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A B S T R A C T

The precision and functionality of an assembly heavily depend on the dimensions of its components, which can 
often lead to quality issues. However, increasing precision can be expensive and impractical. Alternative 
methods, such as adaptive assembly and optimization, can help achieve high-precision assemblies using less 
precise components. Adaptive assembly involves adjusting the assembly process to account for component 
variations, which can improve accuracy and reduce errors. Optimization techniques can be used to identify the 
most efficient and effective assembly strategy for a given set of components, taking into consideration factors 
such as complexity, volume, cost, and quality. This paper proposes an exclusive adaptive assembly strategy for 
micro gear pairing by evaluating and comparing different assembly strategies. Manufacturers can determine the 
best fit for their specific needs and enhance the precision and functionality of their assemblies.   

1. Introduction

Production control loops describe model-based production optimi
zation strategies at the organizational level of a production system that 
are intended to respond to process deviations and improve product 
quality. These are applicable for production processes where the tech
nological capabilities have been reached and no defect reduction can be 
achieved by using conventional approaches [1,2]. Component-specific 
quality data can be recorded thanks to advancements enabled by In
dustry 4.0 in terms of near-real-time information processing, new sen
sors for individual component tracking, and sensor technologies for 
production-integrated measurements of quality data [3–5]. With the 
quality controller taking process parameters, measurements, control 
strategies, and a product model into consideration, a variety of control 
loop concepts for raising product quality can be implemented [6] (see 
Fig. 1). As production-related reaction measures, different strategies are 
possible to increase quality despite production deviations. The key 
concept is the ability to compensate for a second component’s deviations 
from a quality-critical feature through the individual over-fulfillment of 
another component’s feature. Tighter tolerance ranges can be achieved 
compared to conventionally assembled components by compensating 

the corresponding components [3,6]. 
Assembly is an important step in the manufacturing process, as it 

involves bringing together individual components or subassemblies to 
create a finished product. It ensures that products are properly put 
together and functional, while also allowing manufacturers to improve 
efficiency, quality control, scalability, and cost savings. Also, it is 
essential for high-precision products in high-tech industries such as 
aerospace, medical device, and semiconductor manufacturing because it 
ensures that the final product meets the required specifications and 
tolerances for the proper functioning of the product and the safety of the 
user [7]. The high-precision assembly also ensures that the product will 
perform as intended throughout its intended lifespan, reducing the need 
for costly repairs or replacements. 

Adaptive assembly is an approach to manufacturing that allows the 
dynamic adjustment of assembly processes based on real-time feedback 
from sensors and other data sources. It is also known as "smart assembly" 
or "intelligent assembly" which can be applied in high-tech industries [1, 
8–10]. One of the main benefits of adaptive assembly is that it allows 
manufacturers to quickly respond to changes in product design or 
customer requirements, without the need for extensive retooling or 
redesign of assembly equipment. This can help to improve the efficiency 
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and flexibility of the assembly process [11,12]. Therefore, this paper 
introduces an adaptive assembly strategy that adapts multiple assembly 
strategies for a specific assembly, appraises the quality response using 
intelligent systems, and identifies the most suitable strategy. It develops 
and validates various assemblies’ strategies: Random Assembly (RA), 
Selective Assembly (SA), and Individual Assembly (IA), dealing with 
micro gear pairs. The adaptive assembly has the potential to benefit 
high-precision products as it allows for swift modification of the as
sembly process to optimize for each product’s specific requirements. 

On these bases, the paper is structured as follows: a brief review of 
the related research on existing assembly strategies and their application 
in the domain of tolerance design is brought in Section 2. Section 3 
provides a comprehensive detailed framework for gear pairing, 
including the assembly strategies, associated propositions, and optimi
zation, in which assembly strategies have to fit the assembly structure. 
In Section 4, the adaptive model is investigated and analyzed for gear 
pairing use. The last section implies the conclusion and future per
spectives of this research. 

2. Literature

“Tolerance design” is the investigation of how defect rates can be
monitored by controlling variability in the specifications for individual 
components. Designers prefer tight tolerances to assure product per
formance; manufacturers prefer loose tolerances making components 
easier and more economical to produce. Specifying tolerances is there
fore a vital key to understanding how the specifications and their vari
ability impact the design requirement and manufacturing performance. 
However, the specification of design tolerances also affects the number 
of assembled components and the desired functionality. Therefore, as
sembly strategies such as selective assembly and individual assembly 
may represent expedient alternatives as compared to the random as
sembly of interchangeable components [13–15]. 

2.1. Assembly strategies 

Appropriate partners are chosen in the adaptive assembly quality 
control loop to compensate for defects [3,16]. Individual and selective 
assembly strategies are both included under the overarching term of 
adaptive assembly [1]. Tan and Wu [17] discuss Direct Selective As
sembly (DSA) and Fixed Bin Selective Assembly (FBSA) as two pairing 
optimization methods. By minimizing production defects, FBSA is a se
lective assembly strategy that provides a method for enhancing product 

quality while lowering production costs [18,19]. Based on individual 
deviation from a predetermined set point, single components are 
grouped into tolerance classes and subsequently paired with corre
sponding components [20]. Information about the precise geometry is 
lost when components are grouped into classes. To reduce the infor
mation getting lost, a large number of classes and small tolerance mar
gins are required. As a result, the number of tolerance classes is 
constrained by the number of components, the associated inventory, and 
overhead expenses. To prevent downtime in case of a bottleneck in terms 
of component availability, active and passive combinations of 
non-corresponding classes can be used [20]. 

DSA, on the other hand, is an algorithm that determines an optimal 
combination of available components, and each component is assigned 
to exactly one other component, making it part of individual assembly 
strategies. Components are not grouped into tolerance classes for indi
vidual assembly. Since each component ID is connected to a specific 
measurement, no information is lost. Thus, individual assembly methods 
outperform selective assembly strategies in terms of product quality but 
are also more expensive due to the need of securing individual compo
nent traceability and storage in the production process [21]. 

2.2. Tolerance design and assembly strategies 

Random assembly involves obtaining a product where its compo
nents are chosen randomly. This approach has been the research topic of 
several studies in the manufacturing area, with researchers exploring its 
potential benefits such as cost savings. Therefore, by using a random 
sampling method to select components, manufacturers can take 
advantage of economies of scale and reduce their costs [2]. The random 
assembly allows manufacturers to use a larger pool of components than 
the SA and IA methods, which ensures reducing the costs associated with 
sourcing, tracking, and stocking specialized components. However, 
random assembly also has some challenges. One challenge is the quality 
control. Because the components to be assembled are chosen randomly, 
it can be difficult to ensure that the final product meets the required 
quality standards. This is particularly true in industries such as auto
motive, where the quality of individual components can have a signifi
cant impact on the overall performance of the product [22]. Therefore, 
SA and IA methods could be proposed to improve the overall perfor
mance while keeping tolerance specifications the same or even lower 
them. 

The selective assembly has been used in manufacturing for years and 
has been focused on several key aspects [23–25]. Selective assembly is a 

Fig. 1. Production control loops.  



technique to preserve functional requirements between two mating 
components which may be obtained from relatively low-precision 
components. In SA, the mating components are manufactured with 
wide tolerances, therefore, it is required to 100% inspect all the manu
factured components, then they are partitioned into dimensional bins. 
Afterward, the components are then randomly selected from within bins 
for assembly with minimum clearance. As far as SA is concerned, the 
existing studies can be categorized into two main streams: (1) pairing 
methodologies and (2) binning strategies. 

The pairing methodologies are more objected to proposing an effi
cient bin combination method that satisfies the performance require
ment [26–29]. This stream also studies criterion to properly combine 
bins according to components’ variability degree, such as selecting 
binning strategies and tolerances allocation between components to be 
paired. A variety of assembly criterion such as matching ratio maximi
zation [30,31], surplus components minimization [15,23], assembly 
variation minimization [32,33], and assembly cost minimization [23, 
34] can be found in the literature. The second stream in SA studies
discusses the binning strategies that are focused on the optimization of 
the components’ binning strategies to minimize variations and surplus 
components. In the literature, the classical partitioning methods are 
classified as (a) equal width (variance) partitioning [35,36] and (b) 
equal area (probability) partitioning [37,38] aimed at minimizing as
sembly variation or scrap. Moreover, recent binning strategies are 
focused on concerning the difference in mating component size distri
bution. In this case, optimized partitioning helps to minimize surplus 
components and quality loss [2,38–40]. On these bases, the goal of the 
adaptive assembly strategy in this paper is to determine the best strategy 
for gear pairing, based on the quality of the output produced by each 
strategy. By assessing the quality response related to each assembly 
strategy, the adaptive assembly strategy helps identify the strategy that 
is most suitable for a particular assembly situation. 

In reality, as the number of components, interdependencies among 
them, and levels of complexity increase, the assembly process becomes 
more intricate and cannot be generalized. To address this issue, one 
potential solution is to approach the assembly of a product with multiple 
components by breaking it down into several subassemblies, then 
assembling the final product. The primary objective of this paper is to 
initiate an adaptive assembly for the high-precision pairing problem, 
specifically in the dental instrument industry, where gear pairing is a 
vital concern. This model enables the use of tolerance analysis model of 
the assembly and assesses multiple assembly strategies to recommend 
the most suitable one. The subsequent section provides detailed infor
mation on the matter. 

3. Proposed adaptive assembly strategy for micro gears pairing
problem in high-precision industry 

This section introduces an adaptive assembly method that adapts and 
assesses different assembly strategies tailored for gear pairing, including 
random assembly, selective assembly, and individual assembly. 

3.1. Approach description 

An adaptive assembly is an approach in manufacturing that allows 
for the dynamic adjustment of assembly processes based on real-time 
feedback from sensors and other data sources. It is also known as 
“smart assembly” or “intelligent assembly” which can be applied in 
high-tech industries [8,41]. One of the main benefits of adaptive as
sembly is to let a quick answer to changes in product design or customer 
requirements, without the need for extensive retooling or redesign of 
assembly equipment. This can help to improve the efficiency and flexi
bility of the assembly process [11]. This paper proposes a novel adaptive 
assembly strategy that can be adapted to each type of assembly product 
and returns the fittest assembly strategy. The application of the 
approach has a strong dependency on the tolerance analysis model 
which evaluates the quality response of the assembly. However, in this 
paper, the focus is on the micro gear pairing problem which is used in 
dental instruments. The approach is detailed in Fig. 2. 

Gears are used in a variety of industries in power transmission sys
tems. Durability, a constant transmission ratio, reduced size, excellent 
efficiency, and suitability for a wide range of powers are just a few of the 
benefits. On the other hand, they have several drawbacks, such as the 
vibration of the gear meshing system, which causes unwanted noises. 
The main source of such noises is Kinematic Transmission Error (KTE), 
which is caused by gear misalignment, tooth profile inaccuracies, and 
tooth deflections [42]. As a result, the KTE value reduces the quality 
level of paired gears due to geometric deviations. This paper analyses 
the pairing of gears with explicit specifications (Fig. 3). 

Many mathematical theories have been developed in order to 
calculate the kinematic transmission error [43,44], however, in this 
paper, an exclusive data-driven model in literature is employed to assess 

Fig. 2. Proposed adaptive assembly scheme.  

Fig. 3. Use case.  



Fig. 4. Adaptive assembly strategy procedure.  



the KTE value function of a set of geometrical deviations and our work is 
heavily reliant on the existing surrogate model [45]. The authors [45] 
proposed a neural network-based model which receives paired gears’ 
geometrical deviations and returns the KTE value which indicates the 
quality of the pair. 

Furthermore, Fig. 4 demonstrates the focus of this paper on pro
posing a decision tool to illustrate the adaptive assembly scheme where 
several exclusive strategies including random, selective, and individual 
assembly strategies are proposed and examined to improve assembly 
quality using a tolerance analysis model. Therefore, the following sec
tion explains in detail the assembly approaches and associated issues. 

3.2. Random assembly 

Random assembly combines components or subassemblies in a 
random or unordered sort, rather than following a specific sequence or 
blueprint. This approach can be simulated using the Monte-Carlo tech
nique. The method’s flow chart is outlined in Fig. 5. Moreover, it is 
assumed that components are manufactured and labeled. Each label 
contains a component specification. Afterward, the simulation method 
uses labels along with the associated specifications to assess the random 
assembly efficiency. Therefore, each iteration of the simulation involves 
randomly generating a pair for each component and then evaluating the 
quality response using the tolerance analysis\surrogate model checking 
to see if they fit together in a way that satisfies admissible criterion. 

In Fig. 4, the application of the surrogate model is highlighted in the 
evaluation step which assesses the quality response of the randomly 
generated combinations. The generation of random combinations in 
practice reduces assembly costs. However, it doesn’t minimize the risk 
of errors and defects in the final product. Random assembly requires that 
the operators or workers have a good understanding of the assembly 
process and the used components. 

3.3. Selective assembly (SA) 

Selective assembly is a cost-effective solution for achieving high 
precision. It involves inspecting components during production, 
grouping them into categories based on specific quality characteristics, 
and then only pairing components within those categories according to a 
pre-determined criterion. This approach transforms a product quality 
issue into a problem of system design and operation. The development of 
optimal selection strategies for high-quality products is a complex task. 
As aforementioned in the literature, we can characterize the nature of 
the optimal solutions by studying two main streams: (1) Key Charac
teristics (KCs) identification (Sections 3.3.1), (2) binning methods 
(Section 3.3.2), (3) bins combination criterion (Section 3.3.3), and 
mixed strategy solutions (Section 3.3.4). The ladders are realized in this 
section. 

3.3.1. KCs identification 
Selective assembly applies to assemblies with components possessing 

one KC. Since a complex assembly may be assembled of components 
with multiple characteristics, a solution to this challenge is to identify 
the KC. The identification of the KC is recognized using sensitivity 
analysis to determine how the functionality of the assembly is affected 
by variations in input characteristics. Therefore, the surrogate model 
helps to estimate the assembly response corresponding to geometrical 
deviation on each characteristic. The identification of KCs can be 
investigated using sensitivity analysis. In this research, a probabilistic 
sensitivity analysis method so-called Sobol method is employed to 
identify the KCs on the components of the assembly. This method ex
presses relative sensitivities as the fraction of the variance of the as
sembly response that can be attributed to each uncertain characteristic 
[46]. The steps of Sobol sensitivity analysis are detailed in Fig. 6. 

In this method, to build a picture of the importance of each charac
teristic in determining the assembly response variance, first-order 
sensitivity index (S1) and total-effect Sensitivity Orders (ST) are 
measured [46]. A higher sensitivity index means higher importance of 

Fig. 6. Sobol sensitivity analysis.  



the characteristic. Once, the KCs are identified, the components can be 
categorized and distributed among the bins. 

3.3.2. Binning methods 
Binning methods in selective assembly involve grouping components 

into clusters, or "bins", based on their similarity. Different binning 
methods can be used to classify and separate components based on their 
characteristics. Some common methods include [2,35,47].  

- Feature-based binning: This method uses geometric features, such as 
edges, corners, and points, to classify and group components.  

- Dimensional binning: This method classifies, and groups components 
based on their dimensional characteristics, such as size, length, 
width, and height.  

- Statistical binning: This method uses statistical techniques, such as 
principal component analysis (PCA) and linear discriminant analysis 
(LDA) to classify and group components based on their 
characteristics. 

Each method has its advantages and disadvantages, and the choice of 
which method to use will depend on the specific application and the 
characteristics of the components. Since complex assemblies possess 
multiple characteristics, the statistical method is investigated using the 
KC identification method discussed. Afterward, the binning method is 
divided into two approaches (see Fig. 7): An equivalent number of 
components or predefined tolerance boundaries.  

a) BM1: Equivalent number of components The first binning method
BM1 is based on the equal area (probability) that distributes the
components in equal numbers among the existing bins. This method
is a quantitative-based method in which an equivalent number of
components can be found in all bins for each type of component. This
method helps decrease the number of scraps and residuals in the
inventory.

b) BM2: Define tolerance boundaries This method is a qualitative-based
method which is originated from the equal width (variance) parti
tioning method; however, the width of the bins can be adapted. The
modification of the width is purposed to improve the assembly
quality. Since the number of the distributed components in the bins
may differ, the number of residual components may increase.

Therefore, the residual components will be stored in the inventory to 
be assembled for the next production cycle. 

3.3.3. Bins combination criterions 
In selective assembly, bin combination is the process of selecting the 

appropriate storage bin for a given component. This is typically done 
after the component has been classified and grouped based on its 
characteristics. The bin combination process is important for ensuring 
that the correct bins are combined, which can improve the efficiency 
and accuracy of the assembly process. Bin combination also helps to 
reduce the risk of errors and maximize the assembly’s precision. The 
combination of several bins is referenced to criterion such as yielding the 
maximum number of assemblies or maximizing the quality of the as
semblies required to be achieved.  

Parameters: 

S Set of possible combinations of bins 
Bco

i Associated bin i to component co 
nco

i Number of components co in bin i 
co Number of the variety of components 
QEi,i′ Evaluated quality value of combination s 
Ni,i′ Number of the possible assemblies from combination s 
xi,i′ 1 if bin i associated with component 1 is combined with bin i′ associated with 

component 2  

Let us assume a product assembled of two distinct components which 
are distributed among three existing bins (Fig. 8). 

Fig. 7. Binning methodology schemes.  

Fig. 8. Exemplary assembly of two components.  



Each bin stores n number of specific types of components which can 
vary. For instance, bin B2

3 which is indicated as the third bin, stores n2
3 

number of component 2 inside. The set of possible combination S for the 
exemplary can be given as follow: 

S =
{{

B1
1,B2

1

}
,
{

B1
1,B2

2

}
,
{

B1
1,B2

3

}
,
{

B1
2,B2

1

}
,
{

B1
2,B2

2

}
,
{

B1
2,B

2
3

}
,
{

B1
3,B

2
1

}
,

{
B1

3,B2
2

}
,
{

B1
3,B2

3

}}

Consequently, the set 
{
B1

2,B
2
2
}

means that bins B1
2 and B2

2 are com
bined and the number of the assemblies for this combination is equal to 
the minimum number of the components in the bins N2,2 = min

{
n1

2, n2
2
}
. 

This indicates the assumption that the redundant number of the other 
type of component will be stored. The mathematical optimization model 
of the combination problem can be formulated as follows: 

mix\max criterion (1) 

Subject to, 

∑3

i=1

∑3

i′ =1

xi,i′ = number of bins (2)  

∑number of bins

i′ =1

xi,i′ = 1∀i ∈ [1, number of bins] (3)  

∑number of bins

i=1
xi,i′ = 1∀i′ ∈ [1, number of bins] (4) 

where Eq. (1) represents the objective of the assembly optimization 
where the model is constrained to Eq. (2) which indicates the cumulative 
combination should be equal to the number of bins; and Eq. (3) and Eq. 
(4) illustrate that each bin corresponding to each component can be 
combined with one bin of the other component. Thus, the problem is 
defined, a variety of optimization criterion can be defined. In this case, 
the proposed criterion are defined as follows:  

a) Quality criterion mean maximization (QCMM)
QCMM is an expected value that evaluates the quality of con

formed assembled components within the selected bins. This crite
rion manages to maximize the quality of the assemblies; therefore, it
represents the potential quality of an assembly that targets customer
satisfaction. The increase in quality increases customers’ satisfaction.
Eq. (5) depicts the mathematic representation of the criterion:

Mean Quality =
∑3

i=1

∑3

i′ =1

QEi,i′

Ni,i′
× xi,i′ (5)  

where QEs indicates the evaluated quality value of the possible as
semblies which is divided by the number of the possible pairs Ns. The 
summands of the value upon all paired bins depict the total mean 
value of the assemblies which is divided by 3 (the number of bins for 
each type of component) to estimate the expected quality value 
overall.  

b) Paired number maximization (PNM)
PNM indicates the expected number of conformed assemblies. This 

criterion illustrates the manufacturer’s expectation of the production 

plan, which means maximizing the number of assemblies subject to 
quality constraint. In Eq. (6) the criterion is formulated: 

Pairs =
∑3

i=1

∑3

i′ =1

Ni,i′ × xi,i′ (6)    

c) Quality criterion inertia minimization (QCIM)

QCIM is the inertia of the quality value which measures spread
around the mean value. It aims at improving the mean quality while 
minimizing the standard deviation and is formulated as below: [1,3]. 

Inertia =
∑3

i=1

∑3

i′ =1

(means + deviations) × xi,i′ (7) 

Subject to, 

meani,i′ =
QEi,i′

Ni,i′
,∀i, i′ ∈ (8)  

deviationi,i′ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

j∈s

(
QEi,i′ − meani,i′

)2

Ni,i′

√
√
√
√
√

,∀i, i
′

∈ (9)  

3.3.4. Mixed strategy (MS) solutions 
In the previous section, QCMM, PNM, and QCIM are presented as 

indicators that present the customer’s satisfaction value, the manufac
turer’s expectation, and a general indicator, respectively. Contrary to 
QCIM which provides the assembly structure while minimizing the 
variation of the assembly from the mean value of the quality criterion, 
QCMM and PNM target the value which satisfies the customer and 
manufacturer, exclusively. A mixed strategy is an approach to this type 
of problem that optimizes the assembly while satisfying customers’ and 
manufacture’s expectations. In this approach, the manufacturer and 
customer call as players whose satisfaction criterion differ. Therefore, an 
appropriate approach to solve this problem is to define two levels of 
optimization such as leader level (upper-level) and follower level 
(lower-level). Each level represents the criterion of each player that is 
required to be satisfied. 

The approach initiates with satisfying the lower-level criterion, so- 
called the superior player, and optimizing the criterion associated 
with each binning method. At this level, the optimum criterion, and the 
optimum assembly structure, as well as the payoff (corresponding cri
terion) for the upper-level player is obtained. Next, the approach sat
isfies the upper-level criterion and locates the solution among the lower- 
level solutions which satisfy the upper-level the most. In this regard, the 
first step to locate the optimal solution is to set up a payoff matrix. The 
payoff matrix is a table in which binning methods are listed in rows and 
the criterion objectives (i.e. QCMM and PNM) are in the columns. The 
cells show the payoffs to each binning method and the optimal value of 
the objectives including the assembly structure and the value of the 
other objectives corresponding to the assembly structure. Once the 
matrix is set up, two decision rules can be taken as follows: 

Fig. 9. Mixed strategy approaches comparison.  



1) MS1: Customer–manufacturer satisfaction
In this strategy, the customer comes in the upper-level of the 

optimization and the manufacturer comes in the lower-level.
Therefore, the lower-level obtains the assembly structure which
obtains the maximum number of pairs; then, on the upper-level, the
assembly structure which causes the maximum assembly quality will
be selected.

2) MS2: Manufacturer – customer satisfaction

Contrary to MS1, the manufacturer leads the optimization approach
and the customer follows the leader. It means that in the lower-lever, the 
approach locates the optimum solutions which maximize the assembly 
quality corresponding to each binning method. Afterward, the manu
facturer takes the next step and selects the solution which maximizes the 
number of pairs the most. In Fig. 9, the two approaches are compared. 

On these bases, in this section, the selective assembly and relevant 
subjects are discussed. In this method, components are distributed 
among existing bins, afterward, the bins are paired in a way that satisfies 
the requirements of the assembly. This method improves the assembly 
quality and number of the conformed assembly compared to random 
assembly, however, it may cause an increase in the number of residuals 
in the inventory department in one production time. An alternative to 
this method is to assemble components individually in a manner that 
maximizes the overall quality of the assemblies. This approach is pro
posed in the coming section. 

3.4. Individual assembly 

Individual assembly is often used for high-precision or high-value 
products where quality and accuracy are crucial. It is also commonly 
used for low-volume or one-of-a-kind products, where mass production 
methods are not cost-effective. Individual assembly may take more time 
and resources than batch or mass production, but it allows for a higher 
degree of control over the production process and can produce higher- 
quality products. For individual assembly, each component is assigned 
to another one to optimize at least one target variable. In this context, 
three algorithms are developed and presented. The considered target 

variables are the number of usable parts, which should be maximized, 
and a characteristic feature (i.e. KTE) that describes the quality of the 
pairing. In general, characteristics are considered which describe the 
deviation from the target value and are to be minimized for higher 
quality and are therefore referred to as quality criterion (QC) in the 
following. 

3.4.1. Optimum quality criterion (OQC) algorithm 
The OQC algorithm is used to find a solution for the assignment 

problem that contains minimal QCs in the pairings. This approach is 
inspired by Sedgewick [48] who proposes a quick sorting algorithm that 
works by partitioning an array or list of elements into two sub-arrays, 
according to a chosen pivot element, and then recursively sorting the 
sub-arrays. Quick sort has an average-case time complexity of O(nlogn), 
which makes it one of the fastest general-purpose sorting algorithms in 
practice. However, its worst-case time complexity is O(n2) if the pivot 
selection strategy is not well-designed. On these bases, in this process, 
pairings with a very small QC are preferred over pairings with a larger 
QC. The procedure is as follows and is also shown as a pseudo-code 
below. 

All QCs for all pairings are determined and stored in a list. Then, this 
list is sorted by QC. In Python, this is implemented with a quicksort 
algorithm. Starting with the pairing with the lowest QC, the algorithm 
iterates through this list. At the same time, the pairing objects already 
used are stored in another list. If a pairing is found where both pairing 
objects are not yet used, this pairing is selected and the then newly used 
pairing objects are stored in the second list. This process is continued 
until all pairing objects are assigned. 

3.4.2. Maximum part usage algorithm (MPU) 
The maximum part usage algorithm (MPU) is proposed to maximize the 

number of individual pairs. In addition to all QCs of the pairings, also a 
threshold value for the QC above which a pairing in productive use would 
cause two rejects. This algorithm aims to assemble parts exclusively in such 
a way that only permissible pairs (pairs below the QC threshold) are 
formed. The procedure is shown as a pseudo-code as follows: 

OQC algorithm  



First, all QCs for the pairings are determined and stored in a list. All 
QCs that exceed the threshold are deleted from the list. Then a list is 
created in which for each pairing object still permissible pairings are 
listed. These are now sorted by number, called "list 1" in the following. 
The pairing object that has the fewest pairing possibilities is used 
initially. Analogous to OQC, a second "list 2" is created, in which all 
pairing objects that have already been used are listed. If a pairing is 
found from list 1 where the pairing object to be used is not yet in list 2, 
this pairing is selected. Then additionally used pairing objects are added 
to list 2. This process is continued until pairing objects are assigned 
subject to quality constranits. 

3.4.3. Global optimum quality criterion (GOQC) 
GOQC is an individual assembly scheme that evaluates all the com

binations of the components and selects the pairs with the maximum 

quality level. This method is adapted from the Kuhn–Munkres (or 
Hungarian) algorithm [49], a combinatorial optimization algorithm, to 
solve the One-to-One (O-O) assignment problem. In this problem, one 
task is matched to one, and the time complexity is O(n^3), where n is the 
number of rows or columns in the quality matrix being optimized. 
Therefore, the model is adapted to match component-to-component and 
maximize the quality of the overall assemblies while satisfying the 
pre-defined quality level. The mathematical representation of the model 
can be expressed as follows: 

maxQuality =
∑

i∈A

∑

j∈B
QEij × xij (10) 

Subject to, 
∑

i∈S
xij = 1j ∈ C (11) 

MPU algorithm  

Table 1 
Evaluated KTE for all the possible combinations of the spur gears and crown wheels.  

Crown wheel label 
Spur gear label 

C1 C2 C3 C4 C5 C6 C7 C8 … C1000 

S1 25.3 21.4 25.9 23.5 21.9 18.1 30.1 25.0 … 20.0 
S2 24.9 16.8 25.2 24.3 20.2 14.4 27.2 23.0 … 15.2 
S3 20.1 18.0 21.2 19.5 17.7 13.0 13.8 18.6 … 10.6 
S4 22.1 21.6 22.5 23.8 17.2 17.9 25.2 23.0 … 12.6 
S5 21.2 18.7 23.2 22.2 20.9 15.0 28.8 19.8 … 11.8 
S6 24.4 16.3 25.7 23.2 19.2 17.5 25.6 20.7 … 15.0 
S7 19.7 21.2 17.5 18.0 16.8 12.7 24.2 19.6 … 11.6 
S8 21.2 17.7 20.8 20.0 18.2 13.9 21.9 15.4 … 7.4 
… … … … … … … … … … … 
S1000 19.6 16.3 22.1 17.9 19.3 12.7 25.2 20.4 … 11.4  



∑

j∈C
xij = 1i ∈ S (12)  

QEij × xij ≥ addmissible quality i ∈ S, j ∈ C (13) 

In this method, the quality response QE of an individualized assem
bly can be assessed by the application of a model. Therefore, in this 
example, this model is embedded into the assembly problem which as
sesses the assembly response of each assembly as well as the overall 
assembly response. In the following section, the application of the pro
posed adaptive assembly is studied and analyzed for the gear pairing 
problem. 

4. The approach implementation analysis

Therefore, let us assume that the manufacturing department has
produced 1000 conformed parts of each gear type which associate with 
different geometric deviations due to manufacturing imperfections. 

Therefore, the possible ways to pair two gears are equal to 
(
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6 = 333833500. Consequently, 

Table 1 details a brief example of all combinations and their associate 
evaluated KTE. 

Crown wheels are labeled with “C” and spur gears are marked with 
“S”. For instance, if spur gear S4 and crown wheel C3 are paired, the 
estimated KTE value is equal to 22.5 (µm). The admissible KTE value for 
the pairing strategy is assumed to be 23 (µm). It means that if the 
associated KTE with two paired gears exceeds the admissible value the 
pairing is not acceptable. A simple and common solution in practice is to 
assemble the gears randomly. A Monte-Carlo simulation for 106 random 
assemblies is employed which means each iteration pairs 1000 of each 
gear randomly and reports the number of feasible pairs and average KTE 
value of all the pairs. Finally, the simulation reported a 609 average 
number of pairs with a 22.7 (µm) average KTE value. Subsequently, 
selective assembly and individual assembly are applied to pair the gears 
efficiently while satisfying the quality requirements. Once Table 1 is 
arranged, the first step in the selective assembly is to identify the KC on 
each type of gear. To do so, the employed surrogate model and Sobol 
analysis are engaged to identify the KC. 

Fig. 10 depicts the Sobol results using the surrogate model which 
identifies TSpur gear

Pitch error and TCrown wheel
Pitch error as the most vital characteristics 

having the most impact on the KTE value. Once the KC is identified, the 
next step in selective assembly is to distribute the gears between the bins 
regarding their TPitch error. In Section 3.3.2, several binning methods are 
proposed, and the associated bins are detailed in Table 2. For instance, if 
the distribution of the spur gears is applied using BM2, the first bin SB1 

Fig. 10. Gears KC identification using Sobol indices.  



contains 257 spur gears with a variation in the range of [1.0, 4.7) (µm) 
on TSpur gear

Pitch error, the second bin SB2 stores 334 spur gear in range of [4.7, 
9.4) (µm), and the last bin SB3 holds 409 gear in the range of [9.4, 15.1] 
(µm). Consequently, the gears are distributed into the bins respecting the 
proposed binning methods. Next, based on the assembly criterion in 
Section 3.3.3, the bins are combined, and the criterion are assessed. 

Table 3 details the assessment of the criterion corresponding to each 
binning method, including the bins’ pairing structure. More in detail, if 
the enterprise prefers to improve the quality by minimizing the KTE 
value, the optimal decision is to distribute the gears among the existing 
bins based on method BM1, and the bins’ combination is structured as 
follows: SB1 is paired with CB2, SB2 is paired with CB1, and SB3 is 
paired with CB 3. By this structure, on average 710 gears will be paired 
and the average KTE value of 19.6 (µm) is yielded. Fig. 11 depicts 
evaluations of the KTE attained by deploying selective assembly ap
proaches, encompassing all conceivable combinations. Each illustration 
in the figure displays the random pairing distribution based on the 
optimal combining structure achieved for each approach. 

The comparison of the overall KTE values of two mixed solutions 
MS1 and MS2 can be found in Fig. 11(b) and Fig. 11(d). In the case of 
dedicated gears pairing, taking solution MS1 to combine the bins opti
mally results in 728 conformed pairs with a mean KTE value of 20.11 
(µm). However, if the decision is on improving the quality in the first 

place, afterward improving the number of the pairs, taking solution MS2 
improves the KTE value slightly to 20.1 (µm) but decreases the number 
of the pairs to 710 pairs. Since solution MS1 doesn’t show a great impact 
on improving the pairing strategy quality, solution MS2 could be a 
practical decision that maintains a fair quality as well as an optimal 
number of pairs owing to the mapping of the two solutions MS2 and 
PNM. Additionally, a comparison of the variety of assembly strategies is 
illustrated in Fig. 13. 

As the results illustrate, selective assembly improves the gear pairs’ 
quality as well as the number of pairs efficiently. However, it doesn’t 
provide a global structure for each gear to guarantee the quality of the 
pairs sufficiently. On the other hand, individual assembly is more of a 
dedicated assembly that can promise better performance. To apply the 
proposed individual assembly strategies, first, the GOQC algorithm is 
exercised to find the optimal pairs which result in the minimum KTE for 
all the pairs. Contrary to the selective assembly which combines the 
bins, GOQC is proposed to apply an exhaustive exploration that evaluate 
all the possible combinations and find the optimal for all gears. 

Table 4 details an example of how the GOQC algorithm structured 
optimal gear paring. For instance, the spur gear S3 is paired with crown 
wheel C893 and the predicted KTE is equal to 16.0 (µm). The optimal 
overall KTE value for all the pairs is equal to 15.3 (µm) and 984 gears are 
paired, optimally. Second, the MPU algorithm is run to pair gears indi
vidually in a way that a maximum number of pairs are yielded while the 
requirements are satisfied. In this method, 982 optimal pairs are 
matched individually with an average KTE value of 18.7 (µm). The last, 
the OQC algorithm is applied to obtain minimal QCs in the pairings. In 
this algorithm, compared to the other two algorithms the number of 
pairs and quality drop, however, it pairs the gears more efficiently when 
it comes to the computation complexity. An optimal number of 904 pairs 
is obtained with an average KTE value of 14.8 (µm). Fig. 12 (a) shows the 
result of the MPU algorithm, where the pairing has the highest number 
of pairs compared to OQC, which prioritizes the overall quality of all 
pairs. On the other hand, GOQC provides the complete solution (pairing 
structure) that results in the optimal global KTE for all pairings and the 
greatest number of pairs that are guaranteed. 

Additionally, Fig. 12 (d) demonstrates the optimization time of each 
strategy to reach the optimum solutions associated with each strategy. 

Table 2 
Binning methods comparison for the gear pairing.  

Binning 
methods 

The number of the 
gears 

The variation range of the KC 
(µm) 

Bin 
1 

Bin 
2 

Bin 
3 

Bin 1 Bin 2 Bin 3 

BM1Spur gear 334  333  333 [1.0, 
5.8) 

[5.8, 
10.2) 

[10.2, 
15.1] 

BM2Spur gear 257  334  409 [1.0, 
4.7) 

[4.7, 
9.4) 

[9.4, 
15.1] 

BM1Crown wheel 334  333  333 [1.0, 
9.3) 

[9.3, 
17.2) 

[17.3, 
25.1] 

BM2Crown wheel 264  362  374 [1.0, 
8.0) 

[8.0, 
16.0) 

[16.1, 
25.1]  

Table 3 
SA binning methods and combination criterion assessment.  



The SA algorithm, which has been designed to group components into 
bins and combines bins as opposed to IA algorithms that match gears 
one-by-one, converges faster than IA strategies as a result. 

5. Conclusion and future works

Assembly is a process to create products that function accurately and
reliably, and that meet specifications required by various applications, 
such as in aerospace, medical, and electronics industries. Assembly can 
lead to increase efficiency in production processes and can result in 
product performance efficiency. However, the assembly process may 
vary depending on the specific requirements for each assembly. The 
significance of assembly becomes evident in complex assemblies that 
require a well-defined assembly plan. Therefore, this paper is dedicated 
to the primary definition of an inventive adaptive assembly which re
ceives the tolerance analysis model of the assembly and proposes the 
fittest strategy by assessing several assembly strategies. Adaptive as
sembly can be particularly beneficial for high-precision products as it 
allows manufacturers to quickly adjust the assembly process to optimize 
the specific requirements of each product. By adjusting the process, 
manufacturers can improve the accuracy and consistency of their as
sembly, which is essential for high-precision products such as micro 
gears. 

In this paper, an adaptive assembly strategy is proposed. This 
approach assesses several assembly strategies for an assembly with 
specific requirements, evaluates the quality response, and returns the 
fittest strategy which satisfies the customer and/or manufacturer the 
most. The results illustrate the applicability of the approach for gear 
pairing. The analyses of different assemblies demonstrate the impor
tance of assembly strategy investigation where the assembly for an as
sembly may vary from another. Therefore, the benefits (+) and 
shortcomings (-) of different assemblies in this paper are listed: 

Random assembly:  

1. Cost savings, as assembly often requires less skill and training than
other manufacturing processes.

2. High scalability, as random assembly may be applied for high- 
volume production runs.

- Increased risk of non-conformed assemblies. 

Selective assembly: 

1. Greater flexibility in production, as individual components or sub
assemblies can be tailored to specific customer needs or market
demands.

2. Reduced waste, as only the necessary components are assembled.
3. Improved product quality, as selective assembly allows for more

precise and accurate assembly of components.

- Greater complexity in planning and calculation.  
- Increased risk of errors and defects, as selective assembly requires 

more attention to detail and quality control.  
- Limited scalability, as selective assembly may not be feasible for 

high-volume production runs. 

Individual assembly:  

1. A high degree of customization, as each product can be tailored to
the specific needs and preferences of individual customers.

2. Improved product quality, as individual assembly allows for more
precise and accurate assembly of components.

Fig. 11. Overall combination evaluation for gear pairing.  

Table 4 
Optimal IA pairs associated with the GOQC algorithm.  

Spur gear label S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 … S1000 

Crown wheel label C689 C936 C893 C890 C154 C606 C703 C13 C776 C745 … C255 
Evaluated KTE (µm) 11.7 18.7 16.0 18.3 20.1 9.4 22.8 13.9 17.3 14.9 … 15.2



Fig. 13. Gears’ pairing strategies comparison.  

Fig. 12. Individual assembly strategies‘ comparison.  



Fig. 14. Random internal pairing among optimal combinations.  



3. Increased flexibility in production, as individual assembly can be
easily adapted to accommodate changes in customer needs or market
demands.

4. Reduced waste, as only the necessary components are assembled.

- Greater complexity in planning and calculation than selective 
assembly.  

- Limited scalability, as individual assembly may not be feasible for 
high-volume production runs.  

- Longer lead times, as individual assembly takes longer to produce 
than mass assembly due to its nature of tailoring to specific needs. 

Additionally, the proposed assembly strategies are proposed under 
certain limits due to time-consuming and deep computations. As an 
example, optimal yielded combinations in selective assembly would 
combine the specified bins, therefore, in case one bin related to one type 
of component runs out of components the other bins related to another 
type of component will store the redundant component for the next 
production. For future work, an enhancement of this approach can be to 
improve combinations in which the redundant can be combined with 
other bins in a way that quality responses don’t drop. Furthermore, since 
GOQC originated from Kuhn–Munkres algorithm, it has been proved 
that the complexity of the problem increases quickly with the dimen
sionality of the problem. Consequently, the approach can be adapted for 
solving high-dimensional assignment problems using appropriate heu
ristic or meta-heuristic approaches. 
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Appendix: finding data depository 

The data that support the findings of this study on the case of micro 
gears are available in the Recherche Data Gouv https://doi.org/ 
10.57745/E3DW9W.This dataset comprises 1000 Spur gears and 1000 

Crown wheels with distinct geometric deviations that result from inac
curacies during the manufacturing process. The dataset includes both 
the inputs and outputs of the proposed adaptive assembly system for 
gear pairing. The inputs consist of labeled gears and the Kinematic 
Transmission Error (KTE) values for various combinations of the two 
types. The outputs entail the results of selective assembly binning 
analysis and individual assembly analysis for the specific pairing of the 
two gears. 

For instance, a more comprehensive glance into the random pairings 
among the optimal combinations of selective assembly approaches is 
shown in Fig. 14 (a)-(d), depicting the histogram analysis of the fre
quency of gear pairs within several KTE value ranges. 
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