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Abstract

We present an isogeometric homogenization theory (IGH) for efficiently identifying homogenized 
and local creep and relaxation response of linearly viscoelastic polymer composites with different 
microstructural parameters. The principal idea is to construct exact geometric representations of 
both two- and three-dimensional unit cell microstructures for periodic materials by utilizing 
multiple conforming NURBS patches that are also employed for the displacement field 
interpolation function at the local scale. The IGH-based unit cell formulation is then converted to 
the viscoelastic solution with the Laplace-Carson space parameters via the correspondence 
principle. Subsequently, we leverage the Zakian formula to reverse the transformed IGH solution 
and obtain the homogenized creep and relaxation response of the composite in the original time 
space. The modelling and predictive capabilities of the IGH theory have been extensively validated 
vis-à-vis the elasticity-based and conventional finite-element homogenization techniques, and the 
advantages of the proposed technique over the reference techniques were demonstrated. 

Keywords: Polymer composites; Isogeometric analysis; Homogenization theory; Viscoelasticity; 
Micromechanics

1. Introduction

The growing utilization of polymeric composites in a broad range of applications, such as 
aerospace, wind energy, marine, and automotive industries, requires the development of 
computational tools to quantify their long-term behavior. The polymer composites are viscoelastic 
and heterogeneous solids, exhibiting important creep and relaxation phenomena that are 
characterized by the instant elastic and viscous response that changes over time. The latter 
significantly affects the durability and sustainability of the polymer composites [1-3]. Therefore, 
the investigation of the relaxation and creep behavior of the polymer composite materials at the 
global and constituent phase levels is crucial for efficiently designing durable and sustainable 
composite components that cater to the particular requirements of various applications. However, 
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conducting experimental assessments of the long-term behavior of polymer composites is an 
arduous and expensive process. Hence it is only feasible for a restricted range of material 
combinations and volume fractions.

         The use of homogenization approaches is an appealing alternative to the experimental 
characterization of the effective creep and relaxation response of polymer composites containing 
varying combinations of reinforcement and matrix properties and volume fractions [4, 5]. 
Although the simple micromechanics and homogenization theories, namely, the cylindrical 
cylinder/sphere assemblage (CCA) [6], the generalized self-consistent method [7], and the Mori-
Tanaka method (MT) [8], are effective in predicting the homogenized elastic stiffness tensor of 
fiber- or particle-reinforced composite materials across a broad range of volume fractions, they 
fail to provide precise local stress fields and thus the homogenized inelastic response [9]. This is 
because the classical micromechanics models do not account for the interaction with the adjacent 
inclusions. The need for accurate local stress field predictions motivates the continuous 
development of numerical or semi-analytical models for periodic composites that require more 
sophisticated numerical and analytical treatments [10]. The elasticity theory-based 
homogenization approach that considers periodic boundary condition implementation appears to 
be the method of choice for local stress recovery because the stress equilibrium equations are 
satisfied exactly in a pointwise manner. Nevertheless, the elasticity-based periodic 
homogenization technique is scarce in the literature because of the inherent challenge of satisfying 
both displacement and traction periodicity conditions along the edges of the unit cell 
simultaneously. The locally-exact homogenization theory (LEHT) developed by Drago and 
Pindera [11] is an exception thanks to a new balanced variational technique for the implementation 
of periodic boundary conditions. Additional studies on the modelling of the relaxation and creep 
behavior of polymer composites were discovered that utilized numerical homogenization 
methodologies [12-16]. However, the conventional numerical techniques necessitate substantial 
mesh discretizations in order to precisely represent the reinforcement shape and arrangement or to 
satisfy the interfacial traction and displacement continuity conditions. These challenges are both 
essential and demanding to depict the local field variable distributions when there is a significant 
constituent modulus contrast. Hence, these methods are not inherently suited for analyzing 
heterogeneous materials.  

The isogeometric analysis method (IGA), proposed by Hughes and his coworkers [17, 18], 
aims to unify the representation of geometric models and mesh models by directly employing the 
spline functions as the shape functions. The errors produced by geometric approximations inherent 
in conventional finite-element and finite-volume techniques could be greatly reduced because the 
same model is used for both modeling and analysis. Additionally, the high orders and high 
continuities of spline basis functions such as NURBS [19], T-spine [20], PHT-spine [21], could 
provide more accurate and robust results in numerical simulation even under the situation of mesh 
distortion [22]. The aforementioned elegant features have attracted broader attention in 
computational mechanics communities and make IGA a very interesting alternative for numerical 
simulations. 

In recent years, there has been limited research on the incorporation of IGA into 
computational homogenization. Matsubara et al. [23] were perhaps the first to investigate the 
handling of heterogeneous materials and periodic boundary conditions using the IGA framework. 
In their work, numerical material testing (NMT) and numerical plate testing (NPT) were 
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successfully conducted by employing a master-slave scheme in imposing multiple-point 
constraints under the situation of infinitesimal deformation. Alberdi et al. [24] combined finite 
deformation computational homogenization and isogeometric analysis to solve representative 
volume element (RVE) based multiscale problems. An IGA2 method [25] is implemented for the 
two-scale modelling of higher-order continua across length scales. The high-order basis functions 
in IGA are believed to be valuable to approximate independent fields in both micro and macro 
scales. Additionally, RVE-based computational homogenization in conjunction with isogeometric 
analysis has been successfully applied for structural simulation [26] and optimization [27]. 

The scope of the current manuscript is to present a zeroth-order isogeometric 
homogenization (IGH) theory for identifying the viscoelastic response of polymer composites with 
different microstructural parameters via the correspondence principle. Both two- and three-
dimensional unit cells for periodic materials are constructed by utilizing multiple conforming 
NURBS (nonuniform rational B-splines) patches. Rather than solving the integral form of the 
stress-strain relation in the time domain incrementally, we leveraged the elastic-viscoelastic 
correspondence to convert the isogeometric unit cell formulation to the viscoelastic solution in the 
Laplace-Carson domain. The efficacy of implementing the correspondence principle in the IGH 
theory is contingent upon the efficient and accurate inversion of the Laplace-transformed unit cell 
solution back into the time domain. In this work, the inversion formula developed by Zakian [28] 
was utilized for this purpose. This is verified by an extensive comparison of the IGH predictions 
with those generated by the LEHT theory in the literature and the conventional finite-element 
techniques. 

2. Theoretical framework

2.1 Elastic-viscoelastic correspondence principle for composite materials

The root idea of the elastic-viscoelastic correspondence principle for linearly viscoelastic 
heterogeneous media [29] is to transform the solution for the unit cell problem of periodic 
microstructural materials to the viscoelastic solution in the Laplace domain. To obtain the 
transformed solution, we substitute the displacement, strain, and stress vectors in the elastic 
solution with their respective Laplace transforms, , while      ˆˆ ˆ,   ,   i i ij ij ij iju u s s s     

the elastic stiffness tensor is replaced by their Carson transforms:  with  ˆ
ijkl ijklC sC s

 (2)   
0

ˆ d
s st

ijkl ijklC s C t e t 

In the above equation,  represents the Laplace variable. In the Laplace-Carson domain, the unit s
cell problem is formulated using the isogeometric homogenization developed in the following 
subsections.

2.2 NURBS basis function

NURBS has occupied the dominant position in CAD files due to its excellent properties in 
geometric modeling and a series of equipped algorithms. More importantly, it unifies the 
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mathematical expression of free-form and analytic geometries and evolves to be the unique 
standard for representing free-form shapes in international standards like IGES and STEP. 

Given a non-decreasing knot vector , where  is called the knot, n  1 2 3 1, , , ,        n p i

is the number of control points and p is the degree, a sequence of B-spline basis functions is defined 
recursively as [19]：
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for p > 0. From the above definitions, we note that the B-spline functions are piece-wise 
polynomial functions. For the i-th basis function, its valid parametric domain is  and 1[ , ]i i p   

there are  non-zero basis functions across the non-zero knot interval . 1p   1,i i  

Let 1 and 2 be the knot vectors in  and  directions with degrees p and q, respectively, a 
NURBS surface could be defined as
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where  is the coordinate vector, Ri is the NURBS basis function and wi is the weight related to iP
the i-th control point. Parameters n and m indicate the number of control points in two directions. 
The function  is the bivariate B-spline basis functions, expressed as . The ( ),AN ξ η ( ) ( ), ,i p j qN ξ N η
subscript is computed by . It should be noted that the continuities of a NURBS ( )1A n j i= - +

curve are Cp-k  at inner knots, where k is the multiplicity of the corresponding knots.

Similarly, a trivariate NURBS solid with parameters (, , ) could be written as

 (6)( ) ( ) ( )
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where the trivariate B-spline basis function  is defined as ( ), ,AN ξ η ζ
and the subscript is given by .  ( ) ( ) ( ) ( ), , ,, , =A i p j q k rN ξ η ζ N ξ N η N ζ ( ) ( )1 1A nm k n j i= - + - +
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2.3 Isogeometric homogenization in the Laplace-Carson domain

We center on a fundamental repeating build block or unit cell, which can be replicated in two- or 
three-dimensional space, depending on the microstructures under investigation. These replicated 
units form the complete periodic microstructural materials. The unit cell is further discretized into 
NURBS surfaces or trivariate solids. As illustrated in Figure 1, the elements in the isogeometric 
homogenization are generated by combining the basis functions  and control points  (red AR AP
dots in Figure 1). The physical domain's element, which is an image of the normalized square 
reference element in the parent space, undergoes an additional mapping in the parametric space 
due to the use of NURBS basis functions for discretization, a feature that is absent in conventional 
FE formulations.

Figure 1 Diagrammatic interpretation of mesh discretization for a bi-quadratic NURBS surface (2x2 elements) and 
mappings from parent space through parametric space to physical space. The control points are denoted by the red 
points

Within the context of zeroth-order homogenization [30-32], the Laplace-transform of the 
displacement variables in the  element can be expressed as a two-scale expansion, which thq

contains the contributions from both macroscopic strain loading  and microstructure- îj s

induced fluctuating contribution  as follows:   ˆ ,q
iu s y

(7)         ˆˆ ˆ, , , ,    1, 2,3q q
i ij j iu s s x u s i   x y y

The global coordinates  represent the overall response of the equivalent  1 2 3, ,x x xx
homogenous medium, while the local coordinates  describe the interior response of  1 2 3, ,y y yy
the unit cell. Different from that unknown variables are defined on the interpolated node in the 
conventional FE method, they are defined directly on the control points, called control variables 

in isogeometric analyses. Let  be the Laplace-transform of fluctuating         T

1, 2, 3,ˆ ˆ ˆ ˆ, ,      
q q q q

A A A Au u uu

nodal displacement vectors at the th control point, then the fluctuating displacement variables A
of the NURBS-based geometry are approximated as:
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  (8)       ˆ ˆ,


  
A n

q q
A A

A
s R su y u

where  ,  is the number of control points.     T
1 2 3ˆ ˆ ˆ ˆ, ,    qq u u uu n

The above displacement field yields local strain in the element as shown below:thq

  (9)               , ,
1ˆ ˆˆ ˆ ˆ ˆ, , , ,
2

q q
ij ij ij ij i j j is s s s u s u s           y y y y

where  represents the Laplace transform of fluctuating strains that can be expressed as:   ˆ ,q
ij s  y

(10)         ˆˆ ,q q qs s ε y B U

where  , ,  denotes the      T
11 22 33 23 13 12ˆ ˆ ˆ ˆ ˆ ˆˆ , , ,2 ,2 ,2            qqε    1

ˆ ˆ ˆ ˆ, , , ,q
A n   U u u u   qB

displacement-strain matrix:

 (11)            
1 3 2

2 3 1

3 2 1

T

, , ,

1 2 , , ,

, , ,

0 0 0

, , , , , , 0 0 0

0 0 0

A y A y A y
q q q q q q

A n A A y A y A y

A y A y A y

R R R

R R R

R R R

 
 

   
 
  

B B B B B B 

The total potential energy integral  in the transformed domain is computed through  s
the assembly of the potential energy integral at the element level. This is achieved by enforcing 
control point equilibrium and fluctuating displacement continuity, together with periodic boundary 
conditions (  is omitted for simplicity) [33]:s

 (12)   T T T T T T1 1ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆd d d
2 2V V V

s V s V s V V        ε Cε U B CB U U B C ε σ ε

where  denotes the unit cell volume,  contains Laplace-transform of fluctuating V ˆ U
displacements from all the control points and  denotes the homogenized stresses in the σ̂
transformed domain. Then, the total potential energy is minimized vis-à-vis the global fluctuating 
displacement vectors , , which yields the following global system of  ˆ sU  ˆ 0s   U
equations for the determination of  unknown fluctuating displacements:

 (13)  ˆˆ ˆ s KU f

where  ,   . T ˆˆ d
V

s V K B CB Tˆ ˆ ˆd V
s Vf B C ε
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To derive the homogenized or effective Hooke’s relation in the Laplace-Carson domain, a 
prescribed unit macroscopic strain  is imposed sequentially six times, whose     0t H t ε

Laplace transform is . The effective Hooke's law is obtained by averaging local   0ˆ s sε
constitutive relations in each element, which are determined through the solution of the unit cell 
problem in the Laplace-Carson space:

 (14)     1 ˆ ˆˆ ˆˆ dq q
q

q
s s V s

V
 σ C ε C ε

2.4 Inversion scheme

Having acquired the homogenized (effective) stiffness and compliance tensors in the Laplace 
domain, the overall relaxation moduli and creep compliances in the time domain are obtained by 
leveraging the inversion scheme proposed by Zakian [28].  Specifically, to obtain the homogenized 
relaxation moduli in the specific time , the unit cell problem in the Laplace-Carson domain is t
solved through the allocation  for . The overall relaxation functions at a   is i t 1, ,5i  
specific time  are evaluated using the following equations:t

  (15)   
5

*

1

2 ˆRe i i
i

t K t
t





   C C

where the complex coefficients  and   are given in Table 1. The efficiency and accuracy of iK i
Zakian’s inversion scheme have been demonstrated by Wang and Pindera [34] and Chen et al. 
[15] in the framework of LEHT and finite-volume homogenization theories, respectively.  

Table 1 Coefficients for Zakian’s inversion scheme [28]

Complex coefficients Complex coefficients

1K −36902. 08210+196990.4257i 1 12.83767675+1.666063445i

2K +61277. 02524+95408. 62551i 2 12.22613209+ 5.012718792i

3K −28916.56288+18169.18531i 3 10.93430308+8.409673116i

4K +4655.361138−1.901528642i 4 8.776434715+11.92185389i

5K 118.7414011−141.3036911i 5 5. 225453361 +15.72952905i
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3. Convergence study

The isogeometric homogenization theory utilizes the weak form solution of the unit cell boundary 
value problem, which provides approximate satisfaction of the equilibrium of the local problem 
upon sufficient mesh refinement. Additionally, the complexity of microstructures necessitates the 
use of multi-patches for discretizing the unit cell. While the proper order of NURBS basis functions 
can ensure the exact satisfaction of higher-order displacement derivatives and traction continuity 
conditions within a single patch, such conditions may not hold at the boundaries of adjacent 
patches. This is particularly true for the interface that divides the fiber and matrix.

In order to demonstrate the convergence behavior of the proposed technique, we employ 
below two measures that quantify the extent to which the local stress equilibrium and interfacial 
traction continuity conditions are satisfied, cf. Cavalcante et al. [33]. One way to measure the 
accuracy of the numerical simulation is through the average stress theorem, which states that the 
average stresses in the discretized element computed from surface or volume integration are 
equivalent when the pointwise equilibrium condition is satisfied. If pointwise equilibrium is not 
satisfied, an imbalance occurs and can be quantified by the difference given by the following 
integral:

 (16)  1 1 1d d d
q q q

q ki
ij i j q ij q j qS V V

q q q k

t x S V x V
V V V x

  
   

  

where  indicates the boundary of the  element. The integral of the difference between the qS thq
interfacial tractions at the heterogeneities and matrix interface provides the second measure:

 (17)
00

1 d
S

t S
S

   t

where  and  represents the fiber-matrix interface.2 2 2
1 2 3t t t      t 0S

           

13 NURBS patches 117nElems  832nElems 
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Figure 2 Mesh discretizations of unit cells in square arrangement containing 20% fiber volume fraction employed in 
the convergence study 

In the first example, we consider glass/epoxy composite materials with 20% fiber volume 
fraction, and the unidirectional-oriented fibers are distributed in square manner. Young’s moduli 
and Poisson’s ratios for the fiber and matrix are: ,  and , 68.77 GPafE  0.21f  3.27 GPamE 

, respectively. The high-stress concentration and deformation gradients near the 0.38m 
fiber/matrix interface, caused by the small diameter of the fibers relative to the entire unit cell 
dimension and significant property mismatch, make it a challenging test of the method's accuracy.

As shown in Figure 2, the square unit cell investigated herein is built with 13 NURBS 
patches, where the fiber contains 5 patches and the matrix contains 8 patches.  Each patch is 
discretized into coarse (3×3) and fine (8×8) meshes. The boundaries of adjacent patches are kept 
consistent to avoid dealing with the coupling problems induced by mesh non-matching. Finally, 
the unit cell consists of 117 and 832 NURBS elements for the coarse and fine meshes, respectively. 
In order to thoroughly assess the predictive capability of the isogeometric homogenization theory, 
we apply unidirectional transverse normal strain loading by . 22 1% 

   

     

Figure 3 Comparison of unbalanced stress  distributions with two levels of mesh refinement and order of 22
NURBS basis under the unidirectional macroscopic strain of 22 1% 
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Figure 3 illustrates distributions of the unbalanced transverse normal stress  with 22

two levels of mesh refinement and orders of NURBS basis function, namely,  and 2p q 
 respectively, thereby allowing straightforward evaluation of the effect of both mesh 4p q 

refinement and order of NURBS basis on the local stress equilibrium. As anticipated, the stress 
imbalance diminishes significantly by either increasing the mesh refinement from  117nElems 
to  and/or elevating the orders of the NURBS basis functions from  to 832nElems  2p q 

. It is interesting to note that elevating the orders of the NURBS function tends to be 4p q 
more effective in decreasing the stress imbalance relative to increasing mesh refinement. In the 
case of , the stress imbalance distributions almost vanished in the entire matrix and fiber 4p q 
domains, even with the coarse mesh . Figure 4 shows variation of the interfacial 117nElems 
traction differences with respect to mesh discretization at three different orders of NURBS basis, 
namely ,  and . Once again, the interfacial traction difference 2p q  3p q  4p q 
decreases rapidly with increasing mesh refinement or orders of NURBS basis. In the following 
simulations, considering the good performance of the fine mesh with  and , 832nElems  4p q 
it will be utilized unless otherwise stated. The geometric modeling and simulation are implemented 
based on our previously developed framework NLIGA [35, 36].

Figure 4 Variation of interfacial traction difference with respect to mesh discretization for different orders of NURBS 
basis under the unidirectional macroscopic strain of 22 1% 

4. Numerical results

We proceed to assess the isogeometric homogenization theory’s accuracy against benchmark 
solutions in the literature and conventional finite-element predictions. In the following simulations, 
unless otherwise stated, the fibers/inclusions exhibit elastic behavior, and the surrounding matrix 
resin was described by four-parameter, Prony series, and/or power law models in order to 
extensively assess the modelling capability of the IGH approach. The rheological representations 
for the first two models are illustrated in Figure 5. The four-parameter model to characterize the 
creep compliance of the matrix consists of series-connected Maxwell and Kelvin branches.
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(a) (b)

Figure 5 Mechanical representation of (a) the four-parameter model; (b) the Prony series

 (18) 
1
1

2
0 1

1 1 1 E

E t

E

tS t e
E E





 
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 
 

where , ,  and  are material parameters that can be characterized from stress-strain 0E 1E 1
E 2

E
curves of pure matrix materials.  The Prony series considered herein is well mimicked by the 
parallel connection of a spring and three Maxwell models. The Young’s modulus relaxation 
function  is expressed in the following form: E t

 (19) 
3

1

i
i
E

E t

i
i

E t E E e 





  

where ,  and  are material parameters and   denotes the instantaneous E iE i
E

3

0
1

i
i

E E E


  
elastic modulus. On the other hand, the power-law model characterizes the epoxy matrix creep 
compliance as:

 (20)  1 nS t Ct
E

 

where , , and  are material constants. It is worth noting that the power law type creep E C n
compliance yields a non-separable hereditary function kernel, which poses challenges for 
incrementally solving the unit cell boundary value problem directly in the time domain. Hence, it 
is an ideal candidate for showcasing the benefits of the proposed approach, which is not dependent 
on the specific type of viscoelastic hereditary function kernel representing the viscoelastic 
response.
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4.1 Analytical verification

The LEHT theory developed by Pindera and his collaborator [11] is an elasticity-based periodic 
homogenization technique for unidirectional composites, which was recently extended by Wang 
and Pindera [34] and He and Pindera [37] to account for hexagonal and square fiber arrangements 
with linearly-viscoelastic phases. The accuracy and reliability of the LEHT technique in predicting 
the homogenized moduli and local stress fields for periodic arrays have been verified extensively 
against the conventional finite-element and finite-volume direct averaging micromechanics 
approaches, among others. Herein, we will use LEHT results [34] as a benchmark to compare 
against the newly developed isogeometric homogenization technique.

We consider square unit cells with three volume fractions, namely ,  and 20%fV  40%
. The fiber elastic moduli are  and  . The matrix was modelled as 60% 68.77GPafE  0.21fv 

the four-parameter model with , ,  and 0 3.27GPaE  1 1.8GPaE  1 300GPa hE  

. The Poisson’s ratio of the epoxy was considered to be constant at .  2 8000GPa hE   0.38mv 
The relaxation functions for the glass/epoxy composites based on the above parameters are 
compared in Figure 6. It is observed that the isogeometric homogenization technique shows a high 
level of accordance with the LEHT predictions for a full set of relaxation moduli obtained in the 
interval [0 600] h in an increment of 25h.  We note that to generate a complete set of relaxation 
moduli in an uncompiled MATLAB environment for six loading cases at a specific time, the LEHT 
theory takes an average of 32 seconds (based on three runs) due to its semi-analytical nature. 
Conversely, the IGH numerical approach requires 158 seconds for the same computations.

Comparison of the local stress field components ,  and   under pure creep loading 22 33 23

 at  generated by the two approaches for composites with 20%    22 22 22 1%o oH t    600 ht 
fiber volume fraction is presented in Figure 7. It is concluded that the results generated by the IGH 
and LEHT are indistinguishable. The smoothness of the stress fields predicted by the IGH across 
elements with different phase properties is comparable to the exact elasticity solution. It should be 
emphasized that in order to correctly evaluate the extent of continuity of field variables, the IGH 
and LEHT techniques compute and display the local stress field prediction without any 
interpolation across elements. 
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Figure 6 Comparison of variation of relaxation moduli with respect to time of unidirectional glass/epoxy composites 
with three volume fractions obtained from the IGH and LEHT predictions [34]

22 33 23

(a) LEHT
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(b) IGH

Figure 7 Comparison of local stress components ,  and  (MPa)  of glass/epoxy composites under pure 22 33 23
creep loading  at  obtained from the IGH and LEHT predictions [34]   22 22 22 1%o oH t    600ht 

4.2 Numerical verification

In this section, we further validate the accuracy of the proposed isogeometric micromechanics and 
homogenization theory against the conventional finite-element homogenization approach. As 
shown in Figure 8, we first consider unidirectional composites containing 40% of fiber volume 
fraction, with unidirectional fiber placed in square and hexagonal manners, respectively. For the 
square array, the IGH mesh has kept the same as before. For the hexagonal array, the IGH mesh 
was discretized into using 15 patches where 9 patches are used for the inner fiber 960nElems 
and 6 patches for the outer matrix. Each patch contains 8×8 bi-quartic NURBS elements. As before, 
the fiber deforms elastically with elastic moduli of  and . The matrix was 100 GPafE  0.3fv 
modelled as Prony series as shown in Figure 2b with three Maxwell branches and an elastic branch. 
The viscoelastic material parameters for the matrix are:  , ,2.16 GPaE  1 0.2885 GPaE 

, , , ,2 0.4327 GPaE  3 0.7212 GPaE  1 147 GPa minE   2 1026.4 GPa minE  

. The matrix Poisson’s ratio was fixed at . While the elastic-3 7130.5 GPa minE   0.4mv 
viscoelastic correspondence principle has been employed in our IGH approach, the conventional 
finite-element results have been generated directly in the time space by solving the unit cell 
problem incrementally using the radial return mapping algorithm and the convex cutting plane 
technique, cf., Anagnostou et al. [38], thanks to the separable kernel of the Prony series. As the 
solution techniques for computing the homogenized viscoelastic response between the two 
approaches are fundamentally different, the IGH theory's validation is rigorous, which lends 
credence to the resulting conclusion.

Figure 8 Mesh discretizations of square and hexagonal unit cells with 40% volume fraction employed in the 
calculations of homogenization creep compliance 

Figure 9 illustrates the comparison of six creep compliance functions for hexagonal and 
square periodic microstructures generated at 20 times in the interval [0, 20000] min. The 



15

correlation between the conventional FE with the incremental solution and isogeometric 
homogenization technique with correspondence principle, both employing the same level of mesh 
discretization, demonstrates excellent agreement. The effect of the fiber arrangement on effective 
in-plane creep compliance is significant. Increasing creep time tends to accentuate the effect of the 
fiber arrangement. We note that conventional finite-element techniques require the use of 100 time 
steps to obtain a converged response using the radial return mapping method. To provide a 
comprehensive evaluation of the computation cost, we compared the classical finite-element 
method with the incremental solution to the IGH method with the correspondence principle for the 
square array and hexagonal array cases. Notably, the classical finite-element method requires an 
average of 328 seconds and 412 seconds, respectively, to obtain the creep compliance matrix at 
the ultimate time step for the two arrays. In contrast, the IGH method completes the same 
computations in significantly less time, with only 157 seconds and 232 seconds, respectively, for 
the square and hexagonal arrays.

We also compared the transverse shear stress  distributions generated by the 23
conventional finite-element incremental solution under transverse shear loading 

 at  with the isogeometric homogenization results    23 23 232 2 2 1%o oH t    20000minst 
both for square and hexagonal arrays, as illustrated in Figure 10. As observed, nearly identical 
stress distributions between the two approaches are observed in both cases, providing additional 
evidence for the newly-developed isogeometric homogenization theory.
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Figure 9 Comparison of creep compliance of unidirectional glass/epoxy composites with hexagonal and square arrays 
of fibers at constant fiber volume fractions (40%), predicted by the IGH and classical finite-element techniques. It is 
noted that the FEM results are obtained by incrementally solving the viscoelastic unit cell solution.

FEM IGH

(a) Square array

(b) Hexagonal array

Figure 10 Comparison of transverse shear stress  (MPa) in glass/epoxy composites with hexagonal and square 23
arrays of fibers under pure creep loading  at  predicted by the IGH and    23 23 232 2 2 1%o oH t    20000 minst 

the classical finite-element techniques

We end this section by considering a cubic unit cell reinforced by spherical inclusion of 30% 
particle volume fraction. As shown in Figure 11(a), the cubic unit cell is constructed with 7 
trivariate NURBS patches, of which 6 for the matrix and 1 for the fiber. Each patch contains 4×4×4 
tri-quartic NURBS elements. Note that with the advantage of NURBS in surface representation, 
the spherical interfaces between the fiber and matrix are geometrically exact. Finally, the whole 
unit cell is discretized into 448 tri-quartic NURBS elements for IGH. In contrast, the conventional 
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finite-element unit cell was discretized into  linear brick (C3D8) and quadratic 2096nElems 
brick (C3D20) elements to capture the spherical inclusion geometry as well as to provide high-
fidelity stress field variables (Figure 11b). To highlight the advantage of the isogeometric 
homogenization theory’s independence of the type of hereditary function kernels representing the 
viscoelastic materials, we utilized the power law-type creep compliance of the epoxy, Eq. (20). 
This model is not easily adaptable to an incremental solution of the unit cell problem in the time 
space. Hence the conventional finite-element technique with viscoelastic phases was programmed 
using the elastic-viscoelastic correspondence principle as in the present approach. The Young’s 
modulus and Poisson’s ratio of the sphere are: , . The viscoelastic 68.77 GPapE  0.21pv 

parameters of the surrounding matrix phase are: , , . 0 3.36 GPaE  0.025 GPa minC   0.2n 
As before, the Poisson’s ratio of epoxy is kept constant at .  0.317mv 

(a) IGH mesh (b) Conventional FE mesh

Figure 11 Unit cell mesh discretization with spherical inclusion of 30% volume fraction employed in the IGH and 
conventional finite-element simulation

Figure 12 presents comparison of variation of relaxation moduli with respect to time in the 
interval [0, 200] mins, generated by the conventional C3D8 and C3D20 finite element and the 
isogeometric homogenization techniques. It is observed that the homogenized relaxation moduli 
generated with the C3D20 finite element technique and the isogeometric homogenization method 
are nearly identical. A close look at the C3D8 element predictions reveals that the correlation 
between the C3D8 and the former approaches is less favorable. Figure 13 illustrates the normal 
stress profile  under pure creep loading , generated by the three 11    11 11 11 1%o oH t   

techniques. We notice that the C3D8 linear brick element behaves badly in terms of local stress 
field recovery, namely the stress field variable exhibits a lack of continuity between adjacent 
elements due to the lack of  continuity between the adjacent nodal displacements and the low 1C
order nature of the displacement interpolation function. The C3D20 element predicts significantly 
smoother stress field variable distribution than that of the C3D8. Nevertheless, the C3D20 
elements exhibit the same disadvantages as the C3D8 element (the lack of  continuity), albeit 1C
to a much lesser extent. This contrasts with the isogeometric homogenization technique. The 
predicted stress fields between the adjacent control elements within the same patches are 
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continuous to the machine accuracy, providing an additional justification for the development of 
the present approach.

Figure 12 Comparison of relaxation moduli of three-dimensional polymer composites obtained from IGH theory using 
448 tri-quartic NURBS elements with the conventional FE techniques using C3D8 and C3D20 elements

FEM C3D8 FEM C3D20 IGH

Figure 13 Comparison of stress  (MPa) in discontinuous polymer composites under pure creep loading 11
 at  predicted by the IGH and the conventional finite-element technique   11 11 11 1%o oH t    200 minst 

5. Conclusions

The correspondence principle was leveraged to propose the zeroth-order isogeometric 
homogenization theory with linearly viscoelastic phases. This theory facilitates efficient and 
accurate modelling of the relaxation and creep behavior of polymer composites with various 
microstructural parameters. The efficacy of implementing the correspondence principle in the IGH 
theory is contingent upon the efficient and accurate inversion of the Laplace-Carson space unit 
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cell solution back into the time space. The inversion technique developed by Zakian employed in 
this work was demonstrated to be an excellent vehicle to obtain the homogenized creep and 
relaxation response in the time domain. To illustrate the modelling and predictive capabilities of 
the proposed theory, while the fiber was kept elastic, the polymer matrix was represented as the 
four-parameter model, the Prony series, and the power law model, respectively. The comparison 
with the analytical and finite-element predictions demonstrates the accuracy and efficiency of the 
IGH technique.

There are several advantages of the IGH theory over conventional numerical 
homogenization techniques. First of all, the IGH utilizes the exact geometric representation of the 
unit cell microstructures with the NURBS patches, regardless of mesh discretization sizes, 
eliminating the extensive mesh refinement of the inclusion with curved surfaces. Secondly, the 
high orders and high continuities of spline basis functions provide a substantially more accurate 
local stress field, even in the presence of significant phase property contrast and distorted elements. 
The marriage of the IGH and correspondence principle enables solving separable and non-
separable viscoelastic function kernels alike. The latter does not always seem possible to solve 
directly in the time domain.
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