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a b s t r a c t

Wakes of upswept afterbodies are often characterized by counter-rotating streamwise vortex pairs
which meander in space. One application concerns aft regions of cargo aircraft, which are characterized
by a relatively flat upswept base. Here we consider a canonical configuration comprised of a cylinder
with upswept basal surface. The resulting longitudinal vortices, which are much closer to each other
than wing-tip vortices, can adversely influence paratrooper and cargo drop operations as well as trail-
ing aircraft. The unsteady dynamics of these vortices are examined using spatio-temporally resolved
Large-Eddy Simulations (LES) and stability considerations. Emphasis is placed on understanding the
potential instability dynamics responsible for meandering, which was observed, characterized and
quantified at a representative location downstream of the body. The dynamics is then successfully
mapped to a matched Batchelor vortex pair, and spatial and temporal stability analyses are performed
with both counter-rotating vortices in the computational domain. Both spatial and temporal analyses
reveal dipole structures associated with |m| = 1 elliptic modes as dominant modes in afterbody
vortices. A short-wave elliptic instability mode is found to dominate the meandering motion in the
vortex pair; this mode was stable in the case of an isolated vortex. Further, the strain due to axial
velocity plays a key role in the instability and therefore breakdown. The low frequency of the unstable
mode (Strouhal number StD ≃ 0.3 based on cylinder diameter) is consistent with the spectral analysis
of meandering in the LES. Stability analyses at very low-wavenumber do not exhibit any unstable
mode suggesting an absence of the Crow instability.

1. Introduction

Vortices associated with different flows such as those be-
hind wingtips [1], delta-wings [2] and upswept afterbodies [3]
display meandering or wandering motion. This phenomenon is
usually characterized by the displacement of instantaneous vor-
tex cores, whose centers display complex trajectories that can
mask mean vortex characteristics. Understanding the dynamics of
vortex meandering has been an interest to researchers for several
decades. Some early efforts [4] ascribed meandering phenomena
in wind tunnels to the disturbance environment i.e., free-stream
turbulence effects in the test environment. This attribution was
motivated by the fact that some experiments on wingtip vor-
tices [5] displayed coherent side-to-side motions, similar to those
associated with wandering at zero angle of attack i.e., when
no coherent vortices are formed. Subsequently, experimental ef-
forts [6,7] have observed that wandering amplitude increases
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with downstream distance, which is indicative of the possible
existence of an instability mechanism.

Significant efforts towards understanding the mechanism have
been made through the widely used linear stability approach,
which discerns inherent instability mechanisms inside the vortex
that may be responsible for the breakdown and therefore mean-
dering. Many of these studies, only a few of which are cited here
for brevity [8–11], seek to understand the meandering of wake
vortices modeled on isolated constructs of vortex models, and
as such, are representative of trailing edge or wingtip vortices.
These are well separated, usually by the size of the wingspan.
More recently, receptivity studies are also performed on these
isolated vortex models [12], which provides further insights into
the nature of external forcing responsible for meandering be-
havior. Therefore, the vorticity dynamics of an isolated vortex,
especially those occurring at short wavelengths, can be a good
representative of well-separated counter-rotating vortex pair.

Typically in these studies, a theoretical vortex model repre-
sentative of a given flow vortex is considered [13] and insta-
bilities associated with external strain and due to the presence
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of the surrounding wake are investigated. The Batchelor vortex
model that includes the effects of axial velocity, for example,
has been fruitfully employed in some recent studies. At high
swirl and Reynolds numbers, Parras and Fernandez-Feria [14]
connected the stability of these vortices to the dynamics of ac-
tual trailing vortices. Through rigorous spatial stability analysis,
they showed that at very high Reynolds numbers, absolute in-
stabilities are present only in the presence of an axial velocity.
Edstrand et al. [9,15] used temporal and spatial stability analyses
of a model Batchelor vortex resembling a tip vortex behind a
NACA 0012 wing. A key finding was the presence of marginal
elliptic stability [16] as a possible mechanism for meandering.
This was also confirmed by Cheng et al. [17], who examined the
problem at a range of Reynolds numbers and angles-of-attack in
water tunnel experiments and performed corresponding linear
stability analyses of a fitted Batchelor vortex model. Optimal
perturbation analysis by Navrose et al. [18] for a trailing vortex
system concluded that random perturbations near the wing sur-
face, with relatively low initial energy, can non-linearly trigger
vortex displacement.

The focus of the current work is on vortices that lie relatively
close to each other. This arrangement results in strong vortex me-
andering effects but has received relatively less attention. Typical
flows of interest are those on the base of upswept afterbodies [3],
such as those found in military cargo aircraft [3,19], Ahmed body
configuration [19], high-speed cars [20,21] and even trains [22].
On these configurations, a high upsweep angle (15° < φ < 45°)
causes flow separation near the turning of the elliptical base. The
separated shear layer eventually develops into a counter-rotating
vortex pair that meanders downstream of the body. The strengths
of these vortices primarily depend on the upsweep angle. Since
such counter-rotating vortex pairs are formed on the same basal
surface, they are much closer to each other than trailing-edge
vortices on aircraft wings. The streamwise velocity between the
vortices may never reach the free-stream value while the down-
ward induced velocity may be higher; this circumstance affects
the different instability and breakdown mechanisms at play. For
example, the temporal stability results of Hein and Theofilis [23],
on a pair of Batchelor vortices exhibiting long-wavelength (Crow)
instability, found stronger modification of the instability char-
acteristics for the vortex pair system relative to the isolated
vortex. Therefore, analyzing such systems requires consideration
of both the vortices in the pair in the computational domain
for stability analysis. In these cases, the resolution of both the
vortices, as well as the wake region between, becomes impera-
tive [23,24]. Further, the relatively innocuous farfield also needs
proper treatment to avoid any boundary effects. This naturally
increases the computational cost significantly compared to single
vortex analysis [23,25], and therefore such studies are scarce in
the literature.

The present work investigates such flows through an effective
combination of high-fidelity computations, vortex characteriza-
tion techniques as well as linear stability analysis. The specific
configuration considered is inspired by the aft fuselage model of a
typical cargo aircraft [3] as shown in Fig. 1. The full configuration
consists of a nose section (spherical or ogive forebody) followed
by a main cylindrical section of diameter D. The trailing end of the
cylinder is cut by a slanted base, whose angle with the horizontal
is φ, giving rise to upswept afterbody with an upstream apex (UA)
and a downstream apex (DA) as the extreme endpoints on the
base. The range of upsweep angles typically employed in military
transport aircraft varies from 15° ≤ φ ≤ 28°; we select 20° as a
representative value that generates the phenomena of interest.

The complexity of the surrogate cargo afterbody flow is as-
sociated with the presence of separation bubbles, rollup and
flapping of the shear layer, vortex-shear layer interactions and

vortex–vortex interactions as detailed in several experimental
[3,27] and computational [28,29] studies. The proximity of the
vortices results in significant vortex–vortex interactions and vor-
tex meandering. Through PIV measurements in a water tun-
nel, Bulathsinghala et al. [3,30] observed the displacement of
streamwise-oriented vortex cores, whose amplitude changes with
downstream distance. Further, control efforts of these vortices
through pulsed blowing exhibited an increase in meandering [31].
Zigunov et al. [27] observed low-frequency oscillations (StD ∼

0.4, where StD is the Strouhal number based on diameter) in
their experiments and postulated this to be related to meandering
due to interactions between the afterbody vortices in the pair.
Garmann and Visbal [28] also found clear signs of meandering in
their high fidelity simulations through unsteady vortex charac-
terization. From a practical point of view, the presence of vortex
meandering causes significant unsteadiness for long distances
downstream, which is a major concern for designers. The un-
steadiness and meandering motion can affect payload accuracy
and paratrooper safety, as well as impose constraints on distance
from trailing aircraft and airport operations [32].

Details of the counter-rotating vortex pair in the work have
been obtained through validated LES of the afterbody configura-
tion shown in Fig. 1. The meandering analysis is performed at a
location sufficiently downstream of the base, where an unam-
biguous description of the mean vortex can be obtained with-
out much interference of the shear layer. At this location, both
vortices in the pair display meandering that is independent of
shear-layer effects, and are matched to Batchelor vortices of
suitable parameters, as discussed below. Finally, temporal and
spatial stability analyses are performed on this vortex system
and instability modes are analyzed. The instability mechanisms
for isolated vortex and vortex pair systems are compared, as
are the mechanisms with and without axial velocity that acts as
a strain. Although detailed investigations pertain to a presence
or absence short-wavelength (typically elliptic) instability, an
attempt is made to study the long-wavelength Crow instability
by varying the wavenumber.

2. Methodology

The configuration considered, shown earlier in Fig. 1 is a three-
dimensional axisymmetric cylinder with a trailing sectional cut
based on the upsweep angle φ = 20°. The chosen Reynolds
number ReD = 2.5×104 is one of those based on the experimental
campaign of Zigunov et al. [26]. Although this Re is low compared
to actual flight conditions, several experimentalists [30,33,34]
note that the primary features of the flow behind an afterbody at
a given upsweep angle of the base are largely independent of Re.
The high-fidelity simulations of Ranjan et al. [29], which form the
basis of the present work and are summarized for brevity below,
have independently confirmed this observation.

As shown in Fig. 1, x, y, z denote streamwise, vertical and
spanwise directions respectively in the chosen coordinate system.
All geometrical parameters are non-dimensionalized based on
cylinder diameter (D) and free-stream velocity U∞. Axial dis-
tances are designated in terms of L = D cot(φ), the distance be-
tween the upstream and downstream apexes, which are marked
in Fig. 1. The vertical plane at z = 0 will be referred to as a
mid-plane or symmetry plane.

2.1. Large Eddy simulation

The compressible Navier–Stokes equations are solved in a
curvilinear (ξ, η, ζ )-coordinate system:

∂

∂τ

(
Q
J

)
= −

[(
∂Fi
∂ξ

+
∂Gi

∂η
+

∂Hi

∂ζ

)
+

1
Re

(
∂Fv

∂ξ
+

∂Gv

∂η
+

∂Hv

∂ζ

)]
(1)



Fig. 1. Canonical configuration employed to reproduce the streamwise-oriented wake vortex pair. Cylinder diameter is D and upsweep angle is φ = 20°. The
coordinate axis origin is located at the center of the upswept surface, (0, 0, 0), (red cross: ×) and the axial slant length is L = D cot(φ). The shaded colored region
encompasses the near-computational domain. The upstream apex (UA) and the downstream apex (DA) are located at x/D = −cot(φ)/2, y/D = −0.5, z/D = 0 and
x/D = cot(φ)/2, y/D = 0.5, z/D = 0 respectively. To describe the flow around the upswept base, the transformation X = x+D cot(φ)/2 is used such that UA and DA
are at X/L = 0 and X/L = 1 respectively. At the inlet, simulated boundary layer data matching the experiments [26] are used. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

where, Q = [ρ, ρu, ρv, ρw, ρE]
T denotes the solution vector,

defined in terms of the fluid density ρ, Cartesian velocity com-
ponents (u, v, w) and total specific energy E = T/(γ − 1)M2

+

(u2
+v2

+w2)/2. Here, M is the Mach number of the flow, which
is set to 0.1. γ is the ratio of the specific heats and T is the
fluid temperature. J = ∂(ξ, η, ζ , τ )/∂(x, y, z, t) denotes the Jaco-
bian of the transformation from Cartesian (x, y, z) to curvilinear
(ξ, η, ζ )-coordinate system. The above governing equations are
complemented by the ideal gas law, written in non-dimensional
variables as p = ρT/γM2. Sutherland’s law is used to express
fluid dynamic viscosity µ as a function of temperature T .

The computational domain, as well as grid topology employed,
are shown in Fig. 2. The nose section of the body, shown in Fig. 1,
is not simulated; instead, the inflow to the domain is placed up-
stream of the base at a location where experimental profiles are
available. At this location, results from precursor simulations are
performed on an axisymmetric body to match the experimental
conditions used in [26]. Although no significant unsteadiness is
noted in the profiles at the Reynolds number considered, the
boundary layer may be susceptible to instabilities. Viscous no-
slip and zero normal pressure gradient boundary conditions are
used on the cylinder surface, whereas freestream conditions were
applied at the radial farfield boundary which is placed approxi-
mately 14D away from all surfaces. At the downstream farfield
boundary, Neumann boundary condition with zero-gradient is
specified for all flow variables.

A structured cylindrical grid is considered with a total of
485, 418 and 285 points in the longitudinal, radial and az-
imuthal directions respectively. The local mesh density is com-
parable to that employed by Garmann and Visbal [28] for a much
higher Reynolds number. A p-refinement study using fourth- and
sixth-order compact difference schemes with sixth-order and
eighth-order implicit filters, demonstrates mesh independence
as discussed in [29]. The filter serves both to ensure numerical
stability, as well as to provide an implicit subgrid closure mech-
anism [35]. Time-stepping is performed using the implicit Beam-
Warming scheme [36] with the diagonalization of Pulliam and
Chaussee [37]. The simulations are performed with a constant
non-dimensional time-step of ∆t = 2.5×10−4, which is sufficient
to ensure temporal accuracy. Further details of the numerical
algorithm used for the simulations can be found in [38,39].

2.2. Linear stability approach

Classical linear stability approach has been used for the cur-
rent vortex pair analysis as briefly delineated below. Results are

presented with the incompressible formulation since, as shown
below, the compressible formulation yields essentially the same
results. The incompressible Navier–Stokes equations in non-
dimensional form are given by:

∇.u = 0 (2a)
∂u
∂t

+ (u.∇)u = ∇p + Re−1
∇

2u (2b)

where u = {u, v, w}
T . The flow field is decomposed into a basic

state (ū, p̄) and perturbations (u′, p′), with the former satisfying
Eqs. (2). The equations governing linear perturbations are then:

∇.u′
= 0 (3a)

∂u′

∂t
+ (u′.∇)ū + (ū.∇)u′

= ∇p′
+ Re−1

∇
2u′ (3b)

where the small non-linear terms, (u′.∇)u′, are ignored. For sta-
bility analysis, a modal form of the perturbations is assumed, with
homogeneity in the x-direction

{u′, v′, w′, p′
}(x, y, z, t) = {ũ, ṽ, w̃, p̃}(y, z)ei(kx−ωt) (4)

where the quantities with (•̃) are two-dimensional amplitude
functions. Substituting this in the perturbation equations (3), the
stability equations are obtained and different eigenvalue prob-
lems are formulated for temporal and spatial analyses as given
in Appendix.

The eigenvalue problems are solved using the iterative Arnoldi
[40] algorithm. Further, the shift-and-invert approach [41] in
the Arnoldi algorithm is used to obtain faster convergence to
desired eigenvalues. A large Krylov dimension (k = 100) is chosen
to ensure that the relevant unstable eigenspectrum around the
shift value is captured. For both temporal and spatial analysis,
distant farfield boundaries are used to allow for homogeneous
Dirichlet boundary conditions for all perturbation variables ex-
cept for pressure, for which the Neumann boundary condition is
appropriate.

For isolated vortex, a computational domain, whose size scales
as y∞/δ ≈ 20, z∞/δ ≈ 20, where δ is the vortex core radius, is
employed for the analyses. The domain used for the two vortex
system is y/δ ∈ [−20; 20], z/δ ∈ [−20 − b/2; 20 + b/2],
where b is the separation between vortices. For discretization, we
follow the approach suggested by Hein and Theofilis [23], where a
mapping ζj of Chebyshev collocation points ηj ∈ [−1; 1] is used,
such that:

ζj = ζ∞

tan cπ
2 ηj

tan cπ
2

(5)



Fig. 2. Computational domain and grid employed for current afterbody simulations. Grids on the center xy-plane of the base, and at downstream farfield location
are shown to illustrate the grid topology. Cylindrical grid with origin at the center of the base and periodicity in the azimuthal direction is used. Domain extends
12D and 14D in downstream (green) and radial farfield (red) directions respectively. Bottom half of the computational domain is not shown. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Spatial discretization for stability analysis.

where ζ∞ is the farfield boundary. The stretching parameter
c ∈ (0, 1] defines the clustering of grid points near the vortex
core. Higher c provides more clustering near the vortex core
while imposing a relatively coarser grid away from the core. This
distribution of points will be referred to as the Cheb-tanh grid.

Fig. 3(a) shows a typical grid clustering for Ny = Nz =

72, c = 0.975, ensuring that the vortex at the center is adequately
resolved. For a vortex pair, the grid distribution requires further
consideration than for a single vortex, because of their separation
along the z-axis connecting their centers. For this, the stretching
parameter, c , is relaxed to encompass both the vortices and the
region between them as shown in Fig. 3(b).

Table 1 shows validations for both temporal and spatial sta-
bility codes used in the study. For the temporal approach, the
classical q-vortex at q = 0.475, Re = 100, k = 0.418 is chosen;
this problem was first examined by Mayer and Powell [43] and
subsequently used for validation in several studies [15,23,25].

The results for the unstable mode are reported along with the
reference results from [25]. Excellent convergence is obtained
with the mapped Cheb-tanh discretization, even for a slightly
smaller domain in [−15 15] and moderate grid size. The stretch-
ing parameter in this discretization is fixed at c = 0.975, ensuring
that the vortex at the center is adequately resolved. A good
match is also obtained with the sixth-order finite difference (FD6)
approach albeit at a higher resolution. The table also includes a
result when a fully compressible stability solver (FD6(C)) is used
for the same q-vortex analysis at a low Mach number (M = 0.1).
Comparing the results between incompressible and compressible
solvers with similar grid and numerical schemes, we note only a
minor difference of about 1% in the frequency and 0.44% in the
growth rate.

For the spatial code validation, the Batchelor vortex study
by Paredes [42] at κ = 0.8, γ = 0.8, δ = 1, Re = 3000 is used for
reference. In Table 1, results for m = 1, ω = 0.86) are compared



Table 1
Validation of stability analyses techniques for q-vortex (temporal) and Batchelor
vortex (spatial) test cases. The leading eigenvalues in both analyses are close to
those in the reference literature. Effects of domain sizes and different difference
schemes are minor. Temporal analysis is also performed with a compressible
solver with sixth-order finite-difference scheme (FD6(C)). At low Mach number
(M = 0.1), compressible solver yields leading modes close to those obtained
with fully incompressible code.
Domain Scheme Resolution λ1

Temporal: q-vortex, q = 0.475, Re = 100
Ref. Paredes et al. [25]: λ1(kr = 0.418) ≡ ωr + ωii = 0.02835 + 0.00962i

[−15 15] Cheb-tanh 40 × 40 0.02834+0.00961i
[−20 20] Cheb-tanh 60 × 60 0.02833+0.00960i
[−15 15] FD6 101 × 101 0.02853+0.00998i
[−15 15] FD6(C) 101 × 101 0.02823+0.01002i

Spatial: Batchelor vortex, κ = 0.8, γ = 0.8, δ = 1, Re = 3000
Ref. Paredes [42]: λ1(ωr = 0.86) ≡ kr + kii = 0.543 − 0.185i

[−15 15] Cheb-tanh 40 × 40 0.5534 − 0.184i
[−20 20] Cheb-tanh 60 × 60 0.5490 − 0.180i

against the values reported in [42]. Even with a moderate 40 × 40
grid, the frequency obtained in the current study is within 2%
of the reported value; the comparison improves with increase
in grid size. For all the results in current afterbody vortices,
Cheb-tanh grid is employed.

3. LES flowfield description

3.1. Three-dimensional flowfield

The overall features of the flow have been described in numer-
ous works; only those aspects pertinent to the current stability
analysis are represented here. Three-dimensional flowfield vi-
sualizations from the current Large Eddy Simulations (LES) are
shown in Fig. 4. The dominant feature arising from flow sepa-
ration around the periphery of the base region is a streamwise-
oriented vortex pair downstream [3,26,28,29]. In Fig. 4(a), a
Q-criterion [44] iso-level (Q = 30) is depicted, colored by stream-
wise vorticity, ωx, together with select superposed streamlines to
provide an indication of the swirling motion in the instantaneous
flow. The counter-rotating streamwise vortex pair as well as the
twisting motion of each vortex in the pair, are clearly evident.
The turbulent flowfield arises as a result of the strong interaction
between the separating shear layer and vortices in the region
adjacent to the upswept base.

Fig. 4(b) displays the mean flowfield using the same flow
variables. The mean was obtained by computing the time average
over 700,000 snapshots encompassing the total non-dimensional
time of Tc ≡ tU∞/D = 175. In the mean sense, each vortex in
the pair gradually assumes an axisymmetric form in the region
outside of the immediate vicinity of the upstream apex. Looking
downstream, the left and right vortices have dominantly positive
and negative streamwise vorticity components respectively. In
the instantaneous flow, Fig. 4(a), there are smaller convecting
structures that are washed out in the time-averaged sense. De-
pending on the Reynolds number, this structure persists in a
range of φ ≤ 45°; descriptions at other upsweep angles in 24° ≤

φ ≤ 45° may be found in [3,26] and [29]. At even higher upsweep
angles (φ > 45°) however, the flow changes to a turbulent wake
regime typical of bluff-body wakes [19,29]. Hysteresis or bi-stable
states are possible, typically at higher angles than that considered
here [19,26,45] but these phenomena are outside the scope of the
current effort.

The phenomenology of the formation of the vortical structures
along the base may be summarized as follows. The boundary layer
approaching the edge separates around the entire periphery to

form a shear layer. The segment separating near the upstream
apex rolls up to form a bubble structure in the symmetry plane
(shown in the inset of Fig. 4(b)). The flow separating around the
periphery is entrained into each vortical structure. The continuity
of the vortex on the symmetry plane permits an alternative
description of the vortex pair as leg components of a single
horseshoe-like vortical structure. Each vortex leg then lifts away
from the upswept base, at about the midway point to form the
streamwise oriented pair. After the vortices orient away from
the surface, the free shear layer arising from separation at the
downstream apex continues to entrain fluid into the vortices for
some distance behind the body. This interaction, although not
crucial in the formation phase of the vortices, affects the motion
downstream.

3.2. Streamwise vortices and meandering

Now, we discuss the evolution of streamwise vortices along
the base and in downstream of the body. This is important
as these vortices exhibit meandering [46] on respective cross-
flow planes, which may be related to their inherent stabilities.
Fig. 5 shows the evolution of these vortices at various crossflow
sections on the mean three-dimensional vortex field. These three-
dimensional structures are obtained using the Q -criterion as
before and shows the development along the base and further
downstream in both vertical and spanwise directions. Along the
vertical direction (xy-plane), the vortices originate at the up-
stream apex and detach at about X/L = 0.5, as discussed earlier.
Vortices continue to evolve after this point with an inclination of
about 5◦ from the streamwise axis. Looking the vortices in the xz-
plane, we note the maximum separation of vortices at X/L = 0.5,
after which the vortices come slightly closer to each other before
becoming almost straight.

The 2D streamwise vortices at different crossflow planes (X/L
= 0.6, 1.0, 1.4, 1.8) are shown through instantaneous ωz con-
tours. The vorticity fields show distortions in the cores as well
as intense interactions of vortices with surrounding shear layers.
At X/L = 0.6, the contorted cores appear very different from
the mean vortices which are circular as evident from three-
dimensional structure. These vortices also interact with the base
shear layer and appear to be connected to base. At X/L = 1.0
and beyond, the instantaneous vortices continue to be distorted
in shape, although there are also significant interactions with
the shear layer coming from the top of the body, which di-
minishes with distance. Fig. 6 shows the mean vortex at a
further downstream location, X/L = 2.0, along with a represen-
tative instantaneous picture. The mean flow is highly symmetric
compared to distorted instantaneous flow. Similar to the results
shown in [29], albeit for a higher upsweep angle, the mean
circulations of left and right vortices here are exactly equal and
opposite.

The distortions in vortex cores manifest as meandering when
observed in time as the vortex centers present a complicated
trajectory. These motions are highly intriguing and have been
studied using stability analysis for several flows like wingtip
vortices [9,47], where the counter-rotating vortices in the pair
are far from each other. However, as shown in Fig. 5, in upswept
afterbody flows, both the vortices form on the same basal plane
and hence may have a greater influence on one another affecting
the stability mechanism. In the later sections, we will investigate
this by considering a suitable vortex pair as obtained from LES.

As the primary interest is in the inherent instabilities in the
vortex pair, we isolate the effects of base or top shear layer
by considering a vortex pair sufficiently downstream from the
body. In this context, we discuss the detailed motion of each
vortex at X/L = 2.0, where the immediate effects of the base



Fig. 4. Longitudinal vortices behind the slanted body. An iso-surface of Q = 30 is plotted, colored by streamwise vorticity ωx . The mean separation bubble near the
upstream apex is shown in inset (b). The configuration is inverted with positive y-axis pointing downward for display purposes. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

region are expected to be greatly diminished. The circulation of
the mean vortex does not change very much beyond X/L =

1.2 [29]. Further, the intervortical separations between the two
vortices also remain nearly constant in this region (see Fig. 5).
It is therefore expected that the characteristics of vortex pairs
would not vary significantly behind the afterbody and therefore
the vortex pair at X/L = 2.0 well represents the vortex system in
afterbody flows at the upsweep angle of φ = 20°. However, both
the vortex strength as well as intervortical separation depend
significantly on the upsweep angle [29], and therefore current
observations do not directly translate to afterbody flows at other
upsweeps.

Fig. 6(a) and (b) show the mean and instantaneous vortices at
the location X/L = 2.0. Compared to mean vortices, the instan-
taneous vortices are elliptic. Further, a close examination of the
vortices reveals the opposite sense of rotation of the fluctuations
based on the sign of the mean vortex. The vortex cores for these
vortices are identified using the Γ1 approach [48]. The core radius
for both the mean vortices in the pair is δ/D ≃ 0.0972, while the
separation between the two vortices is b/D ≃ 0.5456. This gives
the ratio of radius to intervortical separation δ/b ≃ 0.1781. This
is an important parameter that determines the potential nature of
instability and will be further discussed. For future reference, the
two vortices in the pair are designated as L and R vortex based



Fig. 5. Evolution of streamwise vortex along the base of the upswept surface.
Fully 3D vortices are shown using the Q -criterion on the mean flow. Represen-
tative instantaneous 2D vortices are shown at X/L = 0.6, 1.0, 1.4 and 1.8 using
non-dimensional ωz contours between −5 and 5. Blue and red contour colors
represent negative and positive vorticity fields respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

on whether, looking downstream, they are located to the left or
right of the symmetry plane respectively.

In order to show the complex meandering path of vortices at
this location, we plot the displacement in the mean core with
time as suggested by Green and Acosta [49]. The locus of vortex
cores is presented in the form of a phase portrait in Fig. 7. The
trajectory of each core using 100 snapshots, separated by a non-
dimensional time ∆t = 0.025, is shown on the crossflow (yz)
plane. The initial and final positions of each core are marked with
black and red circles, and the position of the mean vortex core is
shown as a large magenta square. While the core of the L-vortex
meanders in the clockwise direction, the meandering trajectory
of the R-vortex is counter-clockwise. The sense of rotation is
the same as the swirl of the vortex, similar to observations on
delta wings [50]. The instantaneous location of each vortex core
deviates significantly from the mean, with ∆dmax/D = 0.05,
where ∆dmax is the maximum displacement of instantaneous core
location from the mean. In order to quantify this phenomenon,
the meandering amplitude am, defined as the average of dis-
tance between instantaneous core (zi, yi) and mean core locations
(zc, yc), is measured:

am =

√ 1
N

N∑
i=1

[
(zi − zc)2 + (yi − yc)2

]
(6)

am values are 0.0288 and 0.0282 for L and R vortex, respectively.
Similar values of the amplitude for both the vortices indicate
their statistically analogous behavior despite seemingly random
motion.

In order to estimate the correlation between meandering in
the two vortices, we compute the correlation coefficient, R, be-
tween L and R vortex by using the displacements of instantaneous
cores from their respective mean positions. Smaller values of

this coefficient indicate lower influence of the vortices on one
another. The correlation coefficient thus obtained by considering
3,000 instantaneous vortices is R = 0.1622. This value is very
near to that reported by Jackson et al. [51], but slightly higher
than that of Bulathsinghala et al. [3]. According to Jackson et al.
[51], these observations are rather independent of the streamwise
location. To further probe the nature of the correlation, the Gaus-
sian joint probability distribution function (JPDF) is plotted in
Fig. 8(a). The maximum probability of the interaction between the
two vortices is observed at dL/D = dR/D ≃ 0.028. Since the mean
vortices are separated by b/D ≃ 0.06, a reasonable inference
is that the interaction may only become important when the
instantaneous vortices are closest to the symmetry plane. The
JPDF diminishes as the vortices move away from the symmetry
plane. Although the above analysis suggests the effects of vortices
on one another are weak, these calculations do not include the
crucial axial velocity component that can play a significant role
in determining the instability mechanism responsible for the
meandering of these vortices as discussed in Section 4.

The frequency of the meandering motion at this location is
characterized using the spectral signature of the instantaneous
vortices at the mean vortex core location. Fig. 8(b) shows the
power spectral density (PSD) of fluctuations of v-velocity for the
R-vortex using a long time-series signal, tU∞/D > 60. The signal
shows a frequency band in Strouhal number based on diameter
StD ≡ fD/U∞ ∈ [0.3 2.0], with several low (StD ≃ 0.3, 0.6) and
high (StD ≃ 1.0, 1.4, 1.6) frequency peaks. The maximum spectral
energy is observed at StD ≃ 1.0. Though not shown for brevity,
similar frequency content is also obtained for the L-vortex. High-
frequency peaks in the range StD ∈ [1.4 1.6] were also observed
in the LES studies at high Reynolds number [28], whereas [27]
reported strong tones at low-frequency, StD ≃ 0.4, in addition
to the high-frequency peaks for a range of Reynolds numbers.
Zigunov et al. [27] also postulated the high-frequency content
to be related to the shear layer downstream of the body, while
the low-frequency fluctuations were conjectured to be related
to interactions between the cores as observed in several vor-
tex meandering studies [1,6,9]. Detailed stability analyses of the
vortex pair are performed in the next section to investigate the
vortex–vortex interactions as well as effects of the axial velocity
component.

4. Linear stability analysis

Linear stability analysis is now employed to provide insights
into the physical mechanism of meandering by extracting the
underlying modal structures, frequencies and wavenumbers that
form the basis for the observed phenomena. Jacquin et al. [52]
have observed that the cooperative interactions between the
vortices affect the similar frequency range as meandering. Two
typical instabilities of interest due to the mutual induction be-
tween counter-rotating vortex pairs are those designated elliptic
and Crow. The former is of short-wavelength and incurs an in-
ternal deformation of the vortex cores with a wavy displacement
of the vortex center [53–55]. This instability thus can be viewed
as a resonance between two normal modes of a vortex and an
external strain field induced by the neighboring vortex. The Crow
instability [56], on the other hand, is three-dimensional, in which
perturbations displace the vortices locally as a whole without
any change in their core structure; the observed wavelengths are
large compared to the core radius. This instability can be observed
in aircraft tip vortices [57].

A rough estimate of the features of these instabilities, if
present, can be obtained by considering the characteristic length
scales in the vortex pair, namely the core radius δ and the
inter-vortical separation b; their ratio, δ/b, indicates the relative



Fig. 6. Crossflow vortex field at X/L = 2.0 for the mean flow (a) and a representative instantaneous flow (b) shown using ωz .

Fig. 7. Phase-portrait of instantaneous vortices at X/L = 2.0. The location of the mean vortex is shown as the large filled square. Black and red circles respectively
indicate the beginning and end of the trajectory. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

distance between the vortices. As discussed earlier, for the cur-
rent flow the value of ratio δ/b is about 0.18. This value lies in
the range [0.1 1.2] that can trigger both long and short wave
instabilities [58], though Reynolds number considerations are also
important, which will be considered in the subsequent analysis.

The instabilities existing in the flowfield are now investigated
in detail through both temporal and spatial stability analyses of
the representative streamwise vortex pair. The possibility of a
global mode is not examined in the current work but pursued in
a separate study [59] albeit at a lower Re. Leweke and Williamson
[60] have argued that three-dimensional instabilities in the wake
could be linked to general 2D stability mechanisms such as el-
liptic instability. Parallel flow is assumed in the streamwise di-
rection; this is a reasonable assumption since the streamwise
variation of the mean flow is relatively small at distances suffi-
ciently downstream of the body such as those considered here.
As such, stability characteristics of the vortices predicted with
parallel flow assumption provide a reasonable description of the
meandering phenomena [15].

4.1. Basic state

The mean afterbody vortex pair at X/L = 2.0 as discussed
earlier is considered for the stability analysis and the basic state

is obtained by mapping this flow to an equivalent theoretical
vortex model. The fitting of an afterbody vortex to a known
theoretical model enables the examination of pure vortex without
any numerical noise while retaining essential properties, and also
allows comparisons with other physical vortices investigated in
the literature. Further, a fitted model vortex offers the flexibility
to extend the domain arbitrarily without compromising effects
due to boundaries. García-Ortiz et al. [13] have argued that in
wingtip vortices, the use of classical vortex models allows gener-
alization to a set of theoretical parameters and thus can be useful
for comparing different passive and active control strategies.

Afterbody vortices, such as the ones of interest, are character-
ized by two components: swirl and strain. While the swirl effect
is accounted through the radially varying in-plane velocity field,
the axial velocity provides the strain field [61]. The vortical field
at location X/L = 2.0 was shown earlier in Fig. 6, while the
axial velocity distribution in the vortex is shown in Fig. 9(a). As
expected, the velocity is minimum at the center of the vortex
and increases along the radial direction, eventually reaching free-
stream values about 10 core radii (δ) away from the center. The
quantitative profiles in Fig. 9(b) at different vertical locations
show typical wake-like behavior. The relatively close proximity
results in the observation that the magnitude of ū between the



Fig. 8. Characterization of streamwise vortex pair at X/L = 2.0. (a) Gaussian joint PDF of instantaneous vortices. (b) Spectral content in vortex core fluctuations using
Welch PSD for the R-vortex. Non-dimensional frequencies are shown based on the cylinder diameter, StD = U∞D/ν as well as vortex core diameter, Stδ = U∞δ/ν.

Fig. 9. Axial velocity distribution at a streamwise location X/L = 2.0. (a) ū
contours. (b) Wake-like behavior shown by velocity distributions at different
vertical locations measured from the vortex center. (c) Fitting of axial velocity
from simulations to the Batchelor vortex. The thick black line indicates the
azimuthally averaged axial velocity, and the red dashed line indicates the axial
velocity in the fitted Batchelor vortex. Note the vortex in the simulation is
recentered at (0,0) after interpolating to the cylindrical coordinate system. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

vortices is lower than the free-stream flow velocity. This moti-
vates the use of a vortex pair as opposed to an isolated L or R
vortex for the present analysis.

Wake vortices have been modeled with different theoreti-
cal models that contain their characteristic information. Vortex
models used in the literature for analyses of wingtip or similar
vortices include the Batchelor or q-vortex [9], Lamb–Oseen vor-
tex [62], Lamb–Chaplygin vortex [63], Rankine vortex [64] and
Moore–Saffman vortex model [65]. Among these, the Batchelor

and Moore–Saffman models account for axial flow and hence are
more realistic in providing the dynamics of interest in this work.

We employ the Batchelor model to match the individual vor-
tices in the current streamwise vortex pair as the role of the
axial velocity in the stability mechanism may be crucial. Although
this model vortex is typically expressed in cylindrical coordinates,
we analyze them in the Cartesian system to account for the two
vortices in the pair. In this system, the velocity components for
the Batchelor vortex can be written as [25]:

u = 1 − γ (x) exp
(

−r2

δ(x)2

)
(7a)

v = −
κ

r2
(z − z0)

(
1 − exp

(
−r2

δ(x)2

))
(7b)

w =
κ

r2
(y − y0)

(
1 − exp

(
−r2

δ(x)2

))
(7c)

where (y0, z0) is the center of the vortex and r2 = (y−y0)2 + (z−

z0)2. The quantity δ(x) corresponds physically to the dimension-
less local vortex core radius. γ (x) is the axial velocity defect and
κ is a swirl strength parameter.

For the current analysis, one vortex is first matched to the
model, and the other anti-symmetric vortex is then placed at the
separation distance b. The simulation results are first interpolated
on a cylindrical grid and the axial velocity u is then azimuthally
averaged to obtain the parameters for the fitted Batchelor vortex.
Edstrand et al. [9] have found that stability results are insensitive
to the averaging process. Fig. 9(c) shows the radial variation of
axial velocity at different azimuthal locations. The azimuthally
averaged vortex velocity, as well as the fitted Batchelor vortex
model, are also shown.

Fig. 10 compares the velocity fields in mean R-vortex obtained
directly from simulations with those of the fitted vortex used for
stability analysis. All the three velocity components considered in
the model show good match with the LES data. The parameters
of this matched Batchelor vortex are δ = 0.0972, γ = 0.365, κ =

0.07, to obtain a non-dimensional swirl parameter q = κ/(δγ ) =

1.9731. This value of q is much smaller than the q = 4.41
obtained for trailing edge vortex in [9]. The present parameters
correspond to a Reynolds number based on the core radius as
Reδ ≡ U∞δ/ν ≃ 2500, which is much lower compared to Reδ =

27,200 used in the stability study of wingtip vortices [9].



Fig. 10. Top: R-vortex from the simulation. Bottom: Theoretical Model (Batchelor vortex). U, V ,W velocity components are shown from left to right. Note the
R-vortex in simulation is centered to (0,0) to compare with the fitted Batchelor vortex.

Fig. 11. Eigenspectrum from spatial analyses of an isolated vortex for a range of frequencies (a). Shaded portion indicates the region of growing modes (ki < 0). The
least stable mode at ω = 1 shows m = 1 elliptic instability (b).

4.2. Stability mechanism

Now we present the results from linear stability analysis.
Consistent with the simulations, a spanwise coordinate system is
used in which two inhomogeneous spatial directions, y and z, are
resolved simultaneously, while the axial direction, x, is considered
to be locally homogeneous.

Before showing the dynamics of the vortex pair, we first
discuss the stability characteristics of an isolated vortex. Fig. 11(a)
shows results from spatial analyses of this vortex for input fre-
quency varying from ω = 0.1 to ω = 6.0. A 60 × 60 grid on a
domain of y∞, z∞ ≈ 20δ with stretching factor c = 0.975 is used
for these analyses. As seen from the figure, the vortex is stable
for the entire frequency range ω ∈ [0.1 6.0]. The vortex becomes
increasingly more stable as the frequency is increased. For the

lowest input frequency ω = 0.1, the least stable mode is obtained
at k ≡ kr + iki = 0.0992+ 0.0023i; the positive value of ki in the
spatial analysis indicates a decaying mode (see Appendix). The
spatial structure of a representative mode at ω = 1 is shown in
Fig. 11(b). Both the axial velocity and vorticity fluctuations show
dipole structures indicating the |m| = 1 elliptic mode; this mode
is typically observed to be the dominant instability mechanism in
wake vortices [1,9].

Now we consider the change in stability characteristics due to
the presence of a counter-rotating vortex next to the above stable
vortex. Based on the LES data, the counter-rotating mean vortex
centers are separated by b/δ = 5.6132. This relatively large
separation between the vortices increases the computational re-
quirement enormously because the stretching parameter needs
to be relaxed to as low as 0.75, with a corresponding increase



Fig. 12. Eigenspectra from temporal analyses of the vortex pair for a range of wavenumbers (a). Shaded portion indicates the region of growing modes (ωi > 0).
Structure of the fastest growing mode at all wavenumbers is shown in (b).

in the grid size to ensure sufficient accuracy. The parallel spatial
analysis, performed above for the isolated vortex, is natural for
the study of the vortex pair also, since it directly provides the
wavenumber at which the flow can become unstable. However,
since the grid size required for vortex pair is significantly larger
(up to 150 × 150) than that for an isolated vortex, the compu-
tational burden is eased by first performing temporal stability
analyses for a given wavenumber range, while spatial analysis at
the most unstable frequency is later employed to further ensure
the accuracy of results.

The temporal analysis results for a streamwise wavenumber
sweep of k ∈ [0.5 6.0] are shown in Fig. 12(a). These results
are obtained by using a 140 × 140 Cheb-tanh grid that gives
a dense matrix of 78,400 × 78,400. The vortex pair displays
unstable eigenmodes at wavenumbers 1.0 ≤ k ≤ 3.0, with
growth rate increasing between k = 1.0 and k = 2.0. As the
input wavenumber increases beyond k = 2.0, the modes become
less unstable and only stable modes are recovered for k > 3.0.
For the subsequent analyses, we focus on the wavenumber k =

2.0 at which the fastest growing modes are recovered. Fig. 13(a)
shows the convergence of dominant modes in the eigenspectrum
at this wavenumber as obtained by performing the analysis on
a finer 150 × 150 grid. Both grids recover most unstable modes
at ω ≡ ωr + iωi = ±1.988 + 0.0417i (note only the positive
frequency ωr mode is shown). The phase speed of this mode is
cr ≡ ωr/k = 0.9940.

In order to confirm that spatial analysis also recovers similar
instabilities, we show the eigenspectrum from this approach at
input frequency ω = 2.0 in Fig. 13(b). Note that the matrix
size for the spatial problem is very large (137,200 × 137,200)
for a similar grid size of 140 × 140 and solving this eigenvalue
problem with a Krylov size of 100, requires about 100 gigabytes
of the physical system memory. The spatial analysis recovers
an unstable mode at k ≡ kr + iki = ±2.0138 − 0.0473i as
shown in the unstable region (ki < 0) in Fig. 13(b). The phase
speed of this mode, cr ≡ ω/kr = 0.9932, is very similar to
that obtained from the temporal analysis earlier. The recovery of
analogous instabilities in both spatial and temporal approaches
further validates present observations.

The structure of this mode as obtained from both temporal
and spatial approaches is very similar as shown in Fig. 12(b). The
shape again exhibits a dipole form representing the |m| = 1

elliptic mode for both vortices in the pair. This dipole is extracted
in both the axial velocity and vorticity fluctuations, but it is
symmetric about the mid-plane (z = 0) in the former, but anti-
symmetric in the latter. This is consistent with the symmetry of
the mean flow. The inclination of the dipole with respect to the
horizontal axis is about 30◦.

The frequency of the most unstable mode as obtained from
the temporal analysis is ω ≃ 1.988, or equivalently StD ≃ 0.32.
This low-frequency was observed in the vortex flowfield through
spectral analysis (Fig. 8(b))). In the experimental work of Zigunov
et al. [27], this low-frequency was observed and was conjectured
to be related to fluctuations due to interactions of cores. The
present stability analysis confirms this hypothesis and establishes
meandering as a low-frequency phenomenon in afterbody flows
in similarity with vortices in aircraft wakes [52]. The linear re-
ceptivity analysis of Bölle et al. [12] indicates the presence of a
frequency-dependent non-normal mechanism, which enables a
description in terms of freestream disturbance forcing and vortex
core response. A crucial finding relevant to the energetic dynam-
ics is the relative lack of dependence on freestream intensity on
the frequency response.

To further confirm the role of the interaction between the
vortices as a necessary mechanism for the recovery of unstable
modes, we perform the temporal stability analysis for an isolated
vortex with the same swirl and strain as in each individual vortex
in the pair. Fig. 14(a) shows the result from this analysis along
with grid convergence for the dominant modes as obtained with
two grids. Unlike in the two-vortex system, all modes recovered
in this analysis are decaying. The least stable modes are found
at ω = ±2.0001 − 0.0047i exhibiting dipole structures for both
vorticity and axial velocity, which is similar to that shown in
Fig. 11(b).

The external strain field is influenced by the neighboring vor-
tex, and is accounted for in the stability calculations through the
axial velocity component. The correlation analysis of Section 3.2,
based on the phenomenological description of instantaneous vor-
tex cores on a sectional plane, indicates only weak influence
of the vortices on one another. That analysis, however, did not
include the axial velocity component, whose role in destabilizing
the vortices is now clarified. A stable vortex can become unsta-
ble even without the presence of axial flow (as in the Kelvin
vortex) due to an elliptic instability of the core; however, the



Fig. 13. Eigenspectra from temporal (a) and spatial (b) analyses of the afterbody vortex pair. Both approaches show analogous instabilities at a phase speed of about
0.99.

Fig. 14. Eigenspectra from temporal analysis at k = 2.0. (a) Isolated vortex with axial velocity. (b) Vortex pair with no axial velocity.

presence of an axial flow can make an otherwise stable vortex
unstable [64,66]. In order to examine the effects of this strain,
the temporal stability analysis was repeated on the afterbody
vortex pair by setting the axial velocity to zero. The problem then
becomes essentially similar to Rankine vortex models used in the
literature to study elliptic instabilities [16]. The eigenspectrum
thus obtained is shown in Fig. 14(b). A key observation is that
unlike the analysis with the axial velocity (Fig. 13(a)), no unstable
mode is recovered in this calculation. Further, the modes are far
removed from the zero axis. Although not shown, the shapes of
dominant modes continue to show helical structures. The present
analysis thus shows that it is necessary to consider a vortex
model that includes the strain field in order to recover the correct
instability behavior in afterbody vortices.

Finally, the possible presence of long-wavelength (small k)
Crow instability in the flow is investigated. The least stable mode
at k = 2 in Fig. 12(b) is inclined at 30◦ to the horizontal. The Crow
instability on the other hand typically manifests a 45◦ inclination
in the structure [67]. To confirm this further at low wavenumbers,
the temporal analysis was performed using a k-parameter sweep
between 0.0 and 1.0 at increments of 0.1. Fig. 15 shows the
resulting eigenspectra for all these wavenumbers for the current
vortex pair. No unstable mode is observed in the k-range of
[0.0 0.4], and the first unstable mode occurs at k = 0.5. The
growth rate of modes continues to increase with wavenumber

until k = 2.0 as discussed earlier. This indicates the absence
of the Crow instability in this flow, although simulations with a
longer domain may be necessary to establish this fact numeri-
cally. Further, the flow conditions that lead to a change in the
non-dimensional swirl parameter or the Reynolds number may
affect this observation, as discussed in [23]. Another key param-
eter in the analysis that determines the interaction between the
two vortices is the separation distance, b/δ. As stated earlier, if
this distance varies substantially with the upsweep angle φ of
the afterbody, the analysis needs to be repeated to examine the
stability mechanism.

5. Conclusions

High fidelity simulations are employed to examine the insta-
bility dynamics of a pair of relatively closely spaced streamwise
vortices arising from a flat upswept basal surface. Such vor-
tices arise in various three-dimensional scenarios such as Ahmed
bodies, cars and trains. In this study, a simulated cargo aircraft
fuselage aft section with a representative 20° basal upsweep is
considered because of its implication on cargo drops and down-
stream aircraft. The primary feature, a horseshoe-shaped struc-
ture, develops around the periphery of the base and ultimately
lifts away from the surface to manifest a three-dimensional, gen-
erally streamwise-oriented, vortex pair. Large Eddy Simulations



Fig. 15. Eigenspectra from temporal analyses of the afterbody vortex pair at low wavenumbers. No unstable modes are recovered below k = 0.5.

show that beyond the region directly influenced by the basal
surface, the wake vortices are generally axisymmetric in the mean
sense and exhibit low-frequency meandering in space and time.
This motion is characterized by seemingly random displacement
of the vortex cores, although the time trajectory of the displace-
ment of the core shows a rotation sense commensurate with
the swirl in the vortices. The instability mechanism underlying
meandering is analyzed using a linear stability approach on the
time-averaged streamwise vortex pair. The mean vortex obtained
from the simulations is first matched to a suitable Batchelor
vortex; a counter-rotating model vortex is then placed at an ap-
propriate separation distance, derived from the LES, from the first
vortex. Both spatial and temporal analyses confirm the presence
of an elliptic instability with the structures of the unstable modes
being similar to |m| = 1 modes. For an isolated vortex, these
modes are found to be stable. Swirl and strain effects are also
delineated for the vortex pair, and for the current conditions, the
effect of compressibility is shown to be minimal at low Mach
number ofM = 0.1. The unstable modes are obtained at relatively
low frequency with the presence of axial velocity as primary
mechanism for instability; connections to literature on resolvent-
based analyses of the influence of freestream disturbances are
noted. On the other hand, the long-wavelength Crow instability is
found to be absent for this vortex pair at the separation distance
dictated by the geometry and flow parameters in this study.
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Appendix. Linear stability equations

Linear stability equations are obtained by substituting the
modal form of the perturbations (4) in the linearized Navier–
Stokes equations (3),⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎣
L Uy U z 0
0 L + V y V z Dy

0 W y L + W z Dz
0 Dy Dz 0

⎤⎥⎥⎦
  

A0

+ k

⎡⎢⎢⎣
iU 0 0 i
0 iU 0 0
0 0 iU 0
i 0 0 0

⎤⎥⎥⎦
  

A1

+ k2

⎡⎢⎣IRe−1 0 0 0
0 IRe−1 0 0
0 0 IRe−1 0
0 0 0 0

⎤⎥⎦
  

A2

−ω

⎡⎢⎣ i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0

⎤⎥⎦
  

B

⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎣ ũ

ṽ

w̃

p̃

⎤⎥⎦ = 0

where

L = VDy + WDz −
Dyy + Dzz

Re
. (A.1)

Dy,Dyy etc. represent first and second-order differentiation ma-
trices. I is the identity matrix.

For the temporal analysis, the real wavenumber k is specified,
while ω = ωr + iωi is a complex quantity denoting the circular
frequency, ωr , and growth rate, ωi. The generalized eigenvalue
problem, following Eqs. (A.1), is then:

Aq̃ = ωBq̃. (A.2)

with q̃ = {ũ, ṽ, w̃, p̃}T and A = A0 + kA1 + k2A2.
For spatial stability analysis, the streamwise wavenumber k =

kr + iki represents the complex eigenvalue, with ki < 0 indicating
spatial exponential growth, and ω is a real specified circular
frequency. In this case, Eqs. (A.1) present a quadratic eigenvalue
problem:

(A′

0 + kA1 + k2A2)q̃ = 0 (A.3)

with A′

0 = A0 − ωB.



Although the problem can be solved directly, the quadratic
eigenvalue problem can become very expensive for large matri-
ces. Therefore, it is converted into a linear eigenvalue problem by
using the companion matrix technique [68]. The matrix size of
this spatial eigenvalue problem is therefore 75% higher than the
temporal approach due to the padding of three auxiliary variables
at every grid point.
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