tur-
bulent properties) introducing a number of supplementary modeling hypotheses
and closure coefficients. Finally, more advanced models than LEVM exist, but
they also suffer from modeling approximations and uncertain closure parameters
(see [3] for a recent review). Whatever the closure assumptions, all RANS models
suffer from uncertainties associated with i) the applicability of a RANS-type de-
scription of turbulence for a given flow; ii) the choice of a suitable mathematical
structure for constitutive relations and auxiliary equations used to link turbulent
quantities to the mean field, referred-to as structural or model-form uncertainty;
iii) the calibration of the model closure parameters, known as parametric uncer-
tainty. The first point is most often evaluated from expert judgment, based on a
trade-off between targeted accuracy and computational resources. In the follow-
ing, we focus on points ii) and iii).

The ever increasing amount of high-fidelity simulations and experimental data
available for diverse flow configurations has recently fostered the use of data-
assimilation (DA) and machine learning (ML) techniques for informing turbulent
closures (see review papers [3, 4, 5]). Early studies mostly deal with the quantifi-
cation of uncertainties associated with turbulence models by using interval anal-
ysis or statistical inference tools. The analysis is conducted either by perturbing
directly the Reynolds stress anisotropy tensor computed with a baseline LEVM
[6, 7, 8] or by associating probability distributions to the model closure coeffi-
cients [9, 10, 11, 12]. While the first approach accounts for structural uncertain-
ties, the second does not. In turn, the first approach is intrusive in the sense that its
implementation involves modifications of the RANS solver, while in the second
one model parameters can be fed as inputs to the CFD solver.

As an attempt to quantify model-form uncertainty in a probabilistic frame-



work, early work was conducted by [13] by using Demster-Shafer evidence the-
ory, which uses multiple models for predicting a given flow configuration. More
recently, [14] explored a Bayesian framework christened Bayesian Model-Scenario
Averaging (BMSA) to calibrate and combine in an optimal way the predictions
obtained from a set of competing baseline LEVM models calibrated on various
data sets (scenarios). BMSA has been successfully applied to provide stochastic
predictions for a variety of flows, including 3D wings [15] and compressor cas-
cades [16, 17]. A shortcoming of multi-model methods is that prediction accuracy
cannot be better than the best model in the considered set, even if it outperforms
the worst one.

In the attempt of overcoming structural deficiencies intrinsic to turbulence
modeling assumptions, data-driven methods for turbulence modeling based on
supervised machine learning have been introduced in recent years. Some of the
earliest examples can be found in [18] where the uncertainty quantification frame-
work of [6] is used to parametrize stochastic Reynolds stress discrepancies as a
function of local mean-flow variables, with extended Kernel regression ML be-
ing leveraged to train the function. In [19] the authors extended the early work
of [18], and used a field inversion technique relying on adjoints to learn a cor-
rective multiplicative term for the turbulent transport equations, as well as its
variance. ML was then used to express the correction as a black-box function
of selected flow features and to extrapolate it to a class of flows similar to the
training one. The approach allows extrapolation of the learned model correc-
tion beyond the training configuration. However, the corrected model remains a
LEVM. Using a similar framework, Xiao et al. [20, 21] (see also [22]) performed
a truncated Karhunen-Loeve expansion to get a lower-dimensional representation
of Reynolds-stress anisotropy across the computational domain, and then applied
Bayesian inference to infer posterior distributions of the augmented model coef-
ficients. Both approaches provided improved solutions with uncertainty interval
estimates for the training cases, but their applicability outside the training set re-
mained limited. On the other hand, Edeling et al. [23] proposed a “return-to-
eddy-viscosity” model, which relies on transport equations with a source term
describing the Reynolds-stress anisotropy discrepancy. The model coefficients in
the PDEs can be calibrated by using data and Bayesian inference, and the cali-
brated equations can be further used for predictions. As the preceding ones, this
approach involves an expensive Bayesian inference step, although the cost can be
relieved using surrogate models.

In the quest for reducing turbulence modeling errors, more recent research
work has mostly leveraged ML techniques for learning improved turbulence mod-



els from data, while the quantification of uncertainties associated with the pre-
dictions has been overshadowed. Seminal work of Ling et al. [24] introduced
a novel neural network architecture (tensor basis neural network, TBNN) that
allows for embedding frame invariance constraints within the learned Reynolds-
stress anisotropy correction. The idea is to project the correction term onto a
minimal integrity basis, as in the extended eddy viscosity model of Pope [25],
leading to a form of generalized Explicit Algebraic Reynolds Stress model, whose
function coefficients are regressed from high-fidelity data using ML. Both Deep
Neural Networks (DNN) and Random Forests (RF) can then be used for this task
[24, 26, 27]. In the same line, a general framework for producing data-augmented
turbulence models is proposed by Wu et al. [28], who build on the tensor basis de-
composition of Ling et al. by introducing a larger set of frame-invariant features.
In this class of methods, uncertainty intervals on the predictions are generally ex-
cluded from considerations. An exception is represented by Ref. [29], who used
Mondrian Forests to infer stochastic Reynolds-stress corrections, but the applica-
bility of the approach to unobserved flows remains to be investigated.

The preceding approaches make use of so-called black-box ML, such as DNN
or RF. They enable flexible approximation of complex functional relations but
do not provide any explicit, physically interpretable, mathematical expression for
the learned correction. Furthermore, their implementation within a CFD solver
to make predictions of new flows may be delicate. An interesting alternative is
represented by so-called open-box ML approaches, which select explicit mathe-
matical expressions and/or operators from a pre-defined library to build a suitable
regressor for the data. Examples include Genetic Programming (GEP) [30] and
symbolic identification [31, 32]. Once again, the Reynolds-stress anisotropy is
projected onto a minimal integrity basis and ML is used to regress the function co-
efficients of the decomposition. Corrective terms for the turbulent transport equa-
tions are also developed using a similar tensor decomposition. Sparsity-promoting
formulations of the cost function are used in [31, 32] to minimize the number of
active terms and limit the occurrence of overfitting. The resulting models cor-
respond now to data-driven EARSM with fully explicit analytic expressions, but
again without estimates of their predictive uncertainty. Open-box ML approaches
have been applied successfully to the development of data-driven models for a
variety of applications [33, 34, 35, 36, 37, 38].

Despite the progress made in developing data-driven turbulence model cor-
rections, the necessity of simultaneously improving turbulent flow predictions and



efficiently estimating uncertainty intervals for the predictions, especially when the
model is applied to configurations significantly different from the training ones,
remains of the utmost importance for providing reliable flow predictions. The
identification of flow regions of greater sensitivity to turbulence modeling errors
also represents valuable information for designers. For this reason, in this work
we explore a novel efficient methodology for developing data-augmented RANS
models with quantified uncertainty intervals.

Specifically, we propose a novel algorithm for generating stochastic parsi-
monious algebraic stress models for the closure of RANS equations from high-
fidelity CFD data. For this purpose we resort to Bayesian inference, owing to
its natural ability to quantify uncertainty in parameter estimates. Furthermore,
Bayesian estimation methods are less prone to overfitting, a common problem
when learning from scarce data. Specifically, the proposed method in this paper
makes use of the Sparse Bayesian Learning (SBL) approach initially proposed
by [39] and recently applied to the discovery of hidden differential equations for
dynamical systems [40, 41]. A nonlinear extension of SBL in the context of aeroe-
lasticity problems has been proposed in [42]. The principle behind the SBL is sim-
ilar to that of regularized regression used in symbolic identification methods. The
algorithm yields sparse solutions as it relies on prior coefficient distributions that
are sharply peaked around zero. Contrary to the deterministic sparse identification
approach, however, SBL delivers probability distributions of the parameters.

The starting point of the present approach is similar to the SpaRTA (Sparse
Regression of Turbulent Stress Anisotropy) algorithm of [31]. A general EARSM
model involving a very large number of features is first constructed, based on
Pope’s generalized eddy viscosity model. In the present stochastic formulation,
however, parameters are treated as random variables with associated prior prob-
ability distributions. Differently from SpaRTA, –which uses a fully deterministic
regularized regression algorithm and requires separate steps for model identifi-
cation (selection of terms) and parameter estimation– here we leverage the SBL
algorithm [39, 43], supplemented by demi-Bayesian LASSO hyerachical priors
[43], to simultaneously select a small number of relevant terms and estimate pos-
terior probability distributions for their associated parameters. The latter can be
propagated back through the model, providing confidence intervals on predictions.
The algorithm finally delivers stochastic EARSM models, which can be seen as
the stochastic counterpart of deterministic EARSM developed in [31]. The discov-
ered models are propagated through a RANS solver by using a suitable uncertainty
quantification method. This results in estimates of the statistical moments of the
solution, but also of global sensitivity indices of the computed flow to the selected



coefficients. The proposed approach is thoroughly assessed for a set of separated
flow configurations, previously investigated in [31], which enables comparisons.

The rest of the paper is organized as follows. In Section 2, we introduce the
turbulence model learning problem. In Section 3, we recall the general formula-
tion of the Sparse Bayesian Learning algorithm and we propose an adaptation to
the present learning task. In Section 4 we present the flow configurations used
in the numerical experiments and we discuss the results. Concluding remarks are
reported in Section 5.

2. Learning RANS closures

2.1. Problem formulation
We focus on turbulent closures for the steady incompressible RANS equations:

∂Ui

∂xi
=0 (1)

U j
∂Ui

∂x j
= − 1
ρ

∂P
∂xi
+ ∂
∂x j
(ν∂U j

∂xJ
− τi j) (2)

with Ui the i-th mean velocity component, P the mean pressure, ρ the fluid den-
sity and ν the kinematic viscosity. Equations (1) are supplemented with a LEVM
model for the kinematic Reynolds stress tensor τi j = ⟨u′iu′j⟩, with u′i the i-th fluctu-
ating velocity component.

Splitting the Reynolds stress tensor into an isotropic and an anisotropic part

τi j = 2k
3
δi j²

isotropic

+ ai j¯
anisotropic

(3)

(where k = tr(τi j)/2 is the turbulent kinetic energy and δi j is the Kronecker sym-
bol), a LEVM is obtained by assuming that the Reynolds stress anisotropy ai j is a
linear function of the mean velocity gradient (Boussinesq hypothesis):

ai j = −2νtS i j = 2kb0
i j (4)

where b0
i j is the normalized anisotropy tensor of the Boussinesq model. Most of-

ten, the eddy viscosity coefficient νt is computed by solving auxiliary transport
equations for well-chosen turbulent properties, such as in the k − ω SST model



[44] used in the following of this study.

Following [31], we seek to correct the Boussinesq constitutive model for bi j by
introducing a second-order symmetric and traceless tensor b∆ = {b∆i j}, referred-to
as the extra-anisotropy, such that:

τi j = 2k (1
3
δi j + b0

i j + b∆i j) (5)

Based on [45, 31], the extra-anisotropy is assumed to be a function of the mean
velocity gradient only. By virtue of the Cayley–Hamilton theorem, b∆ can then
be expressed in a minimal integrity basis of ten tensors and five invariants for the
general case of 3D flow [25]:

b∆i j = 10∑
n=1

T (n)i j α
∆
n (I1, ..., I5) (6)

For the 2D flows considered in this work, higher-order terms are identically zero
and the basis reduces to a set of three tensors and two invariants only:

b∆i j = 3∑
n=1

T (n)i j α
∆
n (I1, I2) (7)

where :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (1)i j = S ∗i j

T (2)i j = S ∗ikΩ∗k j −Ω∗ikS ∗k j

T (3)i j = S ∗ikS ∗k j − 1
3
δi jS ∗mnS ∗mn

I1 = S ∗mnS ∗mn

I2 = Ω∗mnΩ
∗
mn

and

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S ∗i j = 1
ω
(∂Ui

∂x j
+ ∂U j

∂xi
)

Ω∗i j = 1
ω
(∂Ui

∂x j
− ∂U j

∂xi
) . (8)

S∗ = {S ∗i j} is the non-dimensional strain rate tensor and Ω∗ = {Ω∗i j} the non-
dimensional rotation rate tensor.

In the following, the functions α∆n are sought by a supervised Machine Learn-
ing procedure whose first step is to extract the LEVM model error with respect to
the high-fidelity data, i.e. :

b∆,h f
i j = bh f

i j − b0
i j (9)



Furthermore, the model-form errors in the auxiliary turbulent transport equations
must also be taken into account. For that purpose we use the k-corrective-frozen
methodology of [31]. The latter consists in solving the turbulent transport equa-
tions with frozen high-fidelity values for all quantities except ω:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂k
∂t
+U j

∂k
∂x j
= Pk + Rh f − β∗kω + ∂

∂x j
((ν +σkνt) ∂k

∂x j
)

∂ω

∂t
+U j

∂ω

∂x j
= γ
νt
(Pk + Rh f ) − β∗ω2 + ∂

∂x j
((ν +σwνt) ∂ω

∂x j
) (10)

In the preceding equations, k, U, etc. are evaluated using high-fidelity data; the
production of turbulent kinetic energy is computed by adding to the Boussinesq
Reynolds tensor the high-fidelity extra anisotropy:

Pk = min(2k (−νt

k
S i j + b∆,h f

i j ) ∂Ui

∂x j
,10β∗ωk) (11)

and an additional corrective term R has been introduced in the equations for k and
ω. Finally, β∗, σk and σω are the k −ω SST constants and can be found in [44].

A modeling ansatz for the residual Rh f is obtained by rewriting it in a form
similar to the turbulent kinetic energy production:

Rh f ≈ R = 2kbR
i j
∂Ui

∂x j
(12)

with the fundamental difference that it can take both positive (extra production)
and negative (under-production) values. The tensor bR is projected onto the in-
tegrity basis previously used for b∆ :

bR
i j = 3∑

n=1
T (n)i j α

R
n(I1, I2) (13)

thus introducing a new set of unknown functions αR
n that are sought by the same

machine learning procedure as the α∆n , using now Rh f as the learning target.

2.2. Function dictionaries
To identify an expression for α∆n and αR

n , we select a library B of monomials
of the invariants I1 and I2:

B = {Il
1, I

m
2 , I

p
1 Iq

2 ∣0 ≤ l,m ≤ 9,2 ≤ p + q ≤ 4} (14)



leading to 25 candidate terms for each function (α∆ = {α∆n} and αR = {αR
n}), i.e.

a total of 25 × 3 × 2 = 150 function candidates. With such a huge number of
functional terms used to represent the learning targets, an efficient learning proce-
dure is needed to fastly select a parsimonious model relying on a small subset of
functions.

Of note, hereafter we prefer to learn a∆i j = τi j − (2
3k − νtS i j) = 2kb∆i j rather than

b∆i j as in [46] because the value of b∆i j at the wall is mathematically undetermined:

lim
y+→0

b∆i j = lim
y+→0

a∆i j

2k
= 0

0

making use of data and physical interpretation of the results difficult close to the
wall. By multiplying b∆i j by 2k, we ensure that our learning target, as well as
the basis functions, have a determined physical value at the wall, and we prevent
numerical errors. With this choice, the learning problem thus becomes:

⎧⎪⎪⎨⎪⎪⎩
a∆ = Cb∆wb∆

R = CRwR
(15)

where:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a∆ = (a∆11∣k=0, ...,a
∆
11∣k=K , ......,a

∆
33∣k=0, ...,a

∆
33∣k=K)T

R = (R∣k=0, ...,R∣k=K)T

Cb∆ = 2k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T (1)11∣k=0 I1T (1)11∣k=0 ... I2
1 I2

2T (3)11∣k=0

T (1)11∣k=1 I1T (1)11∣k=1 ... I2
1 I2

2T (3)11∣k=1

... ... ... ...

T (1)33∣k=K I1T (1)33∣k=K ... I2
1 I2

2T (3)33∣k=K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
CR = 2k

⎡⎢⎢⎢⎢⎢⎢⎣
T (1)i j ∂ jUi∣k=0 I1T (1)i j ∂ jUi∣k=0 ... I2

1 I2
2T (3)i j ∂ jUi∣k=0

... ... ... ...

T (1)i j ∂ jUi∣k=K I1T (1)i j ∂ jUi∣k=K ... I2
1 I2

2T (2)i j∣ ∂ jUi∣k=K

⎤⎥⎥⎥⎥⎥⎥⎦
3. Sparse Bayesian Learning algorithm

This section provides details the SBL algorithm for regression, introduced by
[39] and applied to the specific case of SVM (Support Vector Machines), and
adapt it to our specific learning problem.



3.1. Inference
First, let us consider a data set of input-output pairs {xn, tn}n=1,...,N . We follow

the standard probabilistic formulation considering that the targets t = (t1, ..., tN)T
are sampled from a linear model {C; w} with additive noise ϵ:

t(x; w) = C(x)w + ϵ = M∑
i=1

Ci(x)wi + ϵ (16)

where C(x) = (C1(x), ...,CM(x)) is the design matrix, w = (w1, ...,wM)T is the
vector of the model parameters, and ϵ = (ϵ1, ..., ϵN)T is a vector of independent
noise processes assumed to be Gaussian of zero-mean and variance σ2. Following
these assumptions, one can derive the likelihood of observing the data given the
model parameters w and σ2:

p(t∣w, σ2) = (2πσ2)− N
2 exp(− 1

2σ2
∣∣t −Cw∣∣2) (17)

The parameters are traditionally determined by maximizing the logarithmic
likelihood of observing the data knowing the model parameters, i.e.

LI = log p(t∣w, σ2) = −1
2
(N log(2πσ2) + 1

σ2
∣∣t −Cw∣∣2) (18)

Nevertheless, with as many parameters in the model as training examples, the
maximum-likelihood is expected to lead to sever-overfitting, i.e. that the model is
catching the data’s noise rather than its proper dynamics.

The idea of [39], motivated by the work of [47] is to constrain the model
parameters by defining an explicit prior distribution over them. The principle
is similar to the Automatic Relevance Determination (ARD) initially introduced
by [48, 49]. We follow the choice made in [39] of zero-mean Gaussian prior
distribution over w:

p(w∣α) = M∏
i=1
N (wi∣0, α−1

i ) (19)

with α a vector of M unknown hyper-parameters, controlling the width of the
marginal prior for the parameters wi, i.e. the relevance of such parameters. When
a hyper-parameter αi is high, the prior distribution of wi becomes narrowly cen-
tered around 0, thus making the coefficient irrelevant. The inference problem now
consists in estimating the unknown joint distribution of the hyperparameters α and



σ2. For that purpose, we use a hierarchical prior approach, where we assign α a
Laplace prior probability distribution:

p(α) = M∏
i=1

λi

2
exp(− λi

2αi
) (20)

where λ = (λ1, ..., λM)T are additional hyper-parameters that must be specified
by the modeler. The choice of such priors, referred to as demi-Bayesian LASSO
and introduced by [43], is motivated by the improved sparsity conferred to the
algorithm with respect to the original formulation [39] where Gamma prior dis-
tributions were adopted. By increasing λi, we impose sharper prior distributions
for the 1

αi
, i.e.. higher values of the hyper-parameter αi become more likely, and

consequently the corresponding model coefficient probability distribution p(wi)
become sharply centered around 0. When reaching a certain user-defined limit,
the very sharp probability distribution is considered as an indicator of an ’irrele-
vant’ model coefficient and is removed.For convenience, we fix λ1 = ... = λM = λ.
The formula is completed by specifying a uniform hyper-prior on 1

σ2 (over a log-
arithmic scale).

Now, using Bayes’ rule, we seek for the posterior joint distribution of w, α
and σ2:

p(w,α, σ2∣t) = p(t∣w,α, σ2)p(w,α, σ2)
p(t) (21)

where p(t∣w,α, σ2) is the model likelihood (17) where we made explicit the de-
pendency on hyperparameter vector α, p(w,α, σ2) is the joint prior probability
and p(t) is the model evidence. Unfortunately, p(t) is a multi-dimensional inte-
gral

p(t) = ∫ p(t∣w,α, σ2)p(w,α, σ2)dwdαdσ2 (22)

and it is generally not straightforward to compute. Sampling strategies like Markov
Chain Monte Carlo could be used to approximate the integral, but they generally
require a very large number of samples. Instead, the joint prior distribution is
rewritten:

p(w,α, σ2) = p(w∣t,α, σ2)p(α, σ2∣t) (23)

In the preceding equation, p(w∣t,α, σ2) ∼ N (µ,Σ) as a result of (17), (19) and



(20), where the posterior covariance and mean are respectively:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Σ = (A + 1

σ2
CT C)−1

µ = 1
σ2
ΣCT t

, A = diag(α1, ..., αM). (24)

On the other hand, regarding p(α, σ2∣t), we follow [39] and adopt a point esti-
mate method by considering that the hyper-parameter posterior p(α, σ2∣t) can be
represented as a delta Dirac function at its most probable values αMP and σ2

MP.
The SBL algorithm becomes the search for these most probable values, i.e. the
maximization of p(α, σ2∣t) with respect to α and 1

σ2 .

3.2. Optimization of hyperparameters
Using Bayes’ rule, the hyper-parameter posterior is of the form:

p(α, σ2∣t)∝ p(t∣α, σ2)p(α)p(σ2) (25)

and hence p(t∣α, σ2)p(α)p(σ2) must be maximised. Since we made the choice
of a uniform prior for σ2, the loss function to maximize becomes:

LII = log (p(t∣α, σ2)p(α))
= log(∫ p(t∣w, σ2)p(w∣α)p(α)dw)
= −1

2
[log ∣σ2I +CA−1CT ∣ + tT(σ2I +CA−1CT)] − λ M∑

i=0

1
αi

(26)

LII is referred to as the marginal likelihood or the evidence of hyper-parameters,
and its maximisation as the type-II maximum likelihood method [50] or the evi-
dence procedure [47].

In contrast with traditional regression methods where the optimal values of
hyper-parameters are determined by a cross-validation, the SBL algorithm de-
termines their optimal values by iteratively maximizing the evidence of hyper-
parameters LII with respect to αi and 1

σ2 , leading to:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
αnew

i = 1 + √1 + 8λ(µ2
i + Σii)

2(µ2
i + Σii)

(σ2)new = ∣∣t −Cµ∣∣2
N −∑i γi

(27)



For more details see [39, 43]. Finally, equation (27) still depends on the the
sparsity-promoting hyperparameter λ. The latter is selected using cross-validation,
as discussed in the next section.

4. Results

4.1. Test cases and computational setup
Three incompressible flow cases representing typical separated flows over

curved surfaces at similar Reynolds numbers are investigated. These flow cases
are particularly challenging for LEVM. Specifically, the present baseline model is
known to over-predict the size of the separation region. The calculations are per-
formed using a modified version of the open-source finite-volume solver Open-
Foam [51]. The governing equations are solved using the well-known SIMPLE
algorithm. The convective terms are discretized using linear upwinding and vis-
cous terms with 2nd order central difference scheme. The solution is advanced
to the steady state using a Gauss-Seidel smoother. For each case, the grids are
fine enough to ensure that the discretization error is much smaller compared to
the error due to turbulence modelling.

The test cases at stake are described below.

• Periodic Hills (PH): this case consists of a flow through a channel con-
strained by periodic restrictions (hills) of height h. For a channel segment
comprised between two adjacent hills, the flow separates on the lee-side of
the first hill and reattaches between the hills. The test case has been widely
investigated in the literature, both experimentally and numerically. The
high-fidelity LES data used in the present work are from [52] for Re = 10595
(PH10595), where Re is a Reynolds number based on the bulk velocity in
the restricted section and the hill height. Our RANS simulations use a com-
putational grid consisting of 120 x 130 cells. Cyclic boundary conditions
are used at the inlet and outlet and a forcing term is applied to maintain a
constant flow rate through the channel.

• Converging-diverging channel (CD): This configuration corresponds to a
2D channel of half-height H with an asymmetric bump of height h ≃ 2

3H
located on the bottom wall. The Reynolds number (based on the channel
half-height and inlet conditions) is Re = 12600. A small separation occurs
on the lee-side of the bump. For this test case, high-fidelity DNS data from
[53] are available. The RANS simulations are based on a mesh of 140



x 100 cells. A velocity profile obtained from a companion channel-flow
simulation is imposed at the inlet of the computational domain.

• Curved Backward-Facing Step (CBFS): The case consists in a 2D flow
over a gently-curved backward-facing step of height h, producing a separa-
tion bubble. The upstream channel height is 8.52h and the Reynolds num-
ber, based on the inlet velocity and step height, is 13700. High-fidelity LES
data from [54] are used for training. For the RANS simulations, the mesh
consists of 140 x 150 cells. Slip conditions are used at the upper bound-
ary, and a velocity profile obtained from a fully-developed boundary layer
simulation is set at the domain inlet.

In the following, we consider three learning configurations or scenarios, sum-
marized in Table 1). Models are trained using full-field high-fidelity data for two
flow cases out of three, and tested on the third one (as discussed later). For a given
data set scenario, various models are obtained according to the value of the regu-
larization parameter λ. All models obtained from the same scenario s are noted as
M(s).

Scenario Training set Model idle
1 CBFS and PH M(1)
2 CD and PH M(2)
3 CBFS and CD M(3)

Table 1: Learning scenarios and nomenclature for the resulting models.

4.2. Results
4.2.1. Model learning and cross-Validation

Data-driven SBL models are trained using data available for each scenario in
Table 1 using different values of the regularization λ in [102,103,104,105,2.105].
The resulting models M = (Mb∆ ,MbR) (given in Appendix A) take the form:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Mb∆ =∑

n
(∑

l,m
(µ∆(n)(l,m) ±σ∆(n)l,m )Il

1Im
2 )T(n) ± 1ϵ∆

MbR =∑
n
(∑

l,m
(µR(n)(l,m) ±σR(n)

l,m )Il
1Im

2 )T(n) ± 1ϵR
(28)

where µ∆(n)(l,m) and σ∆(n)l,m (resp. µR(n)(l,m) and σR(n)
l,m ) are respectively the mean and the

standard deviation of the probability density function of the coefficient associated



to Il
1Im

2 in T(n) expansion in Mb∆ (resp. MbR), 1 the second order tensor with all
the elements equal to one and ϵ∆ (resp. ϵR) the standard deviation of the noise
associated to the model Mb∆ (resp. MbR).

In Appendix A we report M(1),M(2) and M(3) derived for each value of λ. One
can see that when λ is increased, models Mb∆ become sparser. On the contrary,
MbR contains only one term regardless the value of λ, the regularization affecting
only the magnitude of the corrective terms, which decreases as λ increases. Values
of λ bigger than 2.105 lead to cancel both Mb∆ and MbR thus leaving the k−ω SST
model unchanged.

The models are cross-validated by propagating the MAP values of the co-
efficients through the CFD solvers, and computing MSE errors with respect to
high-fidelity values available for various quantities. The errors obtained for var-
ious quantities of interest are reported in Figures 1,2, 3 and 4 under the form of
histograms, where column patterns refer to data-set used to train the model, while
the abscissas indicate the value of the regularization parameter λ. In the figures,
grey-shaded bars are used to indicate the extrapolation scenario of each model, i.e.
where a model is used to make prediction on a case not included in its training set.
White bars are used for ’post-dictions’, i.e. for models evaluated on scenario they
have been trained on. The bars of the derived corrections for each value of λ are
equipped with an uncertainty interval, obtained by propagating the models’ prob-
ability distributions through the CFD code with the same methodology explained
previously and evaluating the maximum and minimum value of the MSE of every
QoI output of the code when being fed by the drawn samples from these distribu-
tions. The results are systematically compared to those obtained using the baseline
model and the three models of [46], obtained by deterministic SpaRTA algorithm.
The latter are noted M(k)S pa, with k the number used in the above-mentioned refer-
ence. All errors are normalized with respect to the error of the baseline model for
the same QoI. The latter is then always assigned an MSE equal to 1.

Figure 1 shows the MSE for the streamwise velocity. It appears that the spar-
sity (and therefore the form of the model) affects the accuracy of horizontal veloc-
ity predictions: M(1) at λ = 2.105 gives the most accurate results for both CD and
PH cases, whereas M(3) at λ = 104 gives the most accurate prediction of horizon-
tal velocity for CBFS case. These models exhibit a better or comparable accuracy
than SpaRTA models, the confidence intervals of the former encompassing the
predictions of the latter.



(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 1: MSE of horizontal velocity normalized by
the MSE of the baseline k − ω SST prediction: for
M(1), for M(2), for M(3), compared with for
the baseline k − ω SST, for M(1)S pa, for M(2)S pa and

for M(3)S pa.

(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 2: MSE of friction coefficient normalized by
the MSE of the baseline k − ω SST prediction: for
M(1), for M(2), for M(3), compared with for
the baseline k − ω SST, for M(1)S pa, for M(2)S pa and

for M(3)S pa.



(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 3: MSE of turbulent kinetic energy normalized
by the MSE of the baseline k − ω SST prediction:
for M(1), for M(2), for M(3), compared with
for the baseline k − ω SST, for M(1)S pa, for M(2)S pa

and for M(3)S pa.

(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 4: MSE of Reynolds shear stress normalized by
the MSE of the baseline k − ω SST prediction: for
M(1), for M(2), for M(3), compared with for
the baseline k − ω SST, for M(1)S pa, for M(2)S pa and

for M(3)S pa.



Figures 2, 3 and 4 display MSE for the friction coefficient, the turbulent ki-
netic energy and the Reynolds shear stress, respectively. The figures show that
models characterized by a null b∆ term, i.e. those obtained for λ = 2.105, are the
most accurate ones. For these models only the bR correction of the production
term is applied, in a sort corresponding to increasing the amount of eddy viscosity
generated in the separated region to reattach the boundary layer. The amount of
such a correction differs from a model to another depending on the training cases.
The bR correction also results in increased turbulent kinetic energy and turbulent
shear stress levels throughout the flow, and namely at the wall.

From the previous analysis, it appears that the models resulting from cross-
validation exhibit a variable accuracy depending on the sparsity and the observed
QoI. One can see also that an optimal accuracy over a QoI may deteriorate others.
Nevertheless, one should keep in mind that the proposed correction of anisotropy
should not, in any case, give overall predictions that are worse than the baseline
model. To evaluate the overall improvement confered by each of the proposed
corrections, we propose the following metric:

m(λ) =∑
i
(1 − MS ES BL(QoIi, λ)

MS EBS L(QoIi)) )γi =∑mi(λ)γi (29)

where mi(λ) is the contribution of a model in terms of accuracy with respect to the
baseline model, γi a weighting coefficient of QoIi and m(λ) the general contribu-
tion of a model in terms of accuracy that accounts for the decision variables (QoIi)
with their respective weights. If mi(λ) is positive (resp. negative), the model im-
proves (deteriorates) QoIi wrt the baseline model. The choice of the weighting
coefficients determines the variables to be used in cross-validation as well as their
weights. For example, if we want to cross-validate on a single variable QoIi, we
choose γ j≠i = 0; if we want to cross-validate equally on two variables QoIi and
QoI j, we choose γk≠i, j = 0 and γi = γ j. It is noteworthy that the general improve-
ment of a model should take into account whether the improvement metric has
been evaluated on post-diction or extrapolation cases. To do so, we define the
general improvement metric as follows:

mG = mPD1 +mPD2 + 2mEP

4
, (30)

where PD1 and PD2 refer to the post-diction cases and EP to the extrapolation
case. The weight of the latter for each of the scenarios in Table 1 is doubled, thus



enabling the test and training cases to have an equal vote in the cross-validation
decision. Finally, the best model M∗ is the one that maximizes mG(λ):

M∗ =M(argλmax(mG(λ))) =M(λ∗) (31)

In Table 2, we display the results of cross-validation over different choices of
cross-validation (CV) variables for M(1), M(2) and M(3). The most accurate and
better generalizing models are the sparsest ones, i.e. the one characterized by a
null b∆. M(2) and M(3) exhibit better accuracy over all the QoI at the same time
(≃ 30%) in comparison with M(1) (6%). The latter fails also at giving better re-
sults than the baseline model when cross-validated over k, C f , (k,C f ), (τxy,C f )
and (k, τxy,C f ) (marked with ’–’ in Table 2), which suggests that M(1) needs
probably to be further regularized. On the contrary, M(2) and M(3) for λ∗ = 2.105

combine both a good accuracy and generalizability over all the QoI for all the
cross-validation combinations, except when cross-validated only on the stream-
wise velocity, where models with a non null b∆ (λ∗(2) = 104 and λ∗(4) = 103)
outperform the sparsest ones.

CV variables λ∗(1) mG(λ∗(1)) λ∗(2) mG(λ∗(2)) λ∗(3) mG(λ∗(3))
U, k, τxy,C f 2.105 6.0 % 2.105 28.% 2.105 31. %

U 2.105 74.0 % 104 68.0% 104 77.0 %
k – – % 2.105 26.0 % 2.105 36.0 %
τxy 2.105 15.0 % 2.105 14.0 % 2.105 23.0 %
C f – – % 2.105 7.0 % 2.105 12.0 %
U, k 2.105 36.0 % 2.105 46.0 % 105 46.0 %

U, τxy 2.105 45.0 % 2.105 41.0 % 2.105 39.0 %
U,C f 2.105 5.0 % 2.105 37.0 % 2.105 33.0 %
k, τxy 2.105 6.0 % 2.105 20.0 % 2.105 30.0 %
k,C f – – % 2.105 16.0 % 2.105 24.0 %
τxy,C f – – % 2.105 10.0 % 2.105 17.0 %
U, k, τxy 2.105 29.0 % 2.105 36.0 % 2.105 38.0 %

U, τxy,C f 2.105 8.0 % 2.105 29.0 % 2.105 30.0 %
U, k,C f 2.105 2.0 % 2.105 33.0 % 2.105 34.0 %
k, τxy,C f – – % 2.105 16.0 % 2.105 24.0 %

Table 2: Cross-validation statistics: best models and general improvement metrics

As a result of the preceding cross-comparison process, we select models rep-
resenting the best compromise in terms of predicting the four precedent QoI, for



each of the three training scenarios. More precisely, models M(1)(λ∗(1) = 2.105),
M(2)(λ∗(2) = 2.105) and M(3)(λ∗(3) = 2.105) are retained (see Appendix A for
their mathematical expressions). In the following, we drop the dependency on λ
to simplify model notations.

For the selected models, the posterior probability distributions of the stochas-
tic parameters are propagated through the CFD solver by means of a non-intrusive
polynomial chaos method. More precisely, the stochastic collocation Method of
[55] is adopted (see also [56, 57]). Since the posterior distributions of the coef-
ficients are Gaussian by construction, Hermite polynomials are selected, and the
expansion is truncated to second order. The selected models contain only one
stochastic coefficient. With this settings, three CFD simulations for each model
are required to compute the statistical moments of the stochastic CFD predictions
with satisfactory accuracy.

In Figures 5, 6, 7 and 8 respectively, we display selected profiles of the stream-
wise velocity, turbulent kinetic energy, Reynolds shear stress, as well as the fric-
tion coefficient distribution along the bottom wall for the three flow configurations
at stake. The expected solutions of M(1), M(2) and M(3) are reported along with
three-standard deviation confidence intervals. For the sake of clarity, the latter
are only reported for model M(3) that represents the best model in term of accu-
racy and generalizability (see Table 2), the other models providing similar results.
The baseline k − ω SST predictions and high-fidelity data are also reported for
reference.

The SBL predictions for the velocity profiles (Figure 5) provide very similar
solutions and overperform the baseline model in matching the high-fidelity data.
The improvement is more evident in the recirculation region, where the present
models accurately predict the back flow.

The three-standard deviation uncertainty intervals for this QoI predicted by
M(3) are too narrow to capture everywhere the LES data, which is rather encom-
passed by those of M(1)(not shown for figure readability) whose MAP predictions
are already closer to the LES data, as expected by Table 2.

The turbulent kinetic energy, presented in Figure 6, is a difficult quantity to be
captured by RANS models. The three data-driven models perform overall slightly
better than the baseline (as shown by the preceding analysis of MSE). However,
they all overpredict k in the separated region, where an increased amount of k is
generated to reduce the reattachment length.

In Figure 7, the corrected Reynolds shear stresses succeed at reducing the
observed disrepancy between the baseline prediction and high-fidelity data. They
are however not able to encompass high-fidelity data everywhere in the flow by



their uncertainty intervals.
The predicted friction coefficient, reported in Figure 8, is in nice agreement

with high-fidelity data, providing much more accurate estimates of the separation
and reattachment points than the baseline. The confidence intervals encompass the
separation and reattachment locations of the LES. For the CD case, none of the
derived models is able to predict the exact location of the small separation bubble
observed in LES results; nevertheless, the bubble position is shifted to the right
and its size is significantly reduced. The predicted friction coefficient in the CBFS
case is however slightly less accurate than the baseline in attached flow regions
especially for M(1), who is particularily having the highest mean value of the bR

correction among the selcted models. This is a consequence of the extra turbulent
kinetic energy introduced to correct the separated region, which is transported
in regions where the baseline performs well and does not need such correction.
Although the high-fidelity values are still contained in the confidence intervals
of our stochastic models, further work is needed for generating more localized
corrections. Recent attempts in this sense have been reported in [36].



(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 5: Streamwise velocity predictions: baseline k − ω SST ( ), M(1) ( ) , M(2)
( ) , M(3) ( ) with the uncertainty intervals ( ), and LES (�).



(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 6: Turbulent kinetic energy predictions: baseline k−ω SST ( ), M(1) ( ), M(2)
( ) , M(3) ( ) with the uncertainty intervals ( ) , and LES (�)



(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 7: Reynolds shear stress predictions: baseline k − ω SST ( ), M(1) ( ), M(2)
( ) , M(3) ( ) with the uncertainty intervals ( ), and LES (�).



(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 8: Friction coefficient predictions: baseline k − ω SST ( ), M(1) ( ) , M(2)
( ) , M(3) ( ) with the uncertainty intervals ( ), and LES (�).



4.2.2. Sensitivity analysis
In the preceding section, an UQ method has been used for propagating the

stochastic turbulence models through the CFD solver and the mean predictions
and uncertainty intervals were obtained. Using the same UQ procedure, a Sobol
sensitivity analysis of the models to the stochastic parameters can be conducted
by following, e.g. the procedure described in [58].

In this section, results are reported for a more complex model, in particular the
one that exhibits the highest accuracy (77%) when cross-validated on the stream-
wise velocity, i.e. M(3)(λ∗(3)) for U (see Table 2). Our goal is to understand the
local sensitivity of different QoI with respect to each of the correction terms in
this case, namely that enables this model to outperform the sparsest ones in terms
of predicting the streamwise velocity.

We denote s1 (resp. s2 and s3) the Sobol index of a QoI with respect to the
first (resp. second and third) stochastic parameter contained in b∆, and s4 the
Sobol index associated with the only stochastic parameter of bR. Similarly, we
denote si j the second-order Sobol indexes, representing interactions between pa-
rameters taken two by two. Parameters of even higher order were computed, but
we found their contributions neglibible. Areas of high sensitivity are identified as
areas where the corresponding Sobol index is higher than 0.5; since Sobol indexes
sum up to one, the remaining indices are then less than 0.5 in these regions.

In Figure 9a we display as an exemple the map of dominance of Sobol sensitiv-
ity indices corresponding to principal effects (s1, s2, s3 and s4) and to interactions
(∑i< j si j) for the shear component of the anisotropy tensor correction a∆12. The
figure shows that Reynolds anisotropy is mostly affected by the parameter gov-
erning the bR correction close to walls, and more particularly near the separation -
reattachment points. Sensitivity to b∆ is mostly observed outside of the boundary
layer and, specifically in the recirculation bubble, the most relevant term being
however the linear term involving tensor T(1). This shows that LEVM are overall
sufficient for such 2D separated flows, provided that the eddy viscosity coefficient
is properly tuned.

Figures 9b, 9c and 9d show the map of dominance of Sobol sensitivity indices
corresponding to principal effects and interactions for the streamwise velocity,
turbulent kinetic energy and Reynolds shear stress, respectively. All of the con-
sidered QoI are mostly sensitive to the bR correction, especially in the near-wall



region, whereas b∆ is activated in highly distorted regions, such as shear layers and
recirculation bubbles. Within the latter, interaction terms also play an important
role. The high accuracy of M(3) in predicting streamwise velocity with respect to
the sparsest models is probably due to its ability to capture the anisotropy effects
on velocity in the highly distorded regions.

(a) a∆12.

(b) Streamwise velocity U.

(c) Turbulent kinetic energy k.

(d) Reynolds shear stress τxy.

Figure 9: Maps of Sobol sensitivity indices dominance for various QoI: CD (left), CBFS
(center) and PH (right) cases; s1 , s2 , s3 , s4 , ∑i, j si j ; streamlines .



5. Conclusion

A novel Sparse Bayesian Learning (SBL) framework was introduced for gen-
erating stochastic EARSM closures for turbulence models. The learned models
are highly sparse, and generalize well to flows similar to those included in the
training set. Thanks to their stochastic formulation, the model can be propagated
through a CFD solver by means of an uncertainty quantification method, thus pro-
ducing estimates of solution variability under turbulence modeling uncertainties.
The estimated confidence intervals encompass in most of the cases the reference
data. Model cross-validation and sensitivity analyses show that, for the present
2D separated flows, nonlinear corrections of the Reynolds stress tensor have lit-
tle influence on the results in most of the flow, and that correcting the turbulent
kinetic energy production term is generally sufficient for improving the match be-
tween the RANS model and the LES. This is likely not true for more complex, 3D
flows, for which non linear terms are necessary to capture, e.g. secondary flows.
An extension of the proposed method to 3D cases is planned in the near future.
Finally, the present data-driven model correction procedure generates augmented
models that are applied throughout the domain. However, this may lead to less
accurate solutions in attached, equilibrium flow regions were the baseline model
performs well. The development of localized corrections will make the object of
future research work.
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Appendix A. SBL models obtained for various λ

• λ = 102:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M(1)
b∆ = [(−0.496 ± 0.0133) + (21.6 ± 0.366)I1 + (17.4 ± 0.374)I2]T(1)+[(7.52 ± 0.0378) + (89 ± 1.39)I2]T(2)+[(2.78 ± 0.0825)]T(3) ± 0.00354

M(1)
bR = [(0.989 ± 0.0153)]T(1) ± 0.0157

(A.1)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M(2)
b∆ = [(−0.540 ± 0.0138) + (22.8 ± 0.376)I1 + (17.2 ± 0.395)I2]T(1)+[(7.18 ± 0.0370) + (−69.6 ± 1.38)I2]T(2)+[(2.82 ± 0.0848)]T(3) ± 0.00357

M(2)
bR = [(0.863 ± 0.0274)]T(1) ± 0.0381

(A.2)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M(3)
b∆ = [(−0.209 ± 0.00837) + (0.938 ± 0.221)I1]T(1)+[(8.25 ± 0.0473) + (−72.2 ± 1.45)I1 + (29.2 ± 1.07)I2]T(2)+[(5.08 ± 0.0881)]T(3) ± 0.00113

M(3)
bR = [(0.872 ± 0.0322)]T(1) ± 0.0358

(A.3)



• λ = 103:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M(1)
b∆ = [(−0.406 ± 0.0123) + (16.9 ± 0.339)I1 + (15.2 ± 0.341)I2]T(1)+[(5.36 ± 0.0190)]T(2)+[(2.52 ± 0.0841)]T(3) ± 0.00379

M(1)
bR = [(0.982 ± 0.0152)]T(1) ± 0.0157

(A.4)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M(2)
b∆ = [(−0.465 ± 0.0125) + (18.3 ± 0.345)I1 + (14.5 ± 0.348)I2]T(1)+[(5.54 ± 0.0194)]T(2)+[(2.57 ± 0.0848)]T(3) ± 0.00375

M(2)
bR = [(0.840 ± 0.0270)]T(1) ± 0.0381

(A.5)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M(3)
b∆ = [(−0.172 ± 0.00544)]T(1)+[(5.39 ± 0.0253) + (18.1 ± 0.571)I2]T(2)+[(4.91 ± 0.0911)]T(3) ± 0.00121

M(3)
bR = [(0.839 ± 0.0316)]T(1) ± 0.0358

(A.6)

• λ = 104:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M(1)
b∆ = [(−0.195 ± 0.00498)]T(1)+[(5.29 ± 0.0203)]T(2)+[(1.59 ± 0.0715)]T(3) ± 0.00408

M(1)
bR = [(0.959 ± 0.0151)]T(1) ± 0.0157

(A.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M(2)
b∆ = [(−0.217 ± 0.00527) + (5.88 ± 0.0637)I1]T(1)+[(5.47 ± 0.0208)]T(2)+[(1.62 ± 0.0722)]T(3) ± 0.00404

M(2)
bR = [(0.766 ± 0.0258)]T(1) ± 0.0381

(A.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M(3)
b∆ = [(−0.166 ± 0.00552)]T(1)+[(4.75 ± 0.0170)]T(2)+[(4.00 ± 0.0841)]T(3) ± 0.00124

M(3)
bR = [(0.737 ± 0.0296)]T(1) ± 0.358

(A.9)



• λ = 105:

⎧⎪⎪⎨⎪⎪⎩
M(1)

b∆ = [(5.09 ± 0.0206)]T(2) + ±0.0042
M(1)

bR = [(0.887 ± 0.0145)]T(1) ± 0.0157
(A.10)

⎧⎪⎪⎨⎪⎪⎩
M(2)

b∆ = [(5.26 ± 0.0211)]T(2) + ±0.00417
M(2)

bR = [(0.53 ± 0.0216)]T(1) ± 0.0383
(A.11)

⎧⎪⎪⎨⎪⎪⎩
M(3)

b∆ = [(4.62 ± 0.0173)]T(2) + [(0.845 ± 0.0399)]T(3) ± 0.00128
M(3)

bR = [(0.407 ± 0.0222)]T(1) ± 0.0361
(A.12)

• λ = 2.105:

⎧⎪⎪⎨⎪⎪⎩
M(1)

b∆ = ±0.00669
M(1)

bR = [(0.8433 ± 0.0142)]T(1) ± 0.0158
(A.13)

⎧⎪⎪⎨⎪⎪⎩
M(2)

b∆ = ±0.00669
M(2)

bR = [(0.382 ± 0.0184)]T(1) ± 0.0385
(A.14)

⎧⎪⎪⎨⎪⎪⎩
M(3)

b∆ = ±0.00214
M(3)

bR = [(0.197 ± 0.0156)]T(1) ± 0.0364
(A.15)

Appendix B. Deterministic symbolic models obtained by SpaRTA in [31]

⎧⎪⎪⎨⎪⎪⎩
M(1)

b∆ = 0
M(1)

bR = 0.39T(1) (B.1)

⎧⎪⎪⎨⎪⎪⎩
M(2)

b∆ = 0.1T(1) + 4.09T(2)
M(2)

bR = 1.39T(1) (B.2)

⎧⎪⎪⎨⎪⎪⎩
M(3)

b∆ = 0
M(3)

bR = 0.93T(1) (B.3)




