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A B S T R A C T

When long parts are machined in forged blanks, the variability of bulk residual stress (RS) fields leads to
uncontrolled deformation after machining, requiring manual reshaping. An original hybrid digital twin of
forged part is thus proposed to manage the bulk RS variability and reduce part distortion in machining. The
behavior model of parts relies both on reduced models of thermomechanical simulations of the forging pro-
cess variability, on-line measurements and machine learning from the previous parts deformations. Adaptive
machining solutions can then be simulated for a rapid decision-making. The approach was validated on a
series of aeronautic forged parts.
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1. Introduction

Metallic parts for aeronautic structures are usually machined in
thick plates, with high material removal rate. More and more, they
are also machined in forged blanks, requiring a lower material
removal. During the manufacturing of the blank, plastic deformations
and thermal gradients generate a residual stress (RS) field, which can
be of high intensity and gradient in the part [1,2]. During machining,
the RS field of the part is modified by the material removal, which
can lead to distortion at the unclamping. The part then deforms to
return to a free state, with a balanced RS field [3]. The thermome-
chanical loads in machining also introduce additional RS at the part
surface, on a depth of a few hundred microns, non-negligible for thin
parts [4,5]. But for massive parts, the RS induced by the cut is negligi-
ble, compared to the amount of bulk RS that is released by material
removal [6].

The main issue is the variability of the bulk RS field that can be
observed from one part to another, particularly for forged blanks,
which leads to uncontrolled part distortion after machining. For long
forged parts, a costly manual reshaping is often necessary after
machining, so that the part meets its geometrical specifications
before the assembly. One solution is to optimize the positioning of
the final part in its blank, in order to reduce the distortion after
machining [7]. Other solutions also exist [1], e.g. based on error com-
pensation [8] or adaptive clamping [9].

If the blank manufacturing process is repeatable, the best solution
can be found empirically, by reinforced learning, or by trial and error
approach (without knowing the RS field). If the bulk RS field is
known, finite element model (FEM) simulations of the relaxation of
the residual stresses can be performed. For rolled plates, the RS field

can be known, because the geometry is simple and the thermome-
chanical gradients are known [2,7]. But few works address more
complex part geometries.

On forged blank, the variability of RS field between parts is a criti-
cal issue that leads to unrepeatable part deformation. A solution
would be to measure the bulk RS field of each part; but non-destruc-
tive techniques, such as XRD, can only analyze the part at low depths
or cannot be used on a production line. Exploiting a nominal simula-
tion of RS field is inefficient, since it does not reduce the impact of
the variability. An accurate identification, for each part, of all key pro-
cess parameters is unrealistic, which makes impossible an accurate
simulation of RS field for each forged blank by physic-based
approach.

In-process data is thus required for each part to capture its specific
behavior, which leads to digital twin (DT) technologies, relying on a
behavior model, to manage the bulk RS variability and deformation.
Indeed, the objective of a digital twin is to sense and reflect accu-
rately the behavior and real-time state of an object; to enable analy-
sis, simulation, prediction and optimization [10]. DT can be
developed for product, process, machine or production system and
should be individualized (for each element), of high-fidelity (of
behavior), near real-time (responding with low latency) and control-
lable (by closed loop).

Approaches can be data-driven, which is efficient for very com-
plex and uncertain process; but physically impossible solution might
be proposed by the DT, which can affect their acceptability. For part
distortion, Zhao et al. [11] suggested a deep learning model, associ-
ated with machinings of many thin layers of the part and deformation
measurements. It significantly increases the machining duration and
a big dataset with hundreds of parts is necessary to train the model.
Also based on thin layer removals in rolled plates, [9] and [12] predict
each part deformation with polynomial models, which is compatible
with small datasets; and the latter proposed an adaptive control that*
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deforms the part between layers. The approaches rely on the hypoth-
esis that the shape of the bulk RS field is identical between parts and
that only the magnitude varies. It seems true for rolled plates, but not
for forged parts where the RS field shape can vary [13]. Therefore, a
hybrid DT approach, which takes full advantage of data-driven and
physic-based approaches, seems necessary to tackle the complex
issue of the RS field variability in forged parts. Indeed, without phys-
ics, unrealistic RS field shapes could be predicted; and without data
and learning, FEMmodels could not be updated accurately.

In this paper, an original digital twin of forged part is proposed to
reduce post-machining distortion. It uses information gained early in
the machining process to predict the residual stress state in the part
and then corrects the machining process to obtain a favorable out-
come; through reduced model of RS field simulations, on-line meas-
urements and machine learning from prior parts deformations. The
concept is detailed and then applied in an industrial use-case of long
forged part of aeronautic structure.

2. Hybrid digital twin of forged part in machining

The variability of the bulk RS field from one forged blank to
another is a key issue in industry, which leads to uncontrolled and
unrepeatable part distortion after machining. It cannot be solved by
nominal simulation and an adaptative machining is thus suitable for
each part. In-process data is necessary to capture the specific behav-
ior of each part. Moreover, this behavior should be identified before
or at an early stage of machining; when enough uncut material
remains on the blank, to enable an adaptation of the following
machining steps.

To tackle this difficult issue, an original digital twin of forged part
is proposed to manage the variability of the bulk RS field, in order to
reduce the part distortion after machining. The hybrid digital twin
relies both on simulations and in-process data (cf. Fig. 1). Indeed,
three key elements are necessary to predict the mechanical behavior
of a given forged part at an early stage of its machining:

� a reduced model of FEM simulations of the forging process vari-
ability (to model realistic RS fields)

� machine learning from the deformations of the previous parts
� the measure of the current part’s deformation at an early stage of
its machining (to capture its specific behavior)

If one of the three elements is missing, the behavior of the current
part cannot be predicted accurately and early. The reduced model of
FEM simulations of process variability and the machine learning from
previous parts deformation are computed offline. When a new part is
produced, its machining is stopped at an early stage to capture the
part’s early deformation (e.g. after a first rough milling operation and
unclamping). The reduced model of bulk RS field then enables fast
computations to identify the behavior model of the current part, sim-
ulate different adaptive solutions and make a decision rapidly to
reduce the part’s final distortion. Note that behavior models consider
the variabilities of both the bulk RS field and the geometry of the
blanks. Besides, the RS induced by cutting can also be integrated.

The approach is generic, applicable for parts with basic geometry
(like rolled plate) as well as more complex geometries. It is particu-
larly interesting for long parts (where simulations can be simplified
to 2D FEM). The proposed hybrid digital twin of forged part is indi-
vidualized (for each part), of high-fidelity (of behavior), near real-
time (for rapid decision) and controllable (with a closed loop); four
expected properties of a DT.

3. Presentation of the components of the hybrid DT

3.1. Reduced model of forging process variability

The main issue that is addressed in this paper, is the variability of
the bulk RS field. In order to model some realistic shapes of bulk RS
fields, physic-based simulations are suitable. Thermo-mechanical
FEM simulations of the forging process variability are thus proposed.
But computation times are incompatible with near real-time applica-
tion. Reduced models of FEM simulation of the bulk RS field variabil-
ity are thus proposed for the hybrid digital twin of forged part. The
method used here is a proper orthogonal decomposition (POD). Sev-
eral FEM simulations are performed, considering potential defects
and gaps, compared to a nominal case. For forged parts, it can be vari-
ability of process parameters, such as water temperature for quench-
ing. The RS field extracted from the mesh elements for each
simulation, form vectors that are then concatenated in a global
matrix M, of size n � p with n the mesh size and p the number of
simulations (snapshots). Then, singular value decomposition (SVD)
was chosen to perform the decomposition M ¼ USV, with S the
matrix of singular values, U and V the matrices of right and left eigen
vectors. The columns of U represents the principal modes of variabil-
ity of the RS field. A reduced model, of lower order r (r < p), is then
deduced. It is a linear combination of the r modes corresponding to
the most energetic eigenvalues:

Sr ¼
Xr

i¼0

aiui ¼ Ur ¢ a ð1Þ

with Ur, of size n � r, the modal basis of the first r modes and a the
vector of r coefficients ai that control the behavior model, through
the bulk RS field Sr of each forged part.

In the case of long parts, a simplification of the 3D FEM to 2D FEM
simulations is interesting, to reduce the computation cost of the
model reduction construction. In that case, multiple cross-sections
can be defined along the part and the global distortion of the part is
integrated from the curvatures induced in each of the sections (C).
Curvatures G can be easily computed by the beam theory, EIGzG ¼ Mz

(with E the Young modulus and IGz the second moment of area),
where the moment of flexion Mz results from the longitudinal resid-
ual stress Sr in section C and the moment arm z:

Mz ¼
Z Z

c

zSr y; zð ÞdS ð2Þ

3.2. Prediction of the final deformation

As described in Section 2, in-process measurements are necessary
to capture the specific behavior of each part during machining. E0, Ee,
Ef define respectively the initial state of the parts before any machin-
ing (the blank), the early state after a first rough machining step and
at the final state after machining. Since the adaptation of the machin-
ing process must be determined at an early stage Ee, the geometry of
the blank and the early deformation at Ee can be used to predict the
final deformation at Ef, which can be used to reduce and optimize the
machining process, through a behavior model of each part.

Capturing the geometry and the deformation of large parts
requires a large number of points (e.g. by probings on a machine-tool
or with a 3D scanner). Besides measures are done at multiple steps of
the machining. However, data collection in industrial environment is
difficult and only a limited number of parts can be available for

Fig. 1. Hybrid digital twin of forged part, through bulk residual stress (RS) field, to
reduce distortion in machining (online modules in bleu and offline ones in yellow).



measurement and then training of the models, due to the production
rates notably. Such industrial datasets face the “curse of dimensional-
ity”, with too few observations (the parts) compared to the number
of variables (the measures), and a dimension reduction should be
performed. A principal component analysis (PCA) is thus proposed to
reduce the dimension of the dataset of deformation measurements
(probed at E0, Ee, Ef). The values of the first PCA components at E0 and
Ee of the training datasets, and their interactions, are then used as
input X of a regression model to predict the final deformations (Ef),
through its first PCA component noted Y. As predictive model, a Ridge
regression was chosen. It is a linear regression with L2-norm regular-
ization (by µ) on its coefficientsm during their training.

min
m

Y �mXð Þ2 þ m km k 2 ð3Þ

3.3. Behavior model of the current part

a) Geometric model

Because of the heterogeneity in the bulk RS field, the positioning
of the machined part in the blank is important. However, the mesh of
the RS field model (built with the POD) relies on a nominal geometry
of the blank that should be adapted to comply with the real curvature
and thickness of each blank. This adaptation is done with a morphing
technique, called free form deformation (FFD). The mesh encapsu-
lated in the FFD box is deformed by interpolating the displacements
of the control points of FFD model.

In this way, a simplified geometrical model of each part is
obtained by morphing the part’s nominal mesh. It is then used to
build the geometrical model of the part at each machining step, by
Boolean operations in relation to the material removal. The deforma-
tion induced by the bulk RS field at each machining steps can hence
be computed for each part. In the case of a long part, the problem can
be simplified in 2D, with cross-sections geometries (cf. Fig. 2) adapted
to each part by morphing.

b) Identification of behavior model

The bulk RS field of each part is estimated through an optimiza-
tion problem (Eq. (4)), at an early stage in machining. The objective is
to find a RS field (Sr), close to a nominal field (Sn) and compatible
with the early measures (me, at Ee) and prediction (pr, at Ef) of defor-
mation of the part at each machining steps (through curvatures G ).
G Ef,pr derives from Y in Eq. (3). The first constraint ensures the equi-
librium of the RS field in the blank.

minimizea Sr að Þ � Snð Þ2

subject to
����G Eo

y;z að Þ
����< e

1� rð ÞG Ee ;me <G Ee
y;z að Þ< 1þ rð ÞG Ee ;me

1� rð ÞG Ef ;pr <G
Ef
y;z að Þ< 1þ rð ÞG Ef ;pr

amin < a< amax

ð4Þ

In this way, the behavior model of each part relies on the coeffi-
cients a (cf. Eq. (1)) that control the reduced model of RS field Sr . r
and e are error tolerances for the optimization. amin-max boundaries
result from the a parameters of the training dataset. Both vertical (z)
and horizontal (y) part distortions are considered.

c) Adaptation of the machining

Once the bulk RS field of the part being machined estimated at an
early stage Ee, the final deformation can be simulated more accu-
rately than with the nominal RS field. The behavior model of the part
enables the simulations of different adaptive solutions to reduce the
final distortion of the part after machining. In a first approach in this
paper, the positioning of the part in its blank was chosen as optimiza-
tion.

Since enough uncut material remains at an early stage of machin-
ing (Ee), the positioning of the part in its blank can still be optimized.
To find the optimal position, a Genetic Algorithm is used. The algo-
rithm translates and rotates the mesh corresponding to the final part
in the predicted RS field and computes the displacements induced by
the interpolated RS field. Positions that are found to be outside of the
remaining material are penalized to ensure the feasibility of the pro-
posed optimal solution. Finally, the optimized coordinate system of
the part is sent to the CNC machine.

4. Industrial use-case

4.1. Cruciform forged part

The use case of the study is a cruciform of aeronautic structure
that is machined in a long forged blank of aluminum alloy. The blank
(gray solid in Fig. 2) is about 6 m long and 1 m width. The thickness is
about 5 cm, and one-third on the final part. After machining, the
range of variation of the part distortions is a few centimeters, which
is problematic.

From each blank (E0), one part is machined in three steps (includ-
ing Ee and Ef). The evolution of the part geometry along the machin-
ing process is illustrated in Fig. 2, for several cross-sections in bleu.
The deformations of 19 cruciform parts were measured (at E0, Ee and
Ef); by probing 100 points on the machine-tool (during about ten
minutes), after unclamping of the part.

4.2. Digital twin of cruciform forged part

The objective of the hybrid digital twin of forged part is to manage
the variability of the bulk RS field, in order to reduce the post-
machining part distortion.

Several hypotheses can be made in relation to the geometry of the
cruciform forged part. Due to the thickness of the final part, the RS
induced by the cut can be neglected. Besides, it is assumed that the
bulk RS field can vary along the part, with potentially different field
shapes and magnitudes. Lastly, due to the length of the cruciform
(compared to the width), 3D FEM simulations can be simplified in 2D
FEM simulations of the forging process variability in the cross-sec-
tions of the part, associated to the beam theory to assess the part dis-
tortion (cf. Section 3.1).

Concerning the forging process variability, before quenching, the
cruciform parts undergo a solution heat treatment, in order to relieve
the residual stress induced by forging. The RS field is thus assumed
free after this homogenization, and the simulation of the forging
steps is useless. Only the quench and the cold compression coming
after are then considered. Their 2D FEM thermo-mechanical simula-
tions were then computed, in Abaqus software, for seven potential
defects or deviations of key process parameters of the quenching and
cold compression of the cruciform (such as quenching temperature
or die positioning errors), cf. [13].

Concerning the predictions of part deformation, as explained in
3.2, machine learning from the previous parts deformations is suit-
able. However, the dataset is composed of hundreds of variables
(probings) for only 19 observations (cruciform parts), which presents
a data dimension issue. To solve it, a dimension reduction by PCA is
performed on the dataset and the part deformation is hence depicted

Fig. 2. Geometric model of the cruciform, at each machining step.



by one variable: the first component of PCA. The Ridge regressive
model is then trained with the resulting deformation at E0 and Ee to
predict the deformation at Ef.

In this way, for each new cruciform, the behavior model (i.e. coef-
ficients a of the reduced model of the bulk RS field) is identified at an
early stage of machining (Ee), in relation to Eq. (4): from the measures
of the part’s early deformation (G Ee

y;z) and the predictions of final
deformation (G Ef

y;z by machine learning).
Due to the small dataset, the hybrid approach was evaluated by

leave-one-out: iteratively, one part is selected to test the model, and
the 18 other ones are used for the training of the Ridge regression
model, before this evaluation.

Fig. 4 shows the root mean squared error (RMSE) computed for
the test part, between its final distortion estimated by the behavior
model (at the early stage of rough machining Ee) and its final meas-
urements (Ef) by probing. Results are compared with and without
machine learning from the previous parts deformations (i.e. with/
without considering G

Ef
y;z in Eq. (4)). It proves that considering the

prior parts deformations leads to better estimations of the bulk RS
field. Indeed, the average RSME error (computed over the 19 parts)
drops from 0.59 mm without (Fig. 4. in bleu), to 0.13 mm with
machine learning of previous deformations (in orange). Therefore,
the machine learning and physic-based simulations of RS field are
necessary to tackle the variability and enable accurate predictions
with the behavior model.

Since the behavior model is of good fidelity and identified at an
early stage of machining, it enabled simulations of adaptive solutions
in order to reduce the part distortion after machining. In this paper,
the part positioning in its blank is optimized, but other solutions

exist. As suggested in Section 3.3, a Genetic Algorithm (GA) is then
applied to perform simulations of different positionings with the
behavior model of each part, once the bulk RS field identified. This
optimization takes less than a second. Fig. 5 illustrates the distortion
for cruciform n°4 as an example of result. It shows the final distortion
of the part for a nominal positioning (as it would be machined with-
out closed loop to machine-tool) and the optimal one (resulting from
RS model and GA). Here shifting the part in the blank of 4.1 mm and
5.2 mm in the y and z directions (cf. Fig. 3 coordinate system) reduces
the final maximal distortion from 2.4 mm to 0.6 mm.

5. Conclusion

Machining large parts from forged blanks is challenging due to the
variability of the bulk RS field (since both magnitude and shape vary).
To tackle this difficulty issue, a hybrid digital twin was proposed. The
behaviormodel relies on a reduced FEMmodel of bulk RSfield variabil-
ity, in-situ measurement and machine learning from previous parts
distortions.Without oneof the three elements, itwouldnot be possible
to predict accurately the RS field; as demonstrated for machine learn-
ingwithoutwhich thebehaviormodelwouldbe inaccurate.

The aeronautic use-case has shown that, despite the complex
geometry andvariability of the RSfield shape, theproposedhybrid dig-
ital twin for forged part leads to accurate prediction of RS field, early in
themachining, enabling a reduction of the part’sfinal distortion.
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