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X-ray diffraction techniques are widely used to estimate stresses within

polycrystalline materials. The application of these techniques requires the

knowledge of the X-ray elastic constants relating the lattice strains to the stress

state. Different analytical methods have been proposed to evaluate the X-ray

elastic constants from the single-crystal elastic constants. For a given material,

such methods provide the bulk X-ray elastic constants but they do not consider

the role of free surfaces. However, for many practical applications of X-ray

diffraction techniques, the penetration depth of X-rays is the same order of

magnitude as the grain size, which means that the influence of the free surface on

X-ray elastic constants cannot be excluded. In the present work, a numerical

procedure is proposed to evaluate the surface and bulk X-ray elastic constants

of polycrystalline materials. While the former correspond to the situation where

the penetration is infinitely small in comparison with the grain size, the latter are

representative of an infinite penetration depth with no free-surface effect.

According to numerical results, the difference between surface and bulk X-ray

elastic constants is important for strongly anisotropic crystals. Also, it is possible

to propose a relation that allows evaluating X-ray elastic constants as a function

of the ratio between the penetration depth and the average grain size. The

corresponding parameters of such a relation are provided here for many

engineering materials.

1. Introduction

X-ray diffraction techniques (Noyan & Cohen, 1987; Lu, 1996)

are commonly used for the evaluation of stress states in

polycrystalline samples. These techniques rely on the

measurement of lattice spacings for one or several lattice

planes along different measurement directions. The standard

analysis procedure consists of evaluating the corresponding

lattice strains. The linear relation between lattice strains and

the stress tensor is then exploited to estimate the stress state.

Such a relation, which is based on linear elasticity theory,

involves some constants that depend on the stiffness proper-

ties of the material of interest. As demonstrated by Stickforth

(1966), for non-textured polycrystalline materials, there are

two independent constants for each set of equivalent lattice

planes. To obtain these constants, which are commonly

referred to as the X-ray elastic constants, different strategies

have been proposed. Experimental methods consist of

imposing a known stress state on a sample of the material of

interest, measuring the resulting lattice strains for some lattice

planes and estimating the corresponding X-ray elastic

constants. While robust and representative results can be

obtained with this experimental approach, there are some

practical limitations. For example, though only one repre-

sentative sample of the material is needed, sample preparation

ISSN 1600-5767

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576723006878&domain=pdf&date_stamp=2023-09-01


is often time consuming. The acquisition of X-ray diffraction

data under in situ conditions also requires a specific experi-

mental setup to control loading conditions.

As an alternative, some analytical or numerical methods

were developed. These methods often rely on homogenization

theory to estimate the X-ray elastic constants from single-

crystal stiffness constants. For instance, Behnken & Hauk

(1986) used the Voigt (1928), Reuss (1929) and Kröner (1958)

approximations to evaluate the X-ray elastic constants of non-

textured polycrystalline materials. For textured materials, the

macroscopic stiffness properties are anisotropic, and it is

generally not possible to describe the relation between lattice

strains and the stress tensor with only two constants. However,

provided some information regarding crystallographic texture

is included, the aforementioned methods can still be used to

consider the impact of mechanical stresses on lattice strains

(e.g. Dölle & Hauk, 1978, 1979; Sprauel et al., 1989). The

methods relying on homogenization theory provide the bulk

X-ray elastic constants in the sense that they consider each

crystal as a domain embedded in an infinite medium. While

such an approximation makes sense when the penetration

depth is substantial in comparison with the crystallite size, it

may not be relevant for the specific, but rather common,

situation where the volume probed by X-rays is close to a free

surface. In fact, as discussed by van Leeuwen et al. (1999) and

Welzel et al. (2003) in the context of thin films, macroscopic

stiffness properties may be anisotropic, even in the absence of

texture, because of direction-dependent intergranular inter-

actions near free surfaces. Specifically, free surfaces are a

possible source of anisotropy because surface grains are not as

constrained by their surrounding environment as bulk grains

are. As a result, not only does a free surface put some

restrictions on the stress tensor, it also affects the dependence

of lattice strains with respect to the stress tensor. To consider

surface-induced anisotropy, some specific strategies were

proposed. For instance, the approach of Vook & Witt (1965)

uses the Reuss approximation for the direction perpendicular

to the free surface while the Voigt approximation is adopted

for the directions parallel to the free surface. A similar

approach was used by Baczmański et al. (2003), who combined

the Reuss and Kröner approximations to describe the relation

between lattice strains and the stress tensor. These approaches

that consider the specific nature of surface grains provide the

surface X-ray elastic constants, which correspond to the

asymptotic case of a zero penetration depth.

For many applications of X-ray diffraction techniques, the

penetration depth is the same order of magnitude as the

average grain size. In such a situation, it is difficult to decide

whether one should use the surface or the bulk X-ray elastic

constants for the evaluation of the stress state. The present

work therefore aims at investigating the impact of the pene-

tration-depth-to-average-grain-size ratio on the X-ray elastic

constants of non-textured polycrystalline materials. For this

purpose, numerical simulations are performed on poly-

crystalline aggregates to determine the lattice strains for some

prescribed loading conditions. The numerical results are then

post-processed to evaluate the impact of a free surface on the

relation between lattice strains and the stress state. Also, a

relation that allows evaluating the X-ray elastic constants for

an arbitrary penetration-depth-to-grain-size ratio is proposed.

This relation uses the bulk and surface X-ray elastic constants,

as well as some additional constants, which are provided for

many engineering polycrystalline materials.

2. Methods

2.1. Surface and volume average quantities

X-ray diffraction techniques provide some information

regarding the mechanical and microstructural state of a

volume of crystalline material. In the following, the volume

probed by X-rays is denoted by Vg and is referred to as the

gauge volume. It is convenient to evaluate some quantities

that are spatially averaged over the gauge volume. Specifically,

an average quantity (say �aa) obtained from a volume-averaging

operation over the gauge volume Vg is connected to its local

position-dependent counterpart (say a) according to

�aa½�� ¼

R
Vg

exp
�
� d½x�=�

�
a½x� dVR

Vg
exp

�
� d½x�=�

�
dV

; ð1Þ

where x is the position vector, d is a function that returns the

distance to the free surface and � is the penetration depth. For

the asymptotic case of an infinite penetration depth, the above

expression reduces to

�aa½1� ¼
1

Vg

Z
Vg

a½x� dV: ð2Þ

Also, when the penetration depth approaches zero, only the

material points lying on the free surface contribute to the

average quantity �aa, which means that

�aa½0� ¼
1

Sg

Z
Sg

a½x� dV; ð3Þ

where Sg is the free surface illuminated by X-rays.

2.2. Definition of X-ray elastic constants

For the evaluation of the stress state, X-ray diffraction

techniques rely on the measurement of average lattice strains

along different directions within the gauge volume. Specifi-

cally, for a given measurement direction defined by the unit

vector n, the gauge-volume average lattice strain ���hkl asso-

ciated with the crystals satisfying diffraction conditions for a

set of equivalent lattice planes {hkl} is linearly related to the

gauge-volume average stress tensor �rr according to

���hkl½n; �� ¼ �FFhkl½n; �� : �rr½��; ð4Þ

where �FFhkl is a second-rank tensor known as the X-ray stress-

factor tensor (Hauk, 1997). Such a tensor depends on the

measurement direction, the considered set of equivalent

lattice planes, the penetration depth and the microstructure.

The role of microstructure is attributed to crystallographic

and morphological textures, which both contribute to the
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anisotropic aspect of macroscopic stiffness properties. Also,

the impact of the penetration depth is the result of direction-

dependent intergranular interactions near free surfaces.

As demonstrated by Stickforth (1966), for the specific, but

rather common, case of non-textured polycrystalline mat-

erials, the bulk X-ray stress-factor tensor, which corresponds

to the asymptotic case of an infinite penetration depth, is

defined from two constants, denoted by �ss1;hkl and �ss2;hkl , known

as the X-ray elastic constants:1

�FFhkl½n;1� ¼
1
2 �ss2;hkl½1� n� nð Þ þ �ss1;hkl½1�1: ð5Þ

For non-textured polycrystalline materials, equation (4) is thus

conveniently written as follows:

���hkl½n;1� ¼
1
2 �ss2;hkl½1� n� nð Þ : �rr½1� þ �ss1;hkl½1�tr

�
rr½1�

�
ð6Þ

and

���hkl½n;1� ¼
1
2 �ss2;hkl½1� ���n½n;1� þ 3�ss1;hkl½1� ���h½1�: ð7Þ

The above relation indicates that, for a set of equivalent lattice

planes, the average lattice strain along a specific measurement

direction n depends on the average hydrostatic stress ���h

through �ss1;hkl and on the average normal stress ���n acting along

the measurement direction through �ss2;hkl.

For the case of a finite penetration depth, because of surface

anisotropy, the above relation is, strictly speaking, not valid.

However, one may imagine that, in some situations, the above

relation provides a reasonable approximation in the sense that

���hkl½n; �� ’
1
2 �ss2;hkl½�� ���n½n; �� þ 3�ss1;hkl½�� ���h½��: ð8Þ

In the following, the impact of the penetration depth on the

X-ray elastic constants of non-textured polycrystalline mate-

rials is evaluated. For this purpose, two different situations are

considered. First, the case of an infinite penetration depth is

investigated. Such a situation allows estimating the bulk X-ray

elastic constants. In the second situation, different finite

penetration depths are considered and the corresponding

gauge-volume average X-ray elastic constants are evaluated.

The asymptotic case of a zero penetration depth is also

considered to determine the surface X-ray elastic constants.

2.3. Microstructure generation

To evaluate the bulk X-ray elastic constants of poly-

crystalline materials, a cuboidal periodic volume element

(with dimensions l � l � l), such as the one shown in Fig. 1, is

considered. Such a volume element consists of 400 equiaxed

grains obtained from a Voronoı̈ tessellation. A triplet of Euler

angles is then assigned to each grain according to the proce-

dure of Morawiec (2013) to obtain a non-textured material.

The corresponding microstructure is referred to as the bulk

microstructure in the following.

To consider the impact of a free surface on X-ray elastic

constants, a similar strategy is adopted to generate the volume

element, except that a void layer is added to the top face (see

Fig. 1). The resulting volume element, which represents the

surface microstructure, can transmit forces along the direc-

tions defined by the e1 and e2 unit vectors, but not along the

direction orthogonal to the free surface, which corresponds to

the e3 unit vector. For the surface microstructure, both the top

and bottom are free surfaces due to the periodicity of the

volume element.

Because of the absence of an intrinsic length scale, the

penetration depth should be compared with the average grain

size. In the present study, the average grain size � is taken as

the equivalent spherical diameter:

� ¼
6Vg

�N

� �1=3

; ð9Þ

where N is the number of grains.

2.4. Spectral method

To describe the mechanical behaviour of a given material

point, a linear elastic constitutive model is adopted. Specifi-

cally, for a material point with position x, the local stress

tensor r is related to the local infinitesimal strain tensor """
according to

r½x� ¼ C½x� : """½x�; ð10Þ

where C is the fourth-rank stiffness tensor. For the specific

case of the void layer, the corresponding material points have

zero stiffness properties. The stiffness tensor therefore

vanishes for these material points.

In the present work, the spectral method (Moulinec &

Suquet, 1998), which is briefly detailed here, is adopted to

solve the field equations resulting from compatibility and

equilibrium equations. For a prescribed macroscopic strain

tensor E, the spectral method aims at determining the local

strain and stress fields that satisfy compatibility conditions,

static equilibrium conditions and constitutive equations. In the

context of linear elasticity, the local strain field is the solution

to the periodic Lippman–Schwinger equation such that

"""½x� ¼ E�

Z
V

G0½x
0
� x� : C½x0� � C0ð Þ : """½x0� dV 0; ð11Þ
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Figure 1
Examples of a bulk microstructure (left) and a surface microstructure
(right). Both microstructures consist of 400 crystals represented with
random colours. The surface microstructure includes a void layer (grey
colour) on the top face.

1 An alternative parametrization consists of using Poisson’s ratio ���hkl and
Young’s modulus �EEhkl. These constants are related to �ss1;hkl and �ss2;hkl with ���hkl ¼

��ss1;hkl=ð�ss1;hkl þ �ss2;hkl=2Þ and �EEhkl ¼ ð�ss1;hkl þ �ss2;hkl=2Þ�1.



where G0 is the symmetric Green tensor, C0 is a reference

stiffness tensor and V is the total volume. Different iterative

procedures (Moulinec & Suquet, 1998; Eyre & Milton, 1999;

Michel et al., 2001), which rely on the Fourier transform, have

been proposed to solve the above integral equation. In the

present work, the original procedure of Moulinec & Suquet

(1998) is used. Also, for the application of the spectral method,

a closed-form expression of the symmetric Green tensor in the

frequency domain is needed. The expression obtained by

Willot (2015), which results from the application of a centred

difference scheme, is adopted for the numerical implementa-

tion of the spectral method.

After convergence of the iterative procedure, the macro-

scopic stress state R is deduced from the local stress field r
according to the classical averaging relation of homogeniza-

tion theory:

R ¼
1

V

Z
V

r½x� dV: ð12Þ

In the general case, the macroscopic stress tensor R is different

from the gauge-volume average stress tensor �rr because the

gauge volume does not coincide with the total volume of the

periodic element. These two stress tensors are equivalent only

for an infinite penetration depth (i.e. R ¼ �rr½1�).

For the application of the spectral method, the poly-

crystalline volume element corresponding to the bulk micro-

structure is discretized into 192 � 192 � 192 voxels. For the

surface microstructure, two additional layers of voxels are

included to represent the void layer. The corresponding

volume element is thus discretized into 192 � 192 � 194

voxels.

2.5. Numerical evaluation of X-ray elastic constants

For a given set of equivalent planes and a given material,

the evaluation of the X-ray elastic constants relies on the post-

processing of numerical data obtained from the application of

the spectral method. Specifically, the spectral method provides

the stress and strain fields resulting from the application of a

macroscopic strain and/or stress state to the volume element.

These numerical results are then used to compute the gauge-

volume average stress tensor and the lattice strains. As

detailed hereafter, the gauge-volume average X-ray elastic

constants are finally estimated by observing the dependence of

lattice strains with respect to the gauge-volume average stress

tensor using weighted linear regression analysis.

In the following, a biaxial tension state (along e1 and e2) is

prescribed to the periodic volume element to evaluate the

X-ray elastic constants. The prescribed macroscopic strain and

stress tensors therefore take the following form:

E½ � ¼

E 0 �

0 E �

� � �

2
4

3
5 and R½ � ¼

� � 0

� � 0

0 0 0

2
4

3
5; ð13Þ

where E = 10�4 is the prescribed in-plane strain, and the

symbol ‘*’ denotes the components of the strain and stress

tensors that are adjusted to fulfil boundary conditions.

Provided that the gauge-volume average stress tensor contains

non-zero spherical and deviatoric parts, the choice of the

prescribed macroscopic strain state has no impact on the

numerical evaluation of X-ray elastic constants. For the

purpose of illustration, the strain fields obtained for the bulk

and surface microstructures of polycrystalline copper are

displayed in Fig. 2.

Also, for any material point, the local lattice strain asso-

ciated with an (hkl) lattice plane with unit normal n is

obtained from

�hkl½x; n� ¼ n� nð Þ : """½x�: ð14Þ

As mentioned earlier, the gauge-volume average X-ray elastic

constants are estimated from local lattice strains using

weighted linear regression analysis. Specifically, for the

application of the weighted least-squares method, the local

lattice strains �hkl are the dependent variables, the gauge-

volume average normal stresses ���n are the independent vari-

ables (the total number of independent or dependent vari-

ables is given by the product between the number of voxels

and the lattice-plane multiplicity), and the average X-ray

elastic constants (�ss1;hkl and �ss2;hkl) appear in the unknown

parameters. Also, to consider the impact of the penetration

depth, each lattice-strain value is assigned a weight w that

depends on both the penetration depth and the distance to the

free surface:

w½x; �� ¼ exp �
d½x�

�

� �
: ð15Þ

For the evaluation of the bulk X-ray elastic constants (i.e. � =

1), the weight is equal to unity for any material point. On the

other hand, for a finite penetration depth, the weight asso-

ciated with a given voxel depends on the distance to the

nearest free surface. For a set of equivalent planes, the

weighted least-squares method thus aims at minimizing the

objective function Shkl such that

Shkl ¼
P

w½x; ��r2
hkl½x; �; n�; ð16Þ

where the residual rhkl is computed according to

rhkl½x; �; n� ¼ �hkl½x; n� � 1
2 �ss2;hkl½�� ���n½n; �� � 3�ss1;hkl½�� ���h½��:

ð17Þ
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Figure 2
Examples of equivalent strain fields obtained for the bulk microstructure
(left) and the surface microstructure (right) of polycrystalline copper. The
periodic boundary conditions correspond to the application of a biaxial
stress state with an axial strain of 10�4. The equivalent strain is given by
the Frobenius norm of the strain tensor.



3. Results and discussion

3.1. The role of surface anisotropy

The role of surface anisotropy is intimately related to the

anisotropy of single-crystal stiffness properties. For the

specific case of isotropic single-crystal stiffness properties, the

X-ray elastic constants do not depend on the penetration

depth since the strain field is uniform within the polycrystal-

line volume element. For such conditions, equations (7) and

(8) are therefore equivalent and provide an exact description

of the dependence of lattice strains with respect to the stress

state. To investigate the role of single-crystal stiffness prop-

erties on surface anisotropy, the numerical method described

in the previous section was used to evaluate the local lattice

strains of different fictitious cubic materials. Though general

measures of anisotropy can be formulated for any crystal

symmetry, the cubic crystal symmetry is examined here

because the anisotropic contribution to the stiffness tensor

depends on a single scalar parameter. For each material, the

lattice strains associated with {200} lattice planes were calcu-

lated for both the bulk and surface microstructures. In the

former case, local lattice strains were evaluated for all voxels,

while only the voxels adjacent to the void layer were consid-

ered in the latter case.

For each fictitious cubic material, the single-crystal stiffness

properties, given by the three independent components of the

stiffness tensor (C11, C12 and C44), were defined from the bulk

modulus K, the shear modulus G and the Zener ratio Z

according to

C11 ¼ K þ
20G

9Z þ 6
; C12 ¼ K �

10G

9Z þ 6
and C44 ¼

5GZ

3Z þ 2
:

ð18Þ

For the different materials, identical values were taken for the

bulk and shear moduli (160 and 80 GPa, respectively), but the

Zener ratio was changed from unity to infinity. For each

material, the corresponding anisotropy index A (Kube, 2016),

which, in contrast with the Zener ratio, is not limited to cubic

materials, was calculated from the Zener ratio according to

A ¼ 5 ln
ð3Z þ 2Þð2Z þ 3Þ

25Z

� �2
( )1=2

: ð19Þ

The local lattice strains �200 obtained for different anisotropy

indices are plotted as a function of the gauge-volume average

normal stress ���n in Fig. 3. The results of the linear regression

analysis are represented with solid lines. For each linear

regression, the 95% confidence intervals for the fitting para-

meters (slope and intercept) associated with the affine

approximation were computed. The largest confidence inter-

vals were obtained for the surface microstructure with an

infinite anisotropy index. For this specific case, the confidence-

interval range represents at most 2% of the fitting-parameter

value, which indicates that additional numerical data would

not significantly affect the results of the linear regression

analysis. For the bulk microstructure with an infinite aniso-

tropy index, the confidence interval is smaller, about 0.1% of

the fitting-parameter values.

As discussed earlier, for the specific case of isotropic stiff-

ness properties (A = 0), the lattice strains obtained for the

bulk and surface microstructures follow the same affine

dependence with respect to the average normal stress. When

the anisotropy index increases, the free-surface effect becomes

clearly visible. In fact, the relation between the local lattice

strains and the gauge-volume average normal stress is signif-

icantly different for the bulk and surface microstructures. Such

results indicate that, for the evaluation of the stress state in

materials with strongly anisotropic single-crystal stiffness

properties, particular attention should be given to the

consideration of the free-surface effect for low penetration

depths.

For practical applications involving low penetration depths,

it is worth determining whether the affine relation provided by

equation (8) is reasonable or not. For this purpose, the

weighted sample correlation coefficient r, which provides a

measure of linear correlation between local lattice strains and

average normal stresses, was evaluated for both the bulk and

surface microstructures as a function of the anisotropy index

A. As illustrated by Fig. 4, when the anisotropy index

increases, the correlation coefficient decreases. For bulk

microstructures, this decrease is the sole consequence of the

internal stress field resulting from the heterogeneous aspect of

the polycrystalline microstructure. For surface micro-

structures, the trend is quite similar to that observed for bulk

microstructures. However, whatever the anisotropy index is,

the sample correlation coefficient is lower for surface micro-

structures. In fact, the free-surface effect is responsible for

some additional deviations with respect to the affine response.

If a minimum correlation coefficient of 0.71, which corre-

sponds to the maximum value observed for bulk micro-

structures, is selected, the affine approximation given by

equation (8) provides a reasonable description of the effect of

the stress state on lattice strains as long as the anisotropy

index remains less than 5.4. As shown in the supporting

information, the anisotropy index of common engineering

materials is lower than 1, which suggests that the affine

approximation is correct for the analysis of the stress state in

non-textured polycrystalline materials with low penetration

depths.

An alternative way of observing the effect of surface

anisotropy consists of computing the out-of-plane stress �?
and in-plane stress �k. These quantities are obtained from the

stress tensor according to

�?½x� ¼ jjr½x� � e3jj; ð20Þ

�?½x� ¼ �2
13½x� þ �

2
23½x� þ �

2
33½x�

� 	1=2
ð21Þ

and

�k½x� ¼ kr½x�jj
2
� �2

?½x�
� 	1=2

; ð22Þ
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Figure 3
Local lattice strains �200 versus gauge-volume average normal stresses ���n ¼ n � �rr � n for the {200} planes of cubic polycrystalline materials with different
anisotropy indices. Dots correspond to local lattice strains. The results of the weighted linear regression analysis are represented with solid lines. For the
bulk microstructure, the local lattice strains were evaluated for all voxels, while only the voxels in contact with free surfaces were considered for the
surface microstructure.



�k½x� ¼
�
�2

11½x� þ �
2
21½x� þ �

2
31½x�

þ �2
12½x� þ �

2
22½x� þ �

2
32½x�

	1=2
: ð23Þ

Since e3 is the unit normal to the free surface, the out-of-plane

stress �? must vanish for any material point lying on a free

surface while the in-plane stress �k may take a non-zero value.

To investigate the impact of the distance to the free surface on

the stress state, it is convenient to compute the average out-of-

plane stress ~��? and the average in-plane stress ~��k for the

surface corresponding to a fixed vertical position x3. Specifi-

cally, they are obtained from

~��?½x3� ¼
1

l2

Z
l

Z
l

�?½x1; x2; x3� dx2 dx1 ð24Þ

and

~��k½x3� ¼
1

l2

Z
l

Z
l

�k½x1; x2; x3� dx2 dx1: ð25Þ

The average out-of-plane and in-plane stresses ( ~��? and ~��k)
obtained for polycrystalline copper are plotted as a function of

the dimensionless position x3/l in Fig. 5. The free surfaces,

which are the top and bottom faces of the surface micro-

structure, correspond to the positions x3/l = 0 and x3/l = 1.

According to the results, though the local stress state can be

triaxial, the average out-of-plane stress ~��? vanishes whatever

the distance to the free surface is for both microstructures as a

result of mechanical equilibrium. For the average in-plane

stress ~��k, while the results obtained for the bulk and surface

microstructures are similar to each other far from the free

surface, the in-plane stress obtained for the surface micro-

structure is lower than that of the bulk microstructure in the

vicinity of a free surface. Such results illustrate the fact that

surface grains are less constrained by their surrounding

environment than bulk grains. The effect of a free surface on

the stress state is visible over a distance that is the same order

of magnitude as the grain size � (�/l ’ 0.17 in the present

case).

3.2. Impact of the penetration-depth-to-average-grain-size
ratio

To evaluate the impact of the penetration depth on the

X-ray elastic constants of a given material, ten bulk and ten

surface microstructures were generated. For each micro-

structure, the spectral method was then used to solve the field

equations. The numerical results were finally post-processed

for each individual bulk or surface microstructure to estimate

the gauge-volume average X-ray elastic constants for different

penetration-depth-to-grain-size ratios (�/�) ranging from one-

tenth to infinity. The values of the gauge-volume average

X-ray elastic constants reported in the following are an

average of the individual values obtained for the ten different

microstructures. The number of microstructures was selected

to ensure that, if additional microstructures are considered,

the relative effect on average X-ray elastic constants is less

than 1%.

As discussed in Section 3.1, the X-ray elastic constants

depend on the penetration depth. From an engineering

perspective, it is useful to have a relation that provides the

values of �ss1;hkl and �ss2;hkl as a function of the ratio between the

penetration depth � and the average grain size �. Such a

relation allows determining the X-ray elastic constants for a

given penetration depth and a given average grain size. As

illustrated in Fig. 6, the impact of the penetration depth on

gauge-volume average X-ray elastic constants is correctly

described with the following relations:

�ss1;hkl �½ � ¼ �ss1;hkl 0½ � � �ss1;hkl 1½ �
� 	 k1;hkl

k1;hkl þ �=�
þ �ss1;hkl 1½ � ð26Þ

and
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Figure 5
Spatial distributions of the average out-of-plane and in-plane stresses ( ~��?
and ~��k) obtained for polycrystalline copper. The periodic boundary
conditions correspond to the application of a biaxial stress state with an
axial strain of 10�4. For the surface microstructure, the free surfaces
correspond to the positions x3/l3 = 0 and x3/l3 = 1.

Figure 4
Sample correlation coefficient r as a function of the anisotropy index A
for cubic materials. The sample correlation coefficient was calculated
from numerical data (lattice strains and gauge-volume average normal
stresses) for bulk and surface microstructures. The horizontal solid line
indicates the asymptotic value obtained for the bulk microstructure with
an infinite anisotropy index.



�ss2;hkl �½ � ¼ �ss2;hkl 0½ � � �ss2;hkl 1½ �
� 	 k2;hkl

k2;hkl þ �=�
þ �ss2;hkl 1½ �; ð27Þ

where �ss1;hkl½0� and �ss2;hkl½0� (or �ss1;hkl½1� and �ss2;hkl½1�) are the

surface (or bulk) X-ray elastic constants. The former corre-

spond to a zero penetration depth while the latter are asso-

ciated with an infinite penetration depth. Also, k1,hkl and k2,hkl

are positive constants that allow considering the impact of the

penetration-depth-to-grain-size ratio on the X-ray elastic

constants.

For a given material and given set of lattice planes, the bulk

X-ray elastic constants are directly estimated from the

numerical results obtained for bulk microstructures with an

infinite penetration depth. The evaluation of surface X-ray

elastic constants, as well as the k1,hkl and k2,hkl constants, uses

the numerical results for surface microstructures with

different finite penetration-depth-to-grain-size ratios (1/10,

1/5, 1/2 and 1). Specifically, using linear regression analysis, the
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Figure 6
Gauge-volume average X-ray elastic constants (�ss1;hkl and 1

2 �ss2;hkl) for the
{111} planes of polycrystalline copper for different penetration-depth-to-
average-grain-size ratios. Dots correspond to the average data obtained
from numerical results for ten different microstructures. The standard
deviations are indicated with vertical error bars. The results obtained
from equations (26) and (27) are presented with solid lines. The values of
bulk X-ray elastic constants, which correspond to an infinite penetration
depth, are indicated with dotted lines.

Figure 7
Procedure to obtain surface and bulk X-ray elastic constants, as well as
the k1,hkl and k2,hkl constants, for different sets of equivalent lattice planes
of a given material.

Figure 8
Surface and bulk X-ray elastic constants of polycrystalline copper for
different lattice planes as a function of the 3� orientation parameter.



above constants were adjusted to minimize the difference

between the observed gauge-volume average elastic constants

and those given by equations (26) and (27). This procedure,

which is summarized in Fig. 7, was used to obtain the surface

and bulk X-ray elastic constants, as well as the k1,hkl and k2,hkl

constants, of different engineering materials (the procedure is

explained in more detail in Appendix A). The corresponding

numerical data are presented in the supporting information.

As discussed by Hauk (1997), the dependence of bulk X-ray

elastic constants on lattice planes can be described with some

orientation parameters whose definitions depend on the

crystal system of the material of interest. For cubic materials,

the X-ray elastic constants exhibit an affine dependence with

respect to the 3� orientation parameter, where � is defined

according to

� ¼
h2k2 þ k2l2 þ l2k2

ðh2 þ k2 þ l2Þ
2 : ð28Þ

As illustrated in Fig. 8, which shows the X-ray elastic constants

obtained for copper as a function of the 3� orientation

parameter, such an affine dependence is observed not only for

the bulk X-ray elastic constants but also for the surface X-ray

elastic constants. These results also indicate that, in compar-

ison with bulk X-ray elastic constants, the surface X-ray elastic

constants depend more significantly on lattice planes.

For hexagonal materials, a parabolic dependence of the

X-ray elastic constants on the orientation parameter H2 is

observed. This orientation parameter is calculated from Miller

indices according to

H2
¼

l2

ð4=3Þðc=aÞ
2
ðh2 þ k2 þ hkÞ þ l2

: ð29Þ

For the purpose of illustration, the X-ray elastic constants

obtained for zinc are plotted as a function of the H2 orienta-

tion parameter in Fig. 9. The parabolic dependence is

observed for both bulk and surface X-ray elastic constants.

Also, as for cubic materials, the effect of elastic anisotropy,

which controls the dependence of the X-ray elastic constants

with respect to the lattice planes, is more pronounced for

surface X-ray elastic constants.

In the context of stress analysis, the above results indicate

that there are some lattice planes for which the X-ray elastic

constants are not much affected by surface anisotropy. These

planes should be preferred for stress analysis with X-ray

diffraction techniques as the role of the penetration-depth-to-

grain-size ratio does not need to be considered to obtain

accurate estimates of the stress state. On the other hand, when

experimental conditions do not allow one to select such lattice

planes, the penetration-depth-to-grain-size ratio should be

carefully evaluated, as any error on the X-ray elastic constants

would be directly reflected on stress estimates.

4. Conclusions

Accurate estimates of X-ray elastic constants are of prime

importance for stress analysis in polycrystalline materials with

X-ray diffraction techniques. In the present work, the impact

of the penetration depth on the X-ray elastic constants of non-

textured polycrystalline materials was investigated with a

numerical approach. The underlying idea consists of deter-

mining whether the X-ray elastic constants are significantly

impacted by free-surface effects or not. For this purpose, a

numerical approach was proposed to estimate the X-ray

elastic constants of polycrystalline materials for different

penetration-depth-to-grain-size ratios. This approach relies on

the spectral method to determine the stress and strain fields

resulting from the application of a macroscopic strain state to

a polycrystalline volume element. These numerical results are

then used to compute the gauge-volume average stress tensor

and the lattice strains. Weighted linear regression analysis is

finally applied to estimate the gauge-volume average X-ray

elastic constants for a given penetration-depth-to-grain-size

ratio. According to the results, the effect of the penetration

depth is related to the anisotropic nature of the stiffness

properties. In fact, for materials with strongly anisotropic

properties, the X-ray elastic constants may significantly

depend on the penetration-depth-to-grain-size ratio.
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Figure 9
Surface and bulk X-ray elastic constants of polycrystalline zinc for
different lattice planes as a function of the H2 orientation parameter.



For a given set of equivalent lattice planes and a given

material, the X-ray elastic constants for an arbitrary pene-

tration-depth-to-average-grain-size ratio can be obtained

from simple analytical relations. Such relations provide a way

of interpolating between the surface and bulk X-ray elastic

constants, which correspond to the asymptotic cases of zero

and infinite penetration depth, respectively. These constants

were evaluated for some common engineering materials. The

corresponding data, which are reported in the supporting

information of this article, are expected to provide valuable

information for stress analysis with X-ray diffraction techni-

ques.

5. Related literature

The following references are cited in the supporting infor-

mation for this article: Epstein & Carlson (1965), Thomas

(1968), Teklu et al. (2004), Leese & Lord Jr (1968), Soga

(1966), Sumer & Smith (1963), Wang et al. (2019), Fisher &

Renken (1964), Wazzan & Robinson (1967), McSkimin &

Andreatch Jr (1964), Alers & Neighbours (1958), Bogardus

(1965), Deligoz et al. (2006), Gilman & Roberts (1961),

Pizzagalli (2021), Lee & Gilmore (1982), Vogelgesang et al.

(2000), Fodil et al. (2014), Tefft (1966), Kandil et al. (1984) and

Kisi & Howard (1998).

APPENDIX A
Bulk and surface X-ray elastic constants

The surface and bulk X-ray elastic constants, as well as the

k1,hkl and k2,hkl constants, computed for different engineering

materials and different sets of lattice planes are listed in Tables

S1–S26 of the supporting information). To obtain these data,

the numerical procedure presented in Section 2.5 was applied

to evaluate the gauge-volume average X-ray elastic constants

for different penetration-depth-to-grain-size ratios (from one-

tenth to infinity). The bulk and surface X-ray elastic constants,

as well as the k1,hkl and k2,hkl constants, were then deduced

from the gauge-volume average X-ray elastic constants. For

the specific case of similar surface and bulk X-ray elastic

constants, which corresponds to the absence of the penetra-

tion-depth effect, the k1,hkl and k2,hkl constants are not

provided as they do not affect the gauge-volume average

elastic constants. In the present work, surface and bulk X-ray

elastic constants are considered similar when the relative

difference is less than 1%.
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