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ABSTRACT

In recent years, the way that maintenance is carried out has evolved due to the incorporation of
digital tools and Industry 4.0 concepts. By connecting to and communicating with their production
system, companies can now gather information about the current and future health of the equip-
ment, enabling more efficient control through a process called predictive maintenance (PdM). The
goal of PdM is to reduce unplanned downtimes and proactively address maintenance needs before
failures occur. However, it can be challenging for industrial practitioners to implement an intelligent
maintenance system that effectively manages data. This paper presents a methodology for develop-
ing and implementing a PdM system in the automotive industry, using open standards and scalable
data management capabilities. The platform is validated through the presentation of two industry

use cases.

1. Introduction

Predictive maintenance (PdM) is a proactive approach
to industrial maintenance that aims to improve quality
and productivity by predicting and preventing equip-
ment failures before they occur (Chen et al. 2011). By
collecting and analysing data about the behaviour and
performance of industrial equipment, PAM systems can
generate alerts about potential failures and allow mainte-
nance to be planned more efficiently, reducing the impact
on production schedules.

Implementing a PAM system can be complex due to
the continuously evolving nature of the methodologies
and tools used (Sheppard and DeBruycker 2018), as well
as the specificities of different industries. To address this,
it is important to develop a standard methodology for
defining a PAM system that is flexible enough to be
adapted to the specific needs of the industrial context.
This may involve the use of multiple communication
protocols for data collection, and a scalable data storage
solution to accommodate the volume and variety of data
generated by the PAM system.

In addition to improving maintenance efficiency,
PdM systems can also help to reduce operational costs,
improve product quality (Takata et al. 2004) and increase
customer satisfaction by minimising the number of
equipment failures and downtime. It is therefore an

important area of focus for researchers, as well as for
companies looking to optimise their manufacturing sys-
tems and remain competitive in today’s global market.

Consequently, this research work proposes a full
methodology to develop an Intelligent Maintenance Sys-
tem (IMS) that will help deploying operationally PdM.
In addition to this methodology, the practical imple-
mentation of the system is detailed, as well as the tools
included in the platform. The system is confronted to
real industrial cases, in the context of automotive indus-
try. One of the major contributions of this work is the
proposition of an IMS that is non-domain centric, and
flexible enough to be improved and tailored to the poten-
tial specificities of the industrial context in which it is
used.

The remaining of this paper is organised as follows.
Section 2 proposes an overview of approaches related to
the implementation of intelligent maintenance systems.
In Section 3, the motivations behind this research work
are detailed, based on the review of the literature and the
observations made in our industrial context. Section 4
presents the methodology employed to deal with PAM
practically, which is the base of the developed solution
presented more in detail in Section 5. The architecture as
well as the different blocks that compose the system are
described. In Section 6, we propose to validate the IMS
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on two industrial cases. Finally, a conclusion and some
perspectives are proposed in Section 7.

2. Literature review

The maintenance field has evolved over the recent years,
moving from corrective actions (when failures already
happened) to a predictive approach. With the advances
in data processing, information coming from the produc-
tion systems now allow the assessment of their current
and future health state. Because machines and processes
are becoming more and more complex to deliver new fea-
tures to products, maintenance is impacted and requires
more advanced skills and knowledge to deal with poten-
tial issues (Gouriveau, Medjaher, and Zerhouni 2016). It
is therefore a necessity today, for any company seeking
performance, to strive toward PdM.

Predictive maintenance is currently the most active
topic in the maintenance field, as it is highly linked
with Industry 4.0 and the availability of data within
companies. This increase of interest for this topic is
easily understandable in the context of Cyber-Physical
Systems (CPS) and Industry 4.0 (Lughofer and Sayed-
Mouchaweh 2019). The opportunities for predictions
based on data analysis are numerous thanks to Inter-
net of Things (IoT) and CPS, and therefore the mainte-
nance activity is a great candidate to extract value from
those analyses and improve its performance (Yan et al.
2017).

To understand further why maintenance has been
in the spotlight recently, we need to go back in time
and see that historically, the maintenance activities were
tagged as ‘necessary evil’ or that they were a ‘cost-centre’,
meaning that they only generated costs and no prof-
its (Al-Najjar 2007; Chesworth 2018). Twenty years ago,
Mobley (2002) addressed this issue by explaining that
these statements were already old-fashioned back then,
mostly due to the development of Information and Com-
munications Technology (ICT). Its application in the
industrial context for maintenance improvement pur-
poses helps removing unnecessary costs and reducing
occurrences of catastrophic breakdowns.

However, as mentioned by Fusko et al. (2018), many
industrial companies are still not ready for that digital
transformation of maintenance, as it requires advanced
CPSs and ICTs, with skills that are not yet well developed
within the organisations. This digital transformation not
only brings new tools but also changes completely the
way maintenance topics are being worked on, compared
to how it was handled in the past. As mentioned by
Levitt (2003) two decades ago, these changes deeply
impact organisations and bring new roles in companies
to implement PdM systems.

To emphasise on this last statement, we can see in
Murty and Naikan (1996) that the researchers discuss the
optimal time interval to make measurements of phys-
ical data on the equipment, to assess the health state
degradation and propose an optimal Condition-Based
Maintenance (CBM) system. This research work illus-
trates the rapid changes in the technology available as of
today, to monitor industrial equipment’s behaviour.

Cui, Wang, and Li. (2021) assess the impact of mainte-
nance actions, failures and quality issues of the perfor-
mance of the production system, then a PdM decision
model helps determining the optimal scenario, to reduce
maintenance actions and costs of production. In this
study, a quantitative data-driven method is proposed, on
discrete events, and not on real-time assessment of the
equipment’s health.

Data can be of different type and nature, and can be
used for various activities in the PAM framework. For
instance, it can be used to schedule maintenance actions
when a degradation is observed. Xia et al. (2013) pro-
pose a framework for CBM to collect and analyse data
from the production system to propose an optimal main-
tenance scheduling. This is enabled by determining a
critical level of the health’s state of the equipment, and
the analysis of available time window to carry out the
corrective maintenance actions. In this research work,
however, the data management system is not detailed.
He et al. (2017) describe a novel approach to PdM that
integrates product quality control and mission reliabil-
ity constraints. The approach aims to optimise PdM
scheduling by minimising the total costs, including the
costs of corrective maintenance, planned maintenance
and quality losses over the planning horizon. To do this,
the study defines mission reliability as a comprehen-
sive measure of the level of equipment health needed to
meet production task demands and uses it to characterise
the production state. Planned maintenance is performed
when mission reliability reaches its threshold. Koom-
sap, Shaikh, and Prabhu (2005) propose an architecture
for integrating condition-based maintenance scheduling
with the machine-level process control. It involves the
development of an intelligent controller for a distributed
system. This controller is responsible for monitoring the
condition of the machine and recommending optimised
operating parameters. The goal of this approach is to
prolong the machine’s lifetime and maintain productiv-
ity by adjusting operating parameters and providing a
ready-to-run condition-based maintenance schedule.

Data can also be used to train machine learning mod-
els for PAM purposes and create new maintenance rules.
Raheja et al. (2006) detail a conceptual framework for
CBM, to define the use of data fusion and data-mining
techniques on the different steps of the CBM system. Such



steps include the detection of faults on the monitored
equipment, create association rules to detect patterns in
the collected data or planning corrective maintenance
actions from the results of the analyses. The authors men-
tion that future works based on this framework should
include the development of an implementation strat-
egy, to validate the model in the industrial context. Rai
et al. (2021) discuss machine learning for Industry 4.0
applications and mention multiple works for PAM as in
Wang et al. (2021) and Yang and Rai (2019). Ayvaz and
Alpay (2021) and Bourezza and Mousrij (2020) also pro-
pose the use of machine learning approaches, to create
meaningful information from the collected data, to feed
the PAM system. Lee and Pan (2017) propose several
integrated Markov chain-Bayesian network (BN) mod-
els for forecasting system reliability to implement PdM.
The proposed models are designed to be applicable to
any multi-level hierarchical system where the reliabil-
ity of components, subsystems and the overall system is
stochastic. Among the three models, the discrete-time
semi-Markov chain (DTSMC) model performs best in
terms of fitting real data. This suggests that the proposed
integrated Markov chain-BN models may be useful for
forecasting system reliability and implementing PdM in
practice.

As data is at the centre of the PAM system, defining
a data management system to handle it for the vari-
ous activities inside the PAM framework greatly matters.
Cerquitelli et al. (2021) discuss this data management
system as ‘services’ to ease the implementation of predic-
tive maintenance. Numerous software are used to define
the system and the different steps linked with the activi-
ties of PAM. Traini, Bruno, and Lombardi (2021) describe
a framework for PAM that can be applied on a generic
industrial machine. It discusses the importance of data

selection to train machine learning models, to predict the
future health state of an equipment. Such considerations
can help reducing the amount of data needed, as well as
the calculations done to obtain more features. Schmidt,
Wang, and Galar (2017) and Garcia et al. (2019) propose
solutions to address the requirements of a Pdm system in
terms of data management and activities to be carried out
to deploy such complex system.

3. Motivations

Observations from the literature on the implementa-
tion of the PAM framework highlighted the necessity to
develop a specific application to deal with it, in addition
to the implementation of an efficient data management
system. Some important features specific to PAM activi-
ties should be included within the solution. Such features
are summarised below.

e Collect data from a variety of sources, using different
communication protocols

e Process the data in various ways, with the flexibility to
add additional types of processing as needed

e Monitor the data using different approaches, such as
threshold monitoring, with the ability to add addi-
tional approaches

e Assess the state of the data and generate indicators to
track its evolution

e Alert the maintenance team and create action plans
based on prognostics

e Provide efficient visualisations of all the different steps
involved in data manipulation.

Figure 1 helps understanding where this Intelligent
Maintenance System (IMS) intervenes on the different
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steps of the framework proposed in Ciancio et al.
(2020).

Failure and data selection steps are not included in the
application, as they require maintenance data from the
ERP system, as well as knowledge from experts on fail-
ure modes. Consequently, these two topics are conducted
manually in the current architecture of the system. The
rest of the activities are incorporated inside the system, to
provide a standard way of developing and deploying PAM
solutions. The methodology used to develop the IMS is
detailed in the following section.

4. Methodology to develop the IMS

The model that was developed around the first frame-
work can be found in Figure 2. It presents an overview of
the different steps taken to implement PdM. The applica-
tion that integrates a large part of the methodology was
named Machine Health Management (MHM) and pro-
poses a set of tools that tackle the different challenges
of PAM. The various parts of the methodology will be
described below.

The first step in the process of implementing a PAM
solution is to thoroughly understand the machine or pro-
duction system being studied. This involves identifying
the various components and functions of the machine
and understanding how they can fail. The failures that
are most relevant to study are those that have a significant
impact on the machine’s availability and productivity, as
well as those that are costly or have a high occurrence rate.

It is important to prioritise the failures to study based
on their impact and occurrence rate. Failures with low
impact and low occurrence are not likely to benefit from
a PdM solution, while failures with high impact and high

occurrence should be addressed early on, as they may be
caused by design issues.

To study the relevance of the failure modes to be
studied, we propose three main solutions that are stud-
ied in parallel. These steps are the most important ones
because they will define the final solution that will be
implemented.

(1) The Computerised Maintenance Management Sys-
tem (CMMS) is a tool used to organise, track
and maintain a record of all maintenance activities
within a company. It can be linked to an enterprise
resource planning (ERP) system to understand the
costs associated with spare parts. By analysing past
data on the production system, the CMMS can help
to prioritise the different failures observed based on
their costs and occurrences. If a new production sys-
tem has no historical data, the CMMS can be used
to update the list of failure modes identified through
other methods at a later time.

(2) Failure Mode and Effects Analysis (FMEA) is a
widely used tool in industry for identifying poten-
tial failures and understanding their causes and
effects on equipment. It can be adapted for differ-
ent purposes, such as analysing processes (PFMEA)
or assigning a criticality score to failure modes
(FMECA). In the context of this methodology,
FMEA provides a list of failure modes that can be
studied for PAM and helps to choose the data to be
collected by the PAM system. It can also be used
to identify potential failures in the early stages of a
production system’s design.

Second, the a-priori knowledge of causes and effects
can help choosing a first set of data to be collected by
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Figure 2. Machine Health Management application model.
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the PdM system and even help implementing extra
sensors on the production system.

(3) Experts’ knowledge is also important in selecting the
correct failure modes and data to be collected. This
knowledge can come from a variety of sources within
the company, such as process engineers, automation
engineers, machinery design departments, mainte-
nance technicians and operators. It is important to
involve a wide range of experts to ensure a compre-
hensive understanding of the potential failures that
may occur on the equipment.

As explained by Zavoianu et al. (2021), expert’s knowl-
edge can be of different nature. In most cases, it is incor-
porated in the system in the data selection phase, where
the relevance of the data to study a failure mode can be
assessed prior to collecting it. It can also intervene in the
development phase of a monitoring rule, to analyse the
behaviour observed in the data, and implement first algo-
rithms based on experience and known causes for the
failure. There is a practical reason behind the selection of
only several impacting failure modes to be studied, com-
pared to, for instance, a full assessment of the production
system. The latter study can be successful but involving
several failure modes and a large amount of data in the
PdM system can prove to be very challenging to tackle.
The risk is to propose a final solution that will be too fuzzy
for the end user regarding prediction of health state or not
precise enough to take the correct actions. That is why,
even if the solution is identified as data-driven, meaning
that the model uses data analysis to propose solutions,
there is still a necessary part of physics understanding
involved, to correctly apprehend the failure mechanisms.
When implementing a PAM system, it can be more mean-
ingful to have a smaller dataset, but with data that has
high correlation with the failure mechanism that is being
studied. Knowing key characteristics related to the pro-
cess can also help finding the relevant parameters to be
monitored.

The previous steps give a first interpretation of the
dataset that will be needed to study the selected failure
modes. The next step is to identify if this data is available
in the production system, i.e. the application will be able
to connect to the source of the data to collect it. Many
ways exist to connect and collect data through different
protocols, and some will be presented in Section 5. To
be successful in this step, knowledge about the automa-
tion system used, as well as Information Systems and
Services (IS&S) is required. If extra sensors need to be
implemented in the system, it is necessary to verify that
the addition of such means of measurement will not cre-
ate extra failure modes or weaknesses in the system. It

means that the sensors should be as less intrusive as pos-
sible regarding the way they are implementation on the
studied equipment.

There is also a requirement during this step to study
and estimate the amount of data that will be collected
and stored. The choice of data retention (meaning how
long the data will be stored before being backed up or
deleted) is of importance, as the system will grow more
and more with new studies being implemented. As shown
in Figure 2, this data (or variables as named in the figure)
is the input of the system that composes the PdM appli-
cation. Most of the data collected from the production
system is time series data, but other types of data can be
integrated, such as images (from 2D cameras or thermal
cameras for instance). As per the figure, one variable can
be used to analyse multiple failure modes, although it is
only collected once.

As mentioned before, the first knowledge coming from
data is most of the time with an efficient way of visu-
alising it. The main reason is that until implementing
such system on the industrial equipment, it can often be
seen as a ‘black box’, meaning that the users cannot fully
understand what is physically happening during the pro-
cess. Time series data show the evolution of the system
over time and close to a real-time visualisation (data can
be collected every few milliseconds). It is a first strong
step for the users to understand the machines and pro-
cesses better and can also generate ideas about how the
data should be monitored. An explanation is proposed
in Section 5 regarding the users’ interactions with the
application.

Thresholds or limits are often the first type of moni-
toring that will be done on new studies of failure modes.
These values can be known a priori from how the process
works, or the acceptable limits of the mechanical parts
that compose the production system. This first monitor-
ing will also help implementing a first set of alerts for the
users, in case of deviation.

After these first interactions with the collected data,
the next step is linked with Artificial Intelligence (AI),
in its broad definition. The main goal at this stage of the
methodology is to be able to create correlations between
selected data to predict appearance of the failure mode. It
can be reached using various methods involving several
manipulations and transformations on the data, which
are available in the application. The data management
system must integrate modules to perform these actions,
such as implementation of machine learning models.
Most of these analyses are multivariate because interac-
tions and correlations between state of several data must
be studied and taken into consideration. The idea here
is to create a specific monitoring for the failure mode, to



be able to alert afterwards and point as precisely as possi-
ble where the issue is located on the impacted production
system. This precision allows the maintenance teams to
be more prepared and plan specific actions related to the
result proposed by the system.

Finally, the decision system is composed of numerous
tools to share the correct information at the correct time
and to the correct information system or user. There is
a necessity to connect this PAM application to the most
important information systems of the company, such as
the ERP described at step 1, or the MES to plan main-
tenance actions without disturbing the production. The
system should also have the possibility to send action
plans or work orders through the CMMS. It is also impor-
tant that alerts can be sent from different channels to
reach the users, the most commons being emails, SMS,
internal communications applications such as Microsoft
Teams. Standard alerting dashboards exist for visualising
data in different ways, and users also have the possi-
bility to create new ones, so that the production and
maintenance teams can easily check the evolution of the
equipment’s state.

5. Architecture of the application

In this section, the actual architecture is described, as
well as the different possible ways to use this application.
To understand how the application works, a simplified
overview is proposed in Figure 3.

The application can be seen as being on top of the
Edge Computing architecture. It interacts directly with it
through a web interface, which will generate code with-
out having to type it. The benefit is that it helps users
visualise and understand how the machines behave, by
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Figure 3. Overview of the structure of MHM.

using standardised applications. The different modules of
the application are described below.

MHM is a central tool developed during this research
work in Java, which stores each models used to collect,
store and analyse the data at a global level. It is accessi-
ble through a web page for any user having the necessary
credentials. It implements all the previous models locally
in the plant, where the user wants to create a monitor-
ing. Once this code is pasted, it runs on the local server
or computer of the plant. One of the main advantages is
that MHM opens this kind of monitoring to workers that
do not necessarily have a coding background.

As a result, they can use the visual interface to con-
figure what machine they want to address, what data
they want to collect, how long they want to store it, and
what data manipulations and monitoring they want to
add. Once this configuration is done and validated, the
application will automatically generate all the necessary
code with the correct configuration inside the local plant
device.

Because the local device is connected to the same
network as the machines, it can connect to them using
various communication protocols, for instance OPC UA
Leitner and Mahnke (2006), Modbus (Swales 1999),
MQTT (Hunkeler, Truong, and Stanford-Clark 2008)
and directly to the Programmable Logic Controller (PLC)
of the machine through its proprietary protocol: Siemens
S7 protocol for example (Beresford 2011). Once this con-
nection is done, data is stored locally, in a standard way,
with possibility to add some extra information on the
data, such as tags. This allows filtering the data for visu-
alisations and analyses.

Some pre-configured dashboards were developed dur-
ing this work, so that the users can visualise directly the
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newly collected data. Dedicated dashboards can also be
created in Grafana, which can then be shared amongst
plants. There is also the possibility to put in place some
alerting regarding the monitoring rules, through the
communication channels described before.

The different rules are part of the ‘AT’ block shown in
Figure 2. They are based in the current version on static
thresholds, duration of known anomaly states, catching
and counting events in the incoming data or dynamic
thresholds using SPC (Statistical Process Control (Oak-
land 2007)). SPC allows calculating thresholds dynami-
cally, by selecting a time window reference for the data.
It makes it possible to create efficient control charts, to
understand if the data is stable or deviating. Each rule
can trigger a specific alarm to alert the maintenance
teams, and the most advanced rules can also generate
work orders to plan corrective actions directly with the
ERP-CMMS system. There is also a possibility to com-
bine several rules and generate targeted alerts if the root
cause of the failure detected is known.

Finally, the importance of this step is that the user
is still able to reach the ‘back-end’” of the application
(directly in Node-RED), to make some manual modifi-
cations, or even adding specific local monitoring. Plants
tend to have more and more local skilled people on these
topics, able to help with the coding process. In this case,
the code can be written in JavaScript in Node-RED and
there is also a possibility to create analyses in R or Python.

This final step is important to underline, because as
mentioned before, it is quite challenging to address all
the existing machines within a company. Machines may
differ, not in terms of process but of components used
to build the machine. Therefore, the behaviour of one
machine to another may drastically change and can also
be impacted by the environment in which they operate.
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Figure 4. Top-down and bottom-up aspects of MHM.
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That is why this notion of flexible tool matters, because it
is not only a top-down application but also bottom-up.
The top-down aspect is linked to the developments
made by the central team working on Industry 4.0 topics,
which proposes specific monitoring on top failure modes
directly to the end users, i.e. the plants. Using the appli-
cation, they can replicate a model developed by experts
and operate it directly with the correct configuration.
The bottom-up aspect is linked to the local devel-
opments made on specific issues, which can be also of
interest for other plants. One of the main interests is that
these developments can be done easily and quickly, on
faulty equipment, which can increase the efficiency of
the model created. These local developments can then
be reinjected locally to other plants that may find them-
selves in the same situation as the original plant. Storing
the models centrally, like in MHM, allows this way of
working: the application can be seen as an ‘application
centre’ similarly to what can be found in smartphones. A
summary of these activities is shown in Figure 4.

6. Case study

After understanding the methodology behind MHM and
its architecture, we will analyse its application in the
industrial context on two different topics.

6.1. Helium leak testers

6.1.1. Principle of the process

The first topic deals with helium testing machines, also
called Helium Leak Testers (HLTs). These machines
intervene at the end of the production process. Their
goal is to ensure that each produced fuel system is within
acceptable range regarding leakage. Indeed, as mentioned
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Figure 5. Helium leak test principle.

previously some cutting and welding operations are done
on the tank, which can create internal leaks if the opera-
tion is not performed under good conditions.

To verify this, tanks are tested inside the HLTs. A basic
principle is proposed in Figure 5.

The machine is composed of a chamber where the tank
is installed. It is sealed, and vacuum pumps evacuate the
air in both the chamber and the tank. Once it is complete,
a fixed quantity of helium is injected inside the tank, and
a mass spectrometer coupled with a pump observes the
number of particles located inside the chamber, i.e. the
estimation of the leak rate of the tested tank. The accept-
able limit is given per product, and if it is crossed, the
tank can be re-tested or defined as a scrap. Helium is used
during this test as it is the smallest known atom, there-
fore giving a good idea of possible leakage issues on the
product.

6.1.2. Topic definition

Issues on the HLTs are part of the list established regard-
ing the failure modes to study with PdM, the main reason
being the lack of internal knowledge regarding their fail-
ure modes. Indeed, these machines are historically less
common to perform the leak tests, Water Leak Testers
being more used globally. However, HLTs are much more
complex and more efficient in the detection of leaks,
therefore they are becoming standard machines to be
used in production lines nowadays.

HLTs are a good example of what usually happens
in the industrial context: these machines are quite com-
plex and have many unexploited internal data that could
help understanding better their behaviour. Consequently,
HLT machines were selected as a first topic to be worked
on using the MHM application. This use case started as
a Top-Down project, as the main goal was to propose
a global solution to be deployed and used within each
plant.

As a first step to define the study, four activities have
been performed in parallel, to understand better the
issues related to this family of machines.

Table 1. Known failures on HLT machines.

Issue Effect Verification in place
Faulty pump Increase cycle times Oil check
Impossibility to reach Biannual pump’s
vacuum level performance
required assessment

Contaminate oil
Increase cycle times

Filter clogged Cyclic cleaning

Replacement of part with
spare

Pump deterioration

Impossibility to run full
cycle

Increase cycle times

Deteriorated seal Cyclic check

Replacement of part with
spare

Impossibility to run full Replacement of part with
cycle spare

Broken valve

e Analyse maintenance history data to understand com-
mon failures

Interview experts from the research centre, and plants
Work in collaboration with the supplier of machines
Use the test machine located in Alphatech! to have a
better understanding of the process.

The result of these steps is proposed in Table 1. It gives
an overview of the issues related and the current pro-
cesses in place to correct and detect them. To understand
the data inside the table, as presented before the machine
has several pumps, for various purposes such as remov-
ing air from the chamber and tested part, or to remove
the helium still inside the chamber after the test is done.
Filters are used to restrain particles that could damage
the equipment, such particles can be dust, or plastic parts
that could still be on the product. Seals are important
on the machine, as they ensure that the process is per-
formed properly. Finally, many valves can be found on
the machine, to redirect the different gases in the correct
places.

6.1.3. Proposed solution

The machine has internal alarms, and a Human—-Machine
Interface (HMI) to display them to the users. However, it
is possible that some alarms can be missed, due to the
fact that they are not critical to the process itself, but can
still indicate the start of an issue on the machine. Con-
sequently, one of the first objectives of this topic was to
collect the correct data, to start creating a history and pro-
pose valuable visualisations. With the help from experts
(on the supplier and company side), a first list of data was
edited, most of them being in the following list:

e Cycle times: the duration of each phase of the process
is calculated within the machine

e Pressures: many pressures are measured by internal
sensors, at different locations on the machine



e Leak rate: calculation the observed leak rate by the
mass spectrometer

e Other data: identification of the tested part, results of
the tests, number of parts tested, number of hours run
for the pumps.

The data is split and tagged under two categories:

e Chamber: machines can have multiple testing cham-
bers, so each data specific to a chamber is identified
here

e General: the rest of the data, common for all chambers,
is identified here.

Splitting the data as such also allowed to create an
interactive dashboard where the general data and data
specific to chambers are visualised independently. Select-
ing one or both chambers will modify the dashboard, to
display the correct data. This allows the users to quickly
check the interesting data.

Table 2. Leads to improve the monitoring of HLT machines.

Idea

Expected result

Related action

Observe trends on
specific pressures
and cycle times data

Analysis of gases
consumption

Verify opening times of
valves

Add extra sensors on
pumps

Increase or decrease
of the value
over time should
indicate an ongoing
deterioration

Comparison of data
over time can
indicate seal or filter
issues

An increase of duration
during opening and
closing phases of the
valve can alarm on a
failure of the valve

New physical data
related to the pumps
can help detecting
oil or mechanical
issues

Implement linear
regression analyses

Calculate consumption
periodically, or per
gas bottle, and verify
number of tested
parts

Calculate and monitor
the evolution of the
opening and closing
duration

Implement extra
sensors

In addition, first thresholds and alerts were imple-
mented, based on experience and knowledge on the pro-
cess. The package standardised and deployed from MHM
was composed of the data collection of the previous list,
which represents around 65 variables, and the dashboard
discussed previously. This first solution was the basis on
which more knowledge about the machine’s behaviour
has been built.

6.1.4. Improvements and perspectives

After implementing the first package, the second step of
the work was dedicated to improving the solution. The
final goal being the proposition of meaningful messages
for the maintenance teams, based on the results of the
analyses done on the data, the current work is oriented
towards this objective. Table 2 summarises the various
actions related to the improvement of the package.

An example of the User Interface is proposed in
Figure 6. Here, we can find the list of machines monitored
within the plant, the status of the machine according to
the monitoring rules in place and a summary of issues
per machine. The user can click on the specific issues,
to give more details and provide a direct link to the data
visualisation.

All these developments gave the opportunity to
improve the core of the application, as they can be pro-
posed as new ways of monitoring the data collected by
MHM. Figure 7 shows the two main contributions of the
use of MHM for the HLT machines topic:

e As mentioned previously, the complexity of the
machine, the lack of internal knowledge and the avail-
ability of unused data provided a strong basis to build
efficient data collection, data visualisation and first
monitoring rules to alert on potential problems

e A second step, still under improvement, gave the
opportunity to list and develop specific analyses, to
propose a first diagnostic related to issues on the

Machine health

Machine Status Details
. The average Leak Rate of Chamber1 is quite high

Figure 6. User Interface for the HLT machines (Node-RED).



HLT machine

Figure 7. Current contributions on HLTs.

HLT machines. The objective is to identify clearly
the observations made on data, propose maintenance
actions to try and improve the health state of the
machine

6.2. Blow moulding machines: band heaters

6.2.1. Principle of the process

Heating systems are found on the BMMs, on the extrud-
ers and on the head. Their goal is to keep the mate-
rial melted and at the correct temperature. Similarly
to the welding units application presented in Ciancio
et al. (2020), the system is composed of one or multi-
ple band heaters, and one thermocouple per ‘zone’. The
zones correspond to the physical location of each heat-
ing system, from the feed hopper to the start of the head.
Such zones are defined in the same way for the head tool-
ing, from the top of the head, to the start of the parison
creation.

The size of each zone defines the number of band
heaters that can be installed, and a regulation system
powers the band heaters to reach a temperature setpoint.
An internal monitoring within the machine ensures that
the temperature is correctly regulated in each zone, and a
detection of wrong temperature based on a plausibility
test is performed, which can stop the machine if nec-
essary. The heating systems are critical components of

® cnine
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the machine, as any failure can lead to quality issues and
severe damages on the extruders and the head tooling.

6.2.2. Topic definition

Differently from the band heater topic on the welding
units that originated from maintenance data analysis, this
topic was a request from three plants. The need came
from several issues observed on band heaters located on
the head tooling of different machines, in different plants.
Therefore, contrary to the HLT study, this one can be
categorised as a Bottom-Up topic, as per the definition
of Figure 4. The plant located in Pfastatt, France, was
selected as a first pilot for this project as several fail-
ures were reported on a specific zone of the co-extrusion
machine.

Following the same steps as for the HLT machines
study, we propose a summary of known failures on these
components, in Table 3. The main difference with the
welding units is that band heaters located on the BMMs
are not moving, therefore the cabling issues on both the
thermocouples and band heaters are not present in this
case. The install on the extruder side is very robust, and
few issues are reported. However, the setup on the head
tooling can be changed depending on the production,
and therefore the maintenance actions can deteriorate
the components, if a wrong action is applied during this
change.

Format to JSSON |~ S7_RawDats_TCPexport

Prepare data storage ) [vix] MHM_Coextruder_BMM272 METRICS

- MHM api post

[v1.x] MHM_C  BMM272 ALERT_LOG

—l Prepare local notif

Figure 8. Node-RED flow generated by MHM to collect data from a PLC.



Table 3. Known failures on the BMMs' heating systems.

Issue

Effect

Verification in place

Band heater electrical
failure

Band heater not
positioned properly

Band heater tightened
too much on its
support

Wrong regulation
parameters

Thermocouple
breakdown

No heating possible

Brutal failure of the
component

Deterioration of the
band heater

Regulation disturbed
by zones above or
below

Breakage of the
support

Band heater loosening

Slow deterioration of
the band heater

Electrical failure

Loss of temperature
data

Monitoring with
current transducers

Evolution of the
temperature over
time

Monitoring with
current transducers

Visual inspection

None

Evolution of the
temperature over

time
Incapability to perform  Stoppage of the
temperature machine
regulation

The verification currently in place on the system is
linked with the evolution of the temperature, and any
detection of an issue based on this analysis can stop the
machine. The monitoring of the current gives alarms to
the users through the HMI of the machine but does not
currently stop the process in case an issue is detected.
Therefore, after understanding the potential failures on
the heating system, the next step presented below is ded-
icated to describing the available data to be collected to
monitor such issues.

6.2.3. Data collect

The dataset has been defined after reviewing the system
with process and automation experts, to understand the
available and accessible parameters.

The temperature coming from the thermocouple
The temperature setpoint, which is a parameter that
can be modified on the HMI of the machine

e The temperature high tolerance value, which should
not be crossed during the production phase

MHM_B_240_BMM240 v METRICS v Extrud Av

The temperature low tolerance value
The PID load, named ‘ED’ (similar to the value of the
welding units)

o The current, that is measured for one zone, mean-
ing that the read value can be for one or several band
heaters

e The current target, which corresponds to the value
that should be read

e The current tolerance, below which plants’ teams
should be alerted

e The machine’s production status.

The first eight variables are collected for each zone
of the machine, and the status just once. For a typical
co-extrusion machine, having 6 extruders, each of them
having between 4 and 6 zones, and a head tooling hav-
ing between 6 and 8 zones, the dataset is composed of
around 300 variables. Using MHM, the application con-
nects directly to the PLC of the machine, to collect each
parameter every second. An example of the data col-
lection code generated through MHM to Node-RED is
shown below.

Similarly as proposed for the HLT machines, Figure 9
shows the split visualisation done in Grafana. The vari-
ables shown on top allow the selection of the necessary
extruders and related zones to be displayed, and the same
thing exists for the head zones. Selecting multiple extrud-
ers and/or zones will populate the dashboards with extra
graphs dedicated to each of the selected items.

The machine’s status allows understanding quickly in
what state was the machine when visualising the data
related to the heating systems. It is especially useful when
checking a failure event from the history data, to get the
evolution of the machine’s state according to the rest of
the monitored data.

6.2.4. Observed failures, proposed solutions and
results

Based on the list of failures shown in Table 3, we were
able to observe the first four types of failures while col-
lecting the list of data previously mentioned. Below will

Machine status

I 1
1 1
I |
1 1
1 T

00:00 02:00
Machine status: i Production (100.00%)

> Head

> Extruder A

Figure 9. Split visualisation for Blow-Moulding Machines (Grafana).
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Figure 10. Electrical failure of the band heater (Grafana).

be presented the different cases, and how solutions were
designed within the MHM application.

The first failure is linked with a sudden loss of the com-
ponent due to an electrical failure, as shown in Figure 10.

As observed on the graphs, the value of the current
that powers the band heater brutally drops to 0 on the
left graph (‘Head_Current_35" - green curve). After this
event, we can see on the right graph that the temperature
is slowly decreasing (‘Head_Temp_35’ - green curve) and
the load of the regulation is increasing to reach its max-
imum value of 100% (‘Head_ED_35 - blue curve with
vertical axis on the right side).

Due to the inertia of the system, and the zones located
close to this one trying to compensate the loss of the band
heater, the heating system can continue to work within
temperature ranges (green coloured zone on the right
graph) for several hours. However at some point the tem-
perature crosses the bottom threshold, and the machine
automatically stops, after nearly 5 hours working in a
degraded mode.

The causes of the failure are numerous and difficult to
observe or replicate. The data prior to the event shows
no abnormal levels of temperature, regulation or current.
Consequently, the first solution proposed to the plant’s
team was a monitoring based on thresholds and duration.
As discussed previously, standard monitoring techniques
are proposed within MHM, to be used on any collected
data. In this case, the “Threshold timer’ monitoring uses
a threshold value and a duration of the crossing of the
proposed value. An additional parameter can be used, as
a verification of the first rule.

Consequently, to detect and alarm the plant on the loss
of the band heater, the proposed rule is detailed below.

(1) The value of the current reaches 0.
(2) The status of the machine is ‘Production’ (additional
verification parameter).

Temperature of Head 35

(3
16:00 18:00 20:00

— Head_Temp_35 103'C  211°C 203°C

— Head_Temp_Set 35 205°C  205°C  205°C

— Head_ED_35 (right 0% 100% 32%

(3) The duration of both previous rules is higher than 10
min.

Again, the main goal is to have a pragmatic approach,
and setting up this monitoring to 10 min allows to ver-
ify that the signal is really lost and that the machine
is still producing parts. Similarly to the thermocou-
ple case on the finishing centres, the alerting allows
the maintenance team to quickly react and organise
an emergency intervention on the identified zone. As
observed on the figure, the intervention took more than
an hour, as it can be difficult to clearly identify where
the issue is located. The current alert allows both to
reduce the time of production with the broken part and
to know here the replacement will be done, saving a lot of
time.

The second failure observed is associated with lines 2
and 3 of the failure table. It can happen after a change
of the head tooling or replacement of a defective band
heater. Such event can be observed in Figure 11 and
follows the previous event where the band heater was lost.

We can see from the data that after the initial replace-
ment of the band heater, the regulation (blue curve) is
following a different trend compared to the normal levels
before the first failure, and after the second replacement.
After investigating this event, the plant’s team observed
that the band heater was tightened too much on its
support, creating a perturbation on the regulation loop.
Eventually, the support started to break and lead to a
second stoppage of the machine.

Similar events were observed, in the case where
the band heater is not placed properly, and the zones
above/below on the head tooling will generate a pertur-
bation on the regulation loop. Current work is to propose
a monitoring for such issue, and the first lead is to study
a linear regression of the load of the regulation. Imple-
menting such new rule will in the end also benefits other
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Figure 11. Wrong positioning of the band heater (Grafana).

users, as a standard monitoring ‘Linear regression’ will be
developed and implemented within the application.

Finally, a failure linked with the fourth issue was iden-
tified using MHM. Even though it is not a common
problem, it still benefited the plant and reduced failures
due to such event. Investigation on the cause of the prob-
lem was quite difficult without the monitoring system in
place with the application.

Figure 12 shows the effect of a regulation having wrong
parameters. High instabilities are generated for several
hours, and the source of the perturbation is unknown
so far. However, the response of the regulation was too
much compared to the effect of the initial perturbation,
therefore creating an even greater issue.

These sudden changes within the regulation loop cre-
ate a deterioration of the electrical system of the band
heater, and eventually lead to a failure, as observed on
the right graph. This failure event took place after sev-
eral occurrences of the perturbation event shown on the
left graph. Consequently, a specific monitoring was cre-
ated, to alert the plants in case a similar issue is observed

18:00 22:00

211°C 197°C
205°C 205°C
100% 31%

on the data, and can be linked with a wrong regulation of
the system. It allows the automation engineer on site to
verify and modify the parameters of the PID, if necessary.

This second example provided the opportunity to
explore a concrete use case coming from plants’ requests.
It has been beneficial to first understand better the veri-
fication in place within the machine, to detect issues on
the heating systems. From this, we could edit a list of data
to be collected, which provided an interesting source of
information regarding the different failures observed on
the system.

The standard monitoring techniques available inside
the application allowed to create ways of detecting these
issues early and point out precisely which part of the sys-
tem generated a problem. These information are crucial
for maintenance teams because they enable them to act
quickly on the correct location of the source of the fail-
ure. With the case involving wrong parameters leading
to failures, we have also observed that the application is
able to point out weaknesses in the process parameters
and allows to better optimise it.

High instability zone on temperature (green curve)
and load of PID (blue curve)

Figure 12. Wrong regulation parameters (Grafana).
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We have also observed that extra monitoring are nec-
essary, to be able to treat the various cases that can
be encountered in the industrial context. This leads to
improving the end solution and providing a wide range of
possibilities for the users to analyse their collected data.

7. Conclusion and perspectives

In this paper, we discussed the solution developed to
tackle the current challenges regarding the implementa-
tion of intelligent maintenance systems in the industrial
context. The methodology that was developed behind the
maintenance application is described, with all the dif-
ferent steps necessary to work efficiently on the failure
modes of any production system. This methodology is
not limited to the automotive industry but can be used
in other fields and can be implemented for machines hav-
ing history as well as for new equipment. The architecture
that was implemented in the industrial context was pre-
sented, with a description of each module composing the
system. The term flexible is employed because the appli-
cation allows working in a top-down and a bottom-up
way.

The main benefit of the solution is that it is built
on open-source software and can be operated by users
having different profiles and knowledge. It allows data
exploration and creating efficient monitoring that can
be used for PAM and proposes an easy way to imple-
ment solutions developed by the central team, or other
users. There is a strong belief that most of the knowl-
edge regarding machines’ health state is coming from the
daily users within the plants, and this tool gives them the
opportunity to experiment and create broader solutions
for the rest of the users.

After having confronted the methodology developed
with the industrial context, several improvements were
deemed necessary to propose an efficient PAM system. In
this paper, we propose to move from a ‘low-code’ solution
(i.e. the Edge Computing solution presented in Ciancio
et al. 2020) to a ‘no-code’ solution using the Machine
Health Management application. This ‘no-code’ aspect
means that users do not need a coding background to use
the solution, as everything can be configured through a
web page, and the correct code is generated automatically.

This flexibility discussed throughout the paper is nec-
essary to palliate two critical and limiting aspects of the
PdM topic. First, observations and analyses on data to
create a PAM solution are demanding in terms of required
time and necessary resources: skilled users, availability
and maturity of the information system used to develop
and implement the solution. Second, most of the knowl-
edge regarding equipment’s failures is located within the

plants, where users have a daily experience on the stud-
ied systems, but not necessarily the skills to develop
solutions.

Consequently, proposing a system that can be used as
both a platform to develop and deploy the solutions for
PdM matters. It allows reducing the time of development,
as experienced users on the machines can experiment
with data and propose beginning of solutions that can be
shared in their turn to other users. It also allows to imple-
ment these data analyses directly on faulty equipment,
and local users are involved to verify the equipment’s
condition and make the link between events observed on
the data and on the machine itself. Finally, it contributes
to having more and more local skilled people to work
on such topics, to balance the top-down and bottom-up
aspects of the PdM solution.

Many opportunities and perspectives drew our atten-
tion while conducting this research work. We want to
highlight three main topics that in our opinion will be
necessary to propose an improved solution, based on this
work. The first one discusses the architecture of the solu-
tion. The second topic is linked with the data selection
activity that is outside of the scope of the MHM appli-
cation. Finally, the last point deals with data analyses for
predictive maintenance.

We would like to emphasise first on the design of the
information system responsible for handling the predic-
tive maintenance activities. We presented in this docu-
ment an architecture capable of sending data to a data
lake for global analyses, using machine learning algo-
rithms to analyse the data or even generate automatic
work orders for maintenance teams based on the alerts
of the monitoring applications. The main point of atten-
tion on these features is that even though they were not
directly used in the presented work, it is important to
consider them when designing such system, as it needs to
be flexible and reconfigurable. Based on the evolution of
the predictive maintenance topics in the industrial con-
text, the new findings and the results of the studies, the
end system needs to be able to adapt to the requirements
of the users. Consequently, these features were tested and
validated in the system, to be ready for future use.

The MHM application proposes a standard way of
dealing with the predictive maintenance activities linked
with data handling. One of the improvements for the
framework is related to data selection for failure analy-
sis. It is a crucial step that is not always easy to perform
correctly the first time. Most of the time, the choice is
based on expert knowledge when it is a known issue on
the equipment, however it can happen that the failure is
not known or documented. As a result, there is an interest
in proposing a systematic approach to select the proper
data to detect and predict a given failure. To do so, a first



proposition was to work on an existing approach pro-
posed by Echeverri, Dantan, and Godot. (2021), from the
LCFC laboratory. This approach aims at defining the best
solution during the conception phase of a production sys-
tem, using the Energetic Technical Functions (ETF). It
is a representation of the energies involved in the pro-
cess, to identify risks coming from them. In the case of
maintenance, the interest of this approach is to make the
ETF representation of the equipment or component to be
monitored, to understand its function and the energies
involved. By doing so, it is possible to then identify the
data to be monitored, by linking the physical phenomena
involved in the production of the ETFE, and the risks of
failures identified on the equipment. This process is still
under investigation, but can help proposing a systematic
approach to select the relevant data for failure analyses.

Finally, from the observations coming from the differ-
ent use cases studied during this work, we highlighted
that catching faulty events can sometimes be a difficult
task. Having failure data is not always a possibility while
working on predictive maintenance topics. In the recent
years, many researchers proposed to work on data col-
lected during a known healthy state of the equipment,
to learn its representation using mathematical models.
There is a high interest for predictive maintenance of
some critical systems where it is not possible to gener-
ate or simulate failures. One of the possibilities is called
Novelty Detection as proposed by Finch (2020). It enables
to create an anomaly detection system when the incom-
ing data is outside of the known healthy state from the
model. A second possibility is linked with the transfor-
mation of timeseries data into images, to use machine
learning models for image classification, as proposed by
Hatami, Gavet, and Debayle (2018) and Yang, Chen, and
Yang (2019). Similarly, the main idea is to label images for
the healthy state of the equipment and detect faulty states
as anomalies by the model.

Note

1. Alphatech: research centre of Plastic Omnium CES, located
in Compiégne — France
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